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Abstract
In this article, the instability and dynamic characteristics of fluid-conveying microtubes with surface roughness are studied. 
A theoretical model is presented to describe the dynamic behaviors of rough microtubes by introducing correction factors, 
which account for the effects of the surface roughness both on the structure and the internal fluid. The results demonstrate 
that the surface roughness has little effect on the correction factors for structure, but dramatically decreases the correction 
factors for fluid, which indicates that the Coriolis force and centripetal force caused by the internal fluid are reduced. For 
clamped–clamped microtubes, the surface roughness makes the nondimensional critical velocity for divergence and the 
natural frequency increase. And as the roughness height or the wave number increases, both the critical velocity and the 
frequency increase. For cantilevered microtubes, the critical velocity for fluttering depends on the surface roughness and 
the mass ratio. Curves describing the relationship between the nondimensional critical velocity Û

cr
 and the mass ratio � for 

smooth and rough microtubes are presented. Each curve contains a S-shaped segment, which is associated with the instabil-
ity–restabilization–instability sequence. The surface roughness induces the curve shifting to the upper right of the Û

cr
 − � 

plane. In the region far away from the S-shaped segment, the critical velocity increases with the increasing of roughness 
height. And in the vicinity of S-shaped segment, the critical velocity for the rough microtube may be less than the value for 
the smooth microtube because of the sharply varying of critical velocity with mass ratio. The effects of surface roughness 
on the frequency of cantilevered microtubes are also analyzed and discussed.

Keywords  Microtube conveying fluid · Surface roughness · Instability · Dynamics

1  Introduction

As one classical fluid–structure interaction problem, 
dynamic analysis of fluid-conveying pipes/tubes has been a 
hot topic for scholars from decades ago (Paidoussis, 1998) 
to recent years (Dai et al., 2020; Giacobbi et al., 2020; 
Li et al., 2020; Lyu et al., 2020; Peng et al., 2018, 2019), 
due to the rich and interesting properties in their dynamic 
behaviors. Microtubes conveying fluid have a wide range of 

applications in micro/nano electromechanical systems, such 
as mass sensing (Kim et al., 2016), drug injection (Schweng-
ber et al., 2015), fluid transporting (Mainak et al., 2005) 
and so on. Because of the complex interactions between the 
structure and fluid, fluid-conveying microtubes exhibit rich 
dynamic behaviors, including buckling, flutter, chaos, etc. 
As a result, a number of researchers paid much attention to 
the dynamics and stability of microtubes conveying fluid 
(Dehrouyeh-Semnani et al., 2017; Ghayesh et al., 2019; 
Ghazavi et al., 2018; Hu et al., 2016).

Owing to the small size of microtubes, the behaviors of 
both micro-structures and micro-flows are quite different 
from macro tubes. To accurately predict dynamic charac-
teristics, both the micro-structure and micro-fluid should 
be appropriately addressed. Numerous researchers focused 
on modeling micro-structures and developed several meth-
ods, including modified couple stress theory (Hu et al., 
2016; Wang, 2010), strain gradient theory (Ghazavi et al., 
2018; Hosseini and Bahaadini, 2016), nonlocal elasticity 
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theory (Li et al., 2016; Rahmati and Khodaei, 2018), sec-
ond strain gradient theory (Ghazavi et al., 2018) and so on. 
Wang (Wang, 2010) firstly developed a theoretical model to 
describe dynamic behaviors of microtubes conveying fluid 
based on the modified couple stress theory. The Hamilton’s 
principle was used to derive the equations of motion and 
the differential quadrature method was adopted to solve the 
equations. The results showed that the critical flow velocities 
obtained using the modified couple stress theory were higher 
than the ones obtained based on the classical continuum 
theory. Ghazavi et al. (2018) adopted the second strain gra-
dient theory for modeling the micro/nano tubes conveying 
fluid. According to the second strain gradient theory, the 
critical velocities were higher than those predicted by the 
classical theory and strain gradient theory. Li et al. applied 
nonlocal strain gradient theory along with the Timoshenko 
and Euler–Bernoulli models to describe the dynamics and 
stability of fluid-conveying microtubes. The results dem-
onstrated that the critical flow velocity increased as the 
material length scale parameter increased or the nonlocal 
parameter decreased.

The microscale fluid also has a significant effect on the 
stability and dynamic behaviors of fluid-conveying micro-
tubes. For the macro tube, the flow is usually turbulent (Paid-
oussis, 1998). Consequently, the flow velocity is assumed to 
be constant across the cross section and is treated as a solid 
moving at a constant velocity (Li et al., 2016). However, 
the Reynolds numbers for fluid flowing in microtubes are 
quite small and hence the fluid flows are usually laminar. 
For laminar flows, the velocities are not constant across the 
cross section and the velocity profiles should be taken into 
consideration. Guo et al. (2010) modified the centripetal 
force term of governing equations for microtubes convey-
ing fluid by considering the non-uniformity of flow veloci-
ties. The results demonstrated that because of the velocity 
profile, the critical velocities for divergence and flutter were 
lower than those with plug flow. Wang et al. (2013) studied 
the in-plane and out-of-plane vibration of fluid-conveying 
microtubes with different cross-sectional shapes. The size 
effects of micro-structure and micro-flow were both taken 
intoconsideration. Bobovnik and Kutin (2018) studied the 
fluid–structure forces induced by laminar fluid in vibrating 
pipes using CFD numerical models. It was found that the 
centripetal correction factor was affected by vibration fre-
quencies, lengths of the pipe and vibration amplitudes.

Surface roughness is an inherent byproduct of almost all 
fabrication techniques (Parfenyev et al., 2019). For micro-
structures, it is very likely to generate rough surfaces due 
to the limitation of fabrication processes. The dynamic 
behaviors of microstructures were dependent on the surface 
roughness. Shaat and Faroughi (2018) firstly researched the 
effect of surface integrity on the vibration characteristics 
of microbeams. The surface roughness, altered layer and 

surface excess energy were taken into account. The results 
showed that surface integrity may decrease/increase the 
beam natural frequency. Shaat et al. (2020) investigated the 
buckling behaviors of beam-typed micro/nano structures 
under the influence of surface roughness. It was revealed that 
surface roughness distorted the buckling configurations and 
post-buckling mode shapes. Furthermore, a post-buckling 
mode inversion due to surface roughness was found. Sur-
face roughness also has significant effect on the flow char-
acteristics in rough microtubes. In general, the characteristic 
height of generated surface roughness ranges from tens of 
nanometers to several micrometers (Jaeger et al., 2012; Zhou 
et al., 2017), which is comparable to the characteristic length 
of microtubes. A number of researches have researched the 
effect of surface roughness on the fluid flows in microtubes 
through experimental, theoretical and numerical methods 
(Akyildiz and Siginer, 2017; Dey et al., 2021; Duan et al., 
2008; Mala and Li, 1999; Song et al., 2018; Tang et al., 
2007). As early as 1999, Mala and Li (Mala and Li, 1999) 
experimentally studied liquid flow through microtubes with 
diameters ranging from 50 to 254 μm and found that the 
friction factor was obviously higher than that predicted by 
the Poiseuille flow theory. Tang et al. (2007) summarized 
the experimental results of flow characteristics in microtubes 
and indicated that surface roughness led to the increasing 
of friction factors. Duan et al. (2008) studied the influences 
of corrugated surface roughness on laminar flow in micro-
tubes based on the Stokes equation. An analytical model 
was presented through a perturbation method to predict 
velocity distributions and friction factors for rough micro-
tubes. Song et al. (2018) investigated flow characteristics 
in circular microtubes with periodically structured surface 
roughness. The flow field and pressure drop were analyzed 
and discussed based on a theoretical model and numerical 
simulations. Marusic-Paloka and Pazanin (2020) studied the 
influences of both surface roughness and inertia on the flow 
in a corrugated pipe and proposed a high order correction of 
the Hagen–Poiseuille velocity. Based on these results, a new 
formula for the Darcy friction coefficient was developed.

According to the results published in the literature, sur-
face roughness not only affects the dynamic behaviors of 
microstructures, but also has important effect on the fluid 
flow through rough microtubes. It is well known that the 
fluid-conveying microtube is a typical fluid–structure cou-
pling system. Consequently, the stability and dynamic prop-
erties of the microtube is dependent on the surface rough-
ness. To the authors’ best knowledge, there is no single study 
related to the roughness-dependent stability and dynamic 
behaviors of rough microtubes. Therefore, this article aims 
to analytically explore this topic.

The article is outlined as follows. In Sect. 2, a theoreti-
cal model is developed by considering the surface rough-
ness of microtube to characterize the stability and dynamic 
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behaviors of rough microtubes. The effects of surface rough-
ness on the dynamics of microtubes with different bound-
ary conditions are analyzed and discussed in Sect. 3. Some 
conclusions are drawn in Sect. 4.

2 � Model development

Figure 1a shows microtubes with surface roughness (Kim 
et al., 2016). These microtubes were fabricated through 
the silicon-on-nothing process and were utilized for mass 
sensing. It can be found that in the axial direction the inner 
wall of the microtube is almost smooth. And in the circum-
ferential direction, there exists obvious surface roughness. 
Furthermore, the distribution of roughness height is approxi-
mately periodic. Hence, a microtube with sinusoidally wavy 
wall is considered, as illustrated in Fig. 1b. The mean radius 
of the microtube is denoted as Rm . A cylindrical coordi-
nate system (r, θ, x) is adopted, where x axis is the direc-
tion of fluid flow. The surface roughness of the inner wall 
is described by

where Ri is the real radius of the inner wall, � is the rela-
tive roughness which is defined as � = Δ∕Rm , � is the wave 
number that can be expressed as � = 2�Rm∕b and � is the 
circumferential coordinate. The parameters Δ and b are 
the amplitude and wavelength of the surface roughness, as 
shown in Fig. 1b.

Generally, the length of the microtube is much larger 
than the diameter. Hence, its dynamic characteristics can 
be described by the Euler–Bernoulli beam theory. Gener-
ally, beam element and fluid element are subjected to many 
forces, including fluid pressure, gravity, friction, tension, 
shear force, bending moment, etc. In this paper, the influ-
ences of surface roughness on the dynamic characteristics 
of fluid-conveying microtubes are focused on. In order to 
obtain a concise and clear dynamic control equation, the 
gravity, tensioning and pressurization effects are neglected. 
If readers are interested in these effects, please refer to Paid-
oussis’s work (Paidoussis, 1998). Figure 2a shows the forces 
and moments acting on a beam element. According to the 

(1)Ri = Rm[1 + � sin (��)],

Fig. 1   a Microtubes with periodic surface roughness. b Schematic for a rough microtube conveying fluid
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theory of fluid mechanics, the fluid in the beam element can 
be regarded as composed of a large number of fluid particles, 
whose density is �f , volume is ΔVp and acceleration is apy . 
Applying the Newton’s second law to the beam element, 
yields:

where Q is the transverse shear force, ΔL is the length of the 
microtube element, M is the moment, �t and �f are the densi-
ties of the microtube and fluid, Vt and Vf are the volumes of 
the microtube element and fluid element, aty is the accelera-
tion of the beam element, ΔVp is the volume of a fluid parti-
cle, E is the Young’s modulus and I(r) is the second moment 
of cross-sectional area. The acceleration of microtube can 
be easily given by aty = �2w

/

�t2 . In order to obtain apy , the 
motion of a fluid particle is analyzed.

As shown in Fig. 2b, the fluid particle moves at a velocity 
of u in the relative coordinate system x� − o� − y� . Because 
of the effect of viscosity and surface roughness, the veloc-
ity of fluid particle is nonuniform and depends on the posi-
tion. The microtube is considered to be slender and its lat-
eral motions, w(x, t), to be small and of long wavelength 
as compared to the diameter. As a result, the curvilinear 
coordinate s along the centerline of the microtube and the 
coordinate x can be used interchangeably. According to the 
theorem of acceleration composition, the acceleration of 
fluid particle in the absolute coordinate system is composed 

(2)
�Q

�x
ΔL = �tVtaty +

∑

Vf

�fΔVpapy,

(3)Q =
�M

�x
= −EI(r)

�3w

�x3
,

Fig. 2   a Forces and moments acting on the beam element. b Motion of the fluid particle in the relative coordinate system

of the convected acceleration, the relative acceleration and 
the Coriolis acceleration. The acceleration of coordinate 
system x� − o� − y� relative to the absolute coordinate sys-
tem is �2w

/

�t2 + �3w
/

�x�2t . The former term indicates 
the translational acceleration while the latter indicates the 
rotational acceleration. Considering the small-deflection 
approximation, yields 𝜕2w

/

𝜕t2 ≫ 𝜕3w
/

𝜕x𝜕2t . Hence, the 
convected acceleration is expressed as �2w

/

�t2 . Based on 
the Euler–Bernoulli beam theory, the curvature of microtube 
element is expressed as �2w

/

�x2 . Hence, the acceleration of 
fluid particle in the relative coordinate system x� − o� − y� 
can be given as u2 ⋅ �2w

/

�x2 . Relative to the absolute coor-
dinate system, the coordinate system x� − o� − y� has a rota-
tional velocity �2w

/

�x�t . The Coriolis acceleration of fluid 
particle is expressed as 2u ⋅ �2w

/

�x�t . Consequently, the 
acceleration of fluid particle in the absolute coordinate sys-
tem can be given by

Because the cross-section area keeps constant along the 
axial direction, the velocity of fluid particle is assumed 
as constant in the direction. Moreover, considering that 
the vibration amplitude of the microtube is very small, 
the velocity of fluid particle in the vibrating microtube 
is assumed to be equal to the one in the static microtube. 
Hence, the governing equation for the vibration of rough 
microtube can be expressed as:

(4)apy =
�2w

�t2
+ u2

�2w

�x2
+ 2u

�2w

�x�t
.

(5)

EI
(r) �

4
w

�x4
+
(

�
t
A
t
+ �

f
A
f

)�2w

�t2

+ 2�
f

(

∫
S
f

u
x
dS

)

�2w

�x�t
+ �

f

(

∫
S
f

u
2

x
dS

)

�2w

�x2
= 0,
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where ux is the fluid velocity in the axial direction of the 
rough microtube. For clamped–clamped microtubes, the 
boundary conditions are subjected to:

For cantilevered microtubes, the boundary conditions are 
subjected to:

In order to obtain the flow velocity ux , the flow character-
istics in the rough microtube should be analyzed. Duan et al. 
(2008) has developed an analytic formula for fluid veloci-
ties in corrugated microtubes using a perturbation method. 
For the completeness of the article, the analysis process of 
flow characteristics is briefly introduced. And interested 
readers can refer to the reference (Duan et al. 2008). The 
Navier–Stokes equations for steady flow in the cylindrical 
coordinate system can be written as:

where ur , u� and ux are components of flow velocities in the 
radial, circumferential and axial directions, respectively, and 
� is the fluid viscosity. The considered rough microtube is 
axisymmetric and the cross-section keeps constant in the 
axial direction. As a result, the velocity components ur and 
u� are zero, and the velocity component ux does not vary 
along the flow direction. Consequently, Eq. (8) is reduced to

The boundary condition for the flow can be given as

Using the perturbation method, the velocity ux is 
expanded in terms of �

(6)
w(0, t) = 0,

�w(0, t)

�x
= 0,

w(L, t) = 0,
�w(L, t)

�x
= 0.

(7)
w(0, t) = 0,

�w(0, t)

�x
= 0,

�2w(L, t)

�x2
= 0,

�3w(L, t)

�x3
= 0.

(8)

�f

(

ur
�ur

�r
+

u�

r

�ur

��
+ ux

�ur

�x
−

u2
�

r

)

= −
�p

�r
+ �

(

�2ur

�r2
+

1

r

�ur

�r
+

1

r2

�2ur

��2
+

�2ur

�x2
−

2

r2

�u�

��
−

ur

r2

)

�f

(

ur
�u�

�r
+

u�

r

�u�

��
+ ux

�u�

�x
+

uru�

r

)

= −
1

r

�p

��
+ �

(

�2u�

�r2
+

1

r

�u�

�r
+

1

r2

�2u�

��2
+

�2u�

�x2
+

2

r2

�ur

��
−

u�

r2

)

�f

(

ur
�ux

�r
+

u�

r

�ux

��
+ ux

�ux

�x

)

= −
�p

�x
+ �

(

�2ux

�r2
+

1

r

�ux

�r
+

1

r2

�2ux

��2
+

�2ux

�x2

)

.

(9)−
dp

dx
+ �

(

�2ux

�r2
+

1

r

�ux

�r
+

1

r2

�2ux

��2

)

= 0.

(10)ux(r, �) = 0 at r = Rm[1 + � sin (��)].

By substituting Eq. (11) into Eqs. (9) and (10), the expres-
sions of u(0)

x
 , u(1)

x
 and u(2)

x
 can be given after some mathemati-

cal calculations,

As a result, the parameters in Eq. (5) associated with the 
fluid velocity ux are given by

The governing equation for the vibration of the rough 
microtube conveying fluid can be expressed as

where A(r)
t  and A(r)

f
 are the structure cross-sectional area 

and the fluid cross-sectional area of the rough microtube, 
respectively, A(s)

f
= �R2

m
 is the fluid cross-sectional area of 

the smooth microtube, CFF1 and CFF2 are correction factors 
for fluid due to the surface roughness, and Us is the averaged 
fluid velocity of smooth microtube. The above parameters 
are written as

(11)ux(r, �) = u(0)
x
(r, �) + �u(1)

x
(r, �) + �2u(2)

x
(r, �) +⋯

(12)u(0)
x

= −
dp

dx
⋅

1

�
⋅

R2
m
− r2

4
,

(13)u(1)
x

= −
dp

dx
⋅

1

�
⋅

[

1

2
R2
m

(

r

Rm

)�

sin (��)

]

,

(14)

u(2)
x

= −
dp

dx
⋅

1

�
⋅

[

1 − 2�

8
R2
m
−

1 − 2�

8
R2
m

(

r

Rm

)2�

cos (2��)

]

.

(15)

∫Sf

uxdS =
−dp∕dx

�

1

8
�R4

m

[

1 − (2� − 3)�2
]

∫Sf

u2
x
dS =

(

−dp∕dx

�

)2

�R6
m

[

1

48
+

1

8(� + 1)
�2 +

1

32
(1 − 2�)�2

]

.

(16)

EI
(r) �

4
w

�x4
+

(

�
t
A
(r)

t
+ �

f
A
(r)

f

)

�2w

�t2

+ 2�
f
A
(s)

f

(

CFF
1

)

U
s

�2w

�x�t
+

4

3

(

CFF
2

)

�
f
A
(s)

f
U

2

s

�2w

�x2
= 0,
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where Ro is the outer radius of the microtube. When the 
surface roughness is not considered, Eq. (16) reduces to the 
governing equation for smooth microtube conveying fluid,

In order to compare the stability and dynamic characteris-
tics of rough microtubes and smooth microtubes, the govern-
ing Eqs. (16) and (23) are separately nondimensionalized,

where

and the spatial and temporal derivatives are given by 
�� = (��∕��) and 𝜂̇ = (𝜕𝜂∕𝜕𝜏) . The parameters CFS1 and 
CFS2 are correction factors for structure induced by the sur-
face roughness. The boundary conditions in nondimensional 
form are expressed as:

(17)I(r) =
1

4
�R4

o
−

1

4
�R4

m
−

3

4
��2R4

m
−

3

32
��4R4

m
,

(18)A
(r)
t

= �R2
o
− �R2

m
−

1

2
��2R2

m
,

(19)A
(r)

f
= �R2

m
+

1

2
��2R2

m
,

(20)CFF1 = 1 − (2� − 3)�2,

(21)CFF2 = 1+
6

(�+1)
�2+

3(1−2�)

2
�2,

(22)Us =
−dp∕dx

�

1

8
R2
m
,

(23)

EI
(s) �

4
w

�x4
+

(

�
t
A
(s)

t
+ �

f
A
(s)

f

)

�2w

�t2
+ 2�

f
A
(s)

f
U

s

�2w

�x�t

+
4

3

�
f
A
(s)

f
U

2

s

�2w

�x2
= 0.

(24)𝜂���� + 𝜂̈ + 2
√

𝛽Û𝜂̇� +
4

3
Û2𝜂�� = 0,

(25)

�

CFS1
�

𝜂���� +
�

CFS2
�

𝜂̈ +
�

CFF1
�

2
√

𝛽Û𝜂̇� +
�

CFF2
�4

3
Û2𝜂�� = 0,

(26)

𝜂 =
w

L
, 𝜉 =

x

L
, CFS1 =

I(r)

I(s)
, CFS2 =

𝜌tA
(r)
t + 𝜌fA

(r)

f

𝜌tA
(s)
t

+ 𝜌fA
(s)

f

𝜏 =

√

EI(s)

𝜌tA
(s)
t + 𝜌fA

(s)

f

t

L2
, Û =

√

𝜌fA
(s)

f

EI(s)
UsL, 𝛽 =

𝜌fA
(s)

f

𝜌tA
(s)
t + 𝜌fA

(s)

f

,

(27)�(0, t) = 0, ��(0, t) = 0, �(1, t) = 0, ��(1, t) = 0,

for clamped–clamped microtubes and

for cantilevered microtubes. In the next, by solving Eqs. (24) 
and (25) through the Galerkin method, the effect of surface 
roughness on the stability and dynamic behaviors of micro-
tubes conveying fluid are analyzed and discussed.

3 � Results and discussions

3.1 � Correction factors

Equation (24) is the classical governing equation for smooth 
fluid-conveying microtubes. The four terms on the left side 
sequentially represent the elastic force of the structure, the 
inertial force of the fluid and structure, the Coriolis force and 
the centripetal force caused by the fluid flow. By comparing 
Eqs. (25) to (24), it is found that surface roughness affects 
all these four terms, which can be characterized by four cor-
rection factors, CFS1, CFS2, CFF1 and CFF2.

Parameters CFS1 and CFS2 are correction factors for 
structure. The surface roughness changes the geometry of 
the microtube, and hence affects the elastic force and the 
inertial force. From Eqs. (17)–(19) and Eq. (26), it is known 
that CFS1 and CFS2 depend on the roughness height � and 
have nothing to do with the wave number � . The param-
eter CFS1 indicates the effect of surface roughness on the 
elastic force. Surface roughness changes the cross-section 
of microtube and consequently affects the bending stiff-
ness. Figure 3 demonstrates the variation of CFS1 for dif-
ferent geometrical parameters. The parameter � is defined 
as � =

(

Ro − Rm

)/

Rm , which means the ratio of the thick-
ness to the nominal inner radius of microtube. As shown in 

(28)
�(0, t) = 0, ��(0, t) = 0, ���(1, t) = 0, ����(1, t) = 0,

Fig. 3   Variation of CFS1 with surface roughness for different geo-
metrical parameters
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Fig. 3, for � = 1 , as surface roughness increases, the param-
eter CFS1, almost keeps constant. This indicates that the 
elastic force of microtube is almost independent on surface 
roughness when the microtube is thick enough. However, 
when the microtube is thin, surface roughness can reduce the 
bending stiffness up to about 5%. The parameter CFS2 char-
acterizes the relationship between the surface roughness and 
the inertial force. By affecting the cross-section shape of the 
microtube, the surface roughness also influences the mass 
of structure and fluid per unit length, thus having an effect 
on the inertial force, which is described by the parameter 
CFS2. As demonstrated in Fig. 4, CFS2 not only depends on 
the surface roughness � and the geometrical parameter � , but 
also affected by the ratio of structure density to fluid density 
�t∕�f . When �t∕�f is less than one, CFS2 increases as the 
surface roughness increases. However, when �t∕�f is larger 
than one, CFS2 decreases as the surface roughness increases. 
In general, the density of structure is larger than the one 
of fluid. Hence, the case that the parameter �t∕�f is larger 
than 1 is focused on. From Fig. 4c, d, it can be found that 
the relationship between the CFS2 and surface roughness 
is similar to that of CFS1. When the microtube is thick, the 

surface roughness has no obvious effect on CFS2. And when 
the microtube is thin, the surface roughness makes CFS2 
decrease. In addition, when the density of structure is much 
larger than the one of fluid, the effect of surface roughness is 
more significant. On the other hand, if the structure density 
equals to the fluid density, CFS2 keeps constant as unity.

Parameters CFF1 and CFF2 are correction factors for 
fluid. Surface roughness affects the flow characteristics in 
the microtube, and hence influences the Coriolis force and 
centripetal force. In order to clarify the effect of surface 
roughness on the flow velocity and verify the correctness of 
the theoretical results obtained by the perturbation method, 
numerical simulations are performed using the finite volume 
method. The nominal radius of microtubes is 30 μm, and the 
pressure gradient is 107 Pa/m. Figure 5 shows the contours 
of fluid velocity in smooth and rough microtubes. The values 
of velocity are normalized by the maximum velocity in the 
smooth microtube. Figure 6 demonstrates the distribution 
of flow velocities in the radial direction with a compari-
son between the theoretical and numerical results. It can be 
found that the surface roughness has two main effects on the 
fluid flow in the microtube. Firstly, the surface roughness 

Fig. 4   Variation of CFS2 with surface roughness for different geometrical parameters a �
t
∕�

f
= 0.1 b �

t
∕�

f
= 0.5 c �

t
∕�

f
= 2 and d �

t
∕�

f
= 10
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decreases the flow velocity. As shown in Figs. 5c and 6, 
the surface roughness with parameters � = 0.05 and � = 20 
reduces the maximum velocity by about 10%. Secondly, 
The surface roughness disturbs the fluid flow near the wall, 
which makes the velocity contours no longer circular. And 
this disturbance decreases with the increasing of the distance 
between the fluid and the wall until it disappears. In addition, 
as shown in Fig. 6, the theoretical results for flow velocities 
agree well with the numerical results, which indicates that 

the analytical results can accurately characterize the flow 
behaviors in rough microtubes.

Because the surface roughness reduces the flow veloci-
ties in the microtube, both the Coriolis force and centripetal 
force induced by fluid flow decrease with the increasing of 
surface roughness height, as shown in Fig. 7. Moreover, 
the increase in the wave number � aggravates the influence 
of roughness height on the correction factors for fluid. By 
comparing Fig. 7 to Fig. 3 and Fig. 4, it can be found that 

Fig. 5   Contours of fluid velocities in smooth and rough microtubes
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the surface roughness has much more significant effect on 
correction factors for fluid than that on correction factors 
on structure. As demonstrated in Fig. 7, for a very rough 
microtube with parameters � = 0.1 and � = 30 , the correc-
tion factor CFF1 can be reduced by more than 50% and the 
factor CFF2 is decreased by more than 80%. For the same 
roughness parameter, the variation of correction factors for 
structure is about within 4%. Therefore, it can be inferred 
that the surface roughness mainly affects the dynamics of 
the microchannel by influencing the fluid flow. In the next, 
the stability and dynamic behaviors of rough microtubes for 
different boundary conditions are analyzed and discussed.

3.2 � Clamped–clamped microtubes

Solving the governing equations for smooth and rough 
microtubes subjected to the clamped–clamped boundary 
condition using the Galerkin method, the complex eigen-
frequencies 𝜔̂ are obtained. The real part of 𝜔̂ is the dimen-
sionless oscillation frequency, and the ratio of the imaginary 
to the real parts is the damping ratio of the system. As shown 
in Fig. 8, whether the microtube is smooth or rough, the 
frequency decreases and the damping ratio keeps constant 
as zero with the increasing of the flow velocity. And once 
the flow velocity exceeds the critical value, the instability 
of divergence occurs. Hence, the surface roughness does 
not change the instability mode of clamped–clamped micro-
tubes. However, it has obvious effect on the critical flow 
velocity for divergence. Figure 8a shows the Argand diagram 
for a smooth microtube. All the four correction factors equal 
to 1. Figure 8b is for a rough microtube with a thick wall. As 
discussed in Sect. 3.1, when the microtube is thick enough, 
the surface roughness has little effect on the correction fac-
tors for structure. Hence, Fig. 8b mainly represents the influ-
ence of fluid flow on the instability of a rough microtube. 
By comparing Fig. 8b to a, it is found that the critical flow 
velocity increases by about 13.6% as the surface roughness 
increases. This is because the surface roughness can reduce 
the flow velocity in microtubes, as illustrated in Figs. 5 and 
6. Figure 8c is for a rough microtube with a thin wall. For 
this condition, the surface roughness slightly decreases 
the bending stiffness of the microtube. It is known that the 
instability of the clamped–clamped microtube is caused by 
the elastic restoring force of the structure less than the cen-
tripetal force induced by the fluid flow. Consequently, the 
critical flow velocity for a thin microtube decreases due to 
the decreasing of bending stiffness. This means that the thin 
microtube is more prone to instability. In addition, it is noted 
that the effect of surface roughness on the bending stiffness 

Fig. 6   Distribution of fluid velocities in the radial direction for 
smooth and rough microtubes with a comparison between the theo-
retical and numerical results

Fig. 7   The variation of CFF1 and CFF2 with the increasing of the surface roughness height for different wave numbers
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Fig. 8   The variation of dimensionless complex frequencies with the increasing of the dimensionless flow velocity for smooth and rough micro-
tubes a Smooth, � = 1 b rough, � = 0.05, � = 30, � = 1 c rough,� = 0.05, � = 30, � = 0.15

Fig. 9   Variation of nondimensional frequency with nondimensional flow velocity for smooth and rough microtubes with different roughness 
parameters
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is so little that the critical flow velocity only decreases about 
0.8%.

The natural frequency is one key dynamic behavior for 
microtubes. Figure 9 demonstrates the variation of nondi-
mensional frequency with nondimensional flow velocity for 
smooth and rough microtubes. It is found that as the flow 
velocity increases, the nondimensional natural frequency 
decreases. When the velocity reaches the critical value, the 
natural frequency decreases to 0 and the microtube loses sta-
bility. Furthermore, as the roughness height or wave number 
increases, which indicates that the surface becomes more 
rough, the natural frequency increases. This is because for 
clamped–clamped microtubes, the centripetal force can be 
equivalent to the axial pressure which makes the structure 
“softer”. The increase of surface roughness can reduce the 
fluid velocity, thus reducing the stiffness softening effect 
caused by the centripetal force. In addition, as the rough-
ness height or wave number increases, the critical flow 
velocity also increases, which means that the microtube is 
less prone to instability. Figure 10 illustrates the variation 
of frequency for smooth and rough microtubes with differ-
ent wall thickness. When the internal fluid flows in a cer-
tain velocity, the nondimensional frequencies for smooth 
microtubes with various wall thickness are different. This 

is because the wall thickness affects the parameter � , which 
characterizes the inertial force induced by the structure and 
fluid. In addition, it can be found that the wall thickness has 
no effect on the critical flow velocity for divergence. This 
is because for smooth microtubes the wall thickness only 
affects the mass ratio � , while the variation of � does not 
influence the nondimensional critical velocity, as shown in 
Table 1. The parameter � is always associated with velocity-
dependent terms in the equation of motion, while divergence 
of the clamped–clamped microtube represents a static loss 
of stability (Paidoussis, 1998). For rough microtubes, the 
wall thickness influences the correction factors for structure, 
thus affecting the critical velocity. However, because this 
influence is very small, the critical velocity only decreases 
about 0.5% as � decreases from 1.0 to 0.15, which can be 
neglected.

Fig. 10   Variation of nondimensional frequency with nondimensional flow velocity for smooth and rough microtubes with different wall thick-
ness

Table 1   The effects of mass 
ratio � on the nondimensional 
critical velocity for clamped–
clamped microtubes

The mass ratio � The critical 
velocity Û

cr

0.2 5.45
0.3 5.45
0.4 5.45
0.5 5.45
0.7 5.45

Fig. 11   Variation of nondimensional critical velocity with the surface 
roughness



	 Microfluidics and Nanofluidics (2021) 25:67

1 3

67  Page 12 of 16

As discussed in the above, it can be concluded that the 
surface roughness mainly affects the dynamic characteristics 
by influencing the flow velocity in the microtube. Figure 11 
shows the variation of nondimensional critical velocity with 
the surface roughness. It is obvious that as the roughness 
height or the wave number increases, the critical flow veloc-
ity dramatically increases. Moreover, the larger the surface 
roughness height is, the faster the critical velocity increases 
with the roughness height. The nondimensional critical 
velocity for the smooth microtube is about 5.44, while the 
value for the rough microtube with � = 0.05 and � = 30 is 
about 6.16. The surface roughness makes the critical veloc-
ity increase about 13.2%.

3.3 � Cantilevered microtubes

The dynamic behaviors of cantilevered microtubes are very 
different from the clamped–clamped ones. According to 
the analysis in the above, the effect of surface roughness 
on correction factors for structure is so small that it can 
be neglected. Hence, CFF1 and CFF2 are assumed to be 1. 
Figure 12 illustrates the typical Argand diagram of smooth 
and rough cantilevered microtubes for different mass ratios. 
The parameters for the surface roughness is � = 0.05 and 
� = 30 . It can be found that for different mass ratios, the 
dynamic behaviors of microtubes are very different. And the 
effect of surface roughness is also distinct. For � = 0.2 , as 
the flow velocity increases, the imaginary part of 𝜔̂ which 
indicates the damping of the system, first increases and then 
decreases. Once the flow velocity exceeds the critical value, 
the damping becomes negative and the microtube conveying 
fluid loses stability by fluttering. For the smooth microtube, 
the nondimensional critical velocity is about 4.44, while the 
value is about 4.96 for the rough microtube with � = 0.05 
and � = 30 . The surface roughness increases the critical 
velocity. For � = 0.4 , the dynamic behavior is so different. 
As the flow velocity increases, the imaginary part of 𝜔̂ goes 
through the process of increasing, decreasing, increasing and 
finally decreasing. For the first decreasing, the imaginary 
part of 𝜔̂ reduces to about 0.1 and then increases, which 
means that the system is still stable. And for the second 
decreasing, the imaginary part of 𝜔̂ drops below 0 and the 
microtube loses stability by fluttering. The surface rough-
ness changes the trend of the imaginary part of 𝜔̂ with the 
increasing flow velocity, as illustrated in Fig. 12d. The imag-
inary part of 𝜔̂ also goes through the increasing–decreas-
ing–increasing–decreasing process, but it reduces to below 
0 for the first decreasing. As a result, the critical velocity 
for the rough microtube is less than the value for the smooth 
microtube. The surface roughness decreases the criti-
cal velocity, which is opposite to the case of � = 0.2 . For 
� = 0.6 , the damping of the second order mode is always 
positive and the one of the third order mode decreases to 

below 0 as the flow velocity exceeds the critical value. In 
other words, the microtubes conveying fluid loses stability 
by the fluttering of the third mode. Moreover, the surface 
roughness makes the critical velocity increase from about 
7.86 to about 8.76, which is similar to the case of � = 0.2.

To clarify the phenomenon shown in Fig. 12c, d, the 
variation of nondimensional critical velocity with the mass 
ratio for smooth and rough microtubes are demonstrated by 
Fig. 13. It is found that every curve contains a S-shaped 
segment, which indicates each � corresponds to three non-
dimensional critical velocities. This phenomenon is associ-
ated with the instability–restabilization–instability sequence 
(Paidoussis, 1998). Furthermore, in the vicinity of S-shaped 
segment, the nondimensional critical velocity changes 
sharply with � , which induces that the nondimensional flow 
velocity for the rough microtube is less than the value for the 
smooth microtube, as shown in Fig. 12c, d. In the region far 
away from the S-section, the nondimensional flow velocity 
increases slowly with � and the surface roughness makes 
the critical velocity increase, as illustrated in Fig. 12a, b, e, 
f. Figure 14 shows the instability–restabilization–instability 
sequence. For � = 0.395 , as the flow velocity increases, the 
imaginary part of the second order 𝜔̂ for the smooth micro-
tube reduces to below zero at the nondimensional velocity 
6.36. After decreasing to the local maximum, it increases 
to larger than zero at the nondimensional velocity 6.70, 
which means the microtube conveying fluid gains stability. 
Finally, the system again loses stability by fluttering at the 
nondimensional velocity 7.14. It can be found that there exist 
three critical velocities when the microtube undergoes the 
instability–restabilization–instability sequence, which cor-
responds to the S-shaped segment illustrated in Fig. 13. For 
� = 0.415 , the rough microtube with � = 0.05 and � = 30 
goes through the instability–restabilization–instability pro-
cess, as shown in Fig. 14b. The three critical velocities are 
about 7.04, 7.80, 8.00.

Figure 15 demonstrates the variation of the first and sec-
ond order frequencies as the flow velocity increases. The first 
order frequency increases and the second order frequency 
decreases with the increasing of the flow velocity. Moreover, 
as the roughness height increases, the first order frequency 
decreases while the second order frequency increases. The 
difference can be attributed to the different mode shapes of 
the two modes (Yan et al., 2017). For the first mode, the cen-
tripetal force acts towards to the position of equilibrium and 
it can be regarded as the restoring force. Consequently, the 
effective stiffness of the fluid-conveying microtube increases 
with the increasing of flow velocity, which causes the first 
order frequency increasing. Moreover, because the surface 
roughness can reduce the flow velocity, the effective stiff-
ness and the frequency decrease as the roughness height 
increases. For the second mode, the centripetal force acts 
away from the position of equilibrium and it works like a 
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“negative” spring. As a result, the effect of flow velocity and 
surface roughness on the second order frequency is opposite 
to the one on the first order frequency.

3.4 � Dimensional flow velocity

The instability of fluid-conveying microtubes with surface 
roughness is analyzed and discussed in Sects. 3.2 and 3.3 
and the principal results can be summarized in terms of the 
nondimensional critical flow velocities. For the microtube, 

Fig. 12   The variation of dimensionless complex frequencies with the increasing of the dimensionless flow velocity for smooth and rough micro-
tubes
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the corresponding dimensional values of the critical flow 
velocities can be directly derived according to Eq. (26), 
which is written as (Rinaldi et al., 2010),

where Ucr is the dimensional critical velocity, �1 = Rm

/

Ro is 
the cross-sectional aspect ratio and �2 = L

/

2Ro is the slen-
derness ratio.

Assume a clamped–clamped rough microtube with 
Rm = 2 �m , Ro = 4 �m , � = 0.05 and � = 30 . The fluid 

(29)Ucr = Ûcr

√
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𝜌fA
(s)

f

1
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√
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1

4𝜆1𝜆2
,

flowing this microtube is water, whose density is 998 kg/m3. 
It’s easy to get a nondimensional critical velocity of 6.18 for 
this microtube by solving Eq. (25). According to Eq. (29), 
the dimensional critical velocity is not only related to the 
nondimensional value, but also to the Young’s modulus 
and the length of microtube. Figure 16 illustrated the criti-
cal flow velocity as a function of the microtube length for 
several common engineering materials: rubber (~ 0.1 GPa), 
plastic (~ 1 GPa), silicon dioxide (~ 70 GPa) and steel (~ 210 
GPa). It is demonstrated that when the microtube is short 
( 𝜆2 < 10 ), the critical flow velocities exceed 100 m/s for 
all materials. However, for slender microtubes ( 𝜆2 > 100 ), 
the dimensional critical velocities can be reduced to about 
10 m/s, which implies that the instability should be taken 
into account. This analysis can readily be extended to ana-
lyze the effects of different materials and cross-sectional 
shapes on dimensional critical velocities.

4 � Conclusions

A theoretical model is presented to describe effect of sur-
face roughness on the instability and dynamic behaviors 
of fluid-conveying microtubes. Four correction factors are 
introduced to account for the influences of the surface rough-
ness on the structure and the internal fluid. As the results 
demonstrated, the surface roughness has little effect on 
structure, but dramatically decreases the Coriolis force and 
centripetal force caused by the internal fluid. In other words, 
the surface roughness mainly affects the dynamic character-
istics by influencing the flow velocity in the microtube. For 
clamped–clamped microtubes, as the roughness height or the 
wave number increases, which means the surface becomes 

Fig. 13   Variation of the nondimensional critical velocity with mass 
ratio � for smooth and rough microtubes

Fig. 14   The variation of imaginary part of 𝜔̂ with the nondimensional flow velocity for smooth and rough microtubes a � = 0.395 b � = 0.415
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more rougher, and both the critical velocity and the fre-
quency increase. For cantilevered microtubes, the dynamic 
behaviors are more complex. The critical velocity for flut-
tering depends on the mass ratio, which can be described 
by the Ûcr − � curves. Each curve contains a S-shaped seg-
ment, which is associated with the instability–restabiliza-
tion–instability sequence. It is found that the surface rough-
ness induces the curve shifting to the upper right of the Ûcr

-� plane. In the vicinity of S-shaped segment, the critical 
velocity sharply varies as � increases, inducing the critical 
velocity for the rough microtube less than the value for the 
smooth microtube. In the region far away from the S-shaped 
segment of the curve, the critical velocity increases with 
the increasing of roughness height. The effects of surface 
roughness on the frequency of cantilevered microtubes are 
also analyzed and discussed. The results also demonstrate 

that the first order frequency of the cantilevered microtube 
increases and the second order frequency decreases with the 
increasing of the flow velocity. Moreover, as the roughness 
height increases, the first order frequency decreases while 
the second order frequency increases. The phenomenon is 
related to the different mode shapes of the two modes.
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