
Vol.:(0123456789)1 3

Microfluidics and Nanofluidics (2021) 25:61 
https://doi.org/10.1007/s10404-021-02461-8

RESEARCH PAPER

Some insights into the use of pore network simulations for predicting 
single‑phase fluid flow in model porous media

Hadi Adloo1 · Behnam Abbasi2

Received: 6 December 2020 / Accepted: 11 June 2021 / Published online: 23 June 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This study revisited the single-phase fluid flow in two-dimensional model porous media using pore network simulation 
(PNS). Some throats were randomly blocked to increase the tortuosity. Then single-phase fluid flow simulations were car-
ried out in these networks using direct numerical simulation (DNS). Different correlations are usually used to estimate the 
pressure drop in throats, contractions, and expansions. We critically reconsidered the correlations available in the literature 
and introduced new correlations based on the results obtained from DNS. Trapezoidal and circular half-pore sections were 
studied separately, and it was concluded that the correlations are very sensitive to the pore body’s geometry. The correlations 
extracted for throats and expansions precisely predict the permeability of corresponding elements in the network. The correla-
tion for the contraction section did not match the respective DNS data in the network. A large discrepancy was observed by 
comparing the streamlines in the networks with the flow paths in isolated flow paths (not in the network). We found that the 
correlation for contraction section based on uniform flow at the inlet is not suitable for networks with complex pore structures. 
We showed that PNS’s applicability with current correlations is limited to situations where throat resistance controls the 
permeability. By analyzing Darcy and Forchheimer’s parameters, a large deviation was seen between PNS and DNS results. 
We demonstrated that eddies might form within the Darcy regime. In the model porous media studied in this paper, eddies 
and inertial core flow were known to play a prominent role in deviation from Darcy flow, which are not considered by PNS. 
It was concluded that short-range correlations are essential in modeling fluid flow at sub-pore level.

Keywords Direct numerical simulations · Porous media · Pore network simulations · Eddy formation · Inertial core flow · 
Non-Darcy flow

List of symbols
A  Area of a pore  [m2]
ANetwork  Cross-area of a network perpendicular to main 

flow direction  [m2]
Cc  Parameter used in in Eq. (11)
dC  Diameter of the largest circle surrounded by the 

pore walls [m]
DC  Dimensionless diameter aspect ratio for the larg-

est circle surrounded by the pore walls [–]
dR  Width of a trapezoidal half pore [m]
DR  Dimensionless aspect ratio for width of trap-

ezoidal half pore [–]
dt  Diameter of a throat [m]

Gp  Shape factor [–]
Fn  Normal force on the walls [N]
Ft  Tangential force on the walls [N]
KD  Darcy permeability  [m2]
KF  Forchheimer permeability  [m2]
lt  Length of a throat [m]
Lt  Dimensionless length aspect ratio for length of a 

throat [–]
P  Pressure at the boundaries of each segment in 

PNS. Area-averaged pressure in DNS [Pa]
p  Local pressure in DNS [Pa]
Q  Mass flow rate [kg/s]
Re  Reynolds number [–]
r
PM

  Vector that connects two points P and M
U  Superficial velocity [m/s]
u  Velocity component in main flow direction [m/s]
vt  Average velocity magnitude in a throat [m/s]
V  Velocity vector [m/s]
v
P
, v

M
  Velocity vector at points P and M
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w  Velocity component perpendicular to main flow 
direction [m/s]

xP, xM  Two arbitrary points in the computation domain

Greek letters
β  Forchheimer parameter  [m−1]
Γ1, Γ2  Parameters indicating the core and border of the 

eddies
φ  Viscous dissipation [Pa∙s−1]
η  Proportionality factor used in Eq. (6)
µ  Dynamic viscosity of fluid [Pa⋅s]
ρ  Density [kg/m3]
σ  Parameter in Eq. (12)
Π  Perimeter of a pore body [m]

Superscripts
C  Contraction
E  Expansion
T  Throat

1 Introduction

The well-known Darcy equation often simulates fluid trans-
port at low velocity in porous media. However, at elevated 
superficial velocities, the linear assumption is inexact, and 
higher order approximations such as the Forchheimer equa-
tion must be used instead. Higher order terms are added to 
represent the additional resistance caused by the converging/
diverging and tortuous flow at sub-pore level.

The origin and onset of non-Darcy flow are two topics 
of conversation among different researchers, and various 
methods are introduced to predict them. In brief, the source 
of the non-Darcy flow is mainly ascribed to the increase 
of inertial forces, which seems negligible at low Reynolds 
numbers (Hassanizadeh and Gray 1987; Lasseux and Val-
dés-Parada 2017; Ruth and Ma 1992; Skjetne and Auriault 
1999). Numerical studies at pore-scale have also revealed 
that the formation of eddies can rise to non-Darcy regime, 
which increases the pressure drop (Fourar et al. 2004; Mul-
jadi et al. 2016).

Porous media’s intricate geometry can be characterized 
by high-resolution images acquired using various imaging 
methods such as micro-computed tomography (micro-CT). 
Direct numerical simulations (DNS)—as the most precise 
method—are often used for the prediction of fluid flow pat-
terns in these image-based geometries (IBG) (Muljadi et al. 
2016; Icardi et al. 2014; Scheibe et al. 2015; Aramideh et al. 
2018). The main drawback of this method (DNS-IBG) is 
its high computational expense. Nevertheless, the flow pat-
terns become highly correlated as different phenomena occur 
while passing the fluid through irregular channels. These 
issues oblige the researchers to use suitable representative 

elementary volumes (REV) and divide the void volume into 
sufficient numbers of cells to resolve fluid flow equations.

Pore network simulation (PNS) is a powerful compu-
tational tool to simulate transport phenomena in porous 
media. The void space of a porous medium is represented 
by pixels or voxels in IBG. In contrast, throats and pores 
are used in PNS to approximate the void space. Pores and 
throats are either generated stochastically or determined by 
algorithms such as medial axis and maximal ball (Dong and 
Blunt 2009; Bultreys et al. 2016; Raeini et al. 2017). Much 
simpler physical laws describe fluid transportation compared 
with multipurpose–multidimensional fluid flow equations, 
such as Navier–Stokes. To ensure the mass conservation 
over the entire computational domain, the mass entering 
and leaving any pore body must be equal (except for non-
catalytic fluid–solid reaction with a stagnant product at the 
pore body). Thus, the main superiority of PNS to DNS-IBG 
is that it simplifies the multidimensional transport equations 
into several one-dimensional transport equations. However, 
estimating correct topology, morphology, and the correla-
tions between void space are cited as PNS’s main limitations 
(Raeini et al. 2017; Yi et al. 2017; Adloo et al. 2019; Adloo, 
2015). The accuracy of the transport equations for pores and 
throats is another matter of discussion (Raeini et al. 2017; 
Blunt et al. 2002; Valvatne and Blunt 2004; Veyskarami 
et al. 2016, 2018).

PNS has been conducted to determine the transport 
parameters of porous media, including permeability and 
relative permeability (Lu et al. 2020). PNS is employed to 
describe the non-Darcy flow in porous media (Veyskarami 
et al. 2016; Thauvin and Mohanty 1998; Wang et al. 1999; 
Lao et al. 2004; Lemley et al. 2007a; Balhoff and Wheeler 
2009; El-Zehairy et al. 2019). Most of the mentioned studies 
focused on the effect of contraction and expansion of flow at 
pore entrance. Some authors (Thauvin and Mohanty 1998; 
Wang et al. 1999; Lao et al. 2004) emphasized the impor-
tance of bending and branching of flow between adjacent 
throats in a pore. They asserted that it could account for 
up to 25% of the network’s total pressure drop. However, 
as such correlations are limited to simple geometries like 
90°-bend or 180°-bend, this method is mostly ignored. Dif-
ferent geometrical correlations were introduced to consider 
the contraction/expansion of pore entries and the effects of 
irregularities in pores/throats (such as crevices) (Raeini et al. 
2017; Balhoff and Wheeler 2009; El-Zehairy et al. 2019).

Due to the non-Darcy flow complexity, we intend to know 
whether PNS is trustworthy enough to predict the fluid flow 
in porous media. Several image-based studies on flow pat-
terns (Bultreys et al. 2016; Dybbs et al. 1984) and compu-
tational researches (Fourar et al. 2004; Muljadi et al. 2016; 
Yi et al. 2017; Chukwudozie and Tyagi 2013; Newman and 
Yin 2013) impressed the impact of flow patterns in the pore 
body in the occurrence of non-Darcy flow. It is found that 
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the contrast between throat and pore sizes in 2D geometries 
has a significant effect on flow regime transition and causing 
localized high-speed regions with intense energy dissipation 
(Newman and Yin 2013; Nissan and Berkowitz 2018; Cheng 
et al. 2019). All studies highlighted the role of eddies in pore 
bodies at high velocities. Eddies increase the residence time 
of the fluid resulting in more tortuous pathways. They are 
more likely to occur in the porous media that grains touch. 
In less compact geometries, streamlines appear to become 
localized in straight channels with high velocity at the center 
of the throats (known as inertial cores), and fewer eddies 
occur. Using numerical analysis, many researchers stated 
that high-speed flow in heterogeneous materials introduces 
eddies in the system, mainly in larger pores (Fourar et al. 
2004; Muljadi et al. 2016; Newman and Yin 2013; Cheng 
et al. 2019). It is proved by numerical and experimental 
analysis that the surface roughness, even if decreasing the 
pore body volume, induces flow path variability, curvature, 
and eddy formation (Chukwudozie and Tyagi 2013; Liu 
et al. 2016). The contrast between the size of the pore body 
and throat amplifies the fluid inertia that results in localized 
energy dissipation near throat walls.

Furthermore, backflow at the throat entrance is seen due 
to flow separation. It is reported that the dissipated energy 
caused by narrower throats is much more significant than 
those of eddies (Newman and Yin 2013). Calculations by 
Fourar et al. (2004) showed that the pressure drop simulates 
the integral of dissipation function over all the fluid volume.

As cited above, different complicated phenomena may 
occur in heterogeneous materials as velocity increases. As 
far as we know, PNS cannot formally capture all these com-
plexities. PNS is mainly based on mass conservation; the 
mass entering and leaving a junction (pore body) must be 
conserved. For permeability calculations in macropores, 
the driving force is the pressure gradient between adjacent 
intersections. Any other phenomenon that occurs must be 
entered into the model as fitting parameters. For example, 
Thauvin and Mohanty (1998) considered the pressure drop 
due to flow bending at each branch. They employed a cor-
relation for turbulent pressure drop in 90° bends. Lao et al. 
(2004) and Lemley et al. (2007a) accounted for the pressure 
drop due to bends at each pore in networks of connectivity 
3. They further incorporated the bending and flow splitting 
pressure drop in the momentum equation and proposed cor-
relations for a few geometries (Lemley et al. 2007b). They 
related the pressure drop due to bends and splitting to the 
entropy generated in the pore (Lemley et al. 2007b).

There are still a couple of additional concerns. PNS accu-
racy significantly depends on the exactness of the algorithms 
used to extract the pore network (Baychev et al. 2019). In 
contrast to throats, modeling the flow in the pore body is 
usually sophisticated. The flow in the pore body is correlated 

to the local heterogeneity and topology. Some fitting factors 
are unavoidable to match the permeability obtained from 
PNS with those of experimental data.

This research aims to explore the applicability of differ-
ent flow-pressure equations for throats and pores in PNS. 
We investigate PNS’s limitations in predicting permeability 
using accurate flow-pressure equations for each transporting 
component (throats and half-pore bodies).

Section 2 devotes to the geometry definition and termi-
nologies used in this study. Synthetic 2D porous media are 
employed because a pore network simulator could easily 
reproduce them. DNS and PNS are presented in Sect. 3. Sec-
tion 4.1 suggests some relations to calculate the pressure 
gradient in each transport component. We compare their pre-
dictions with DNS results in Sect. 4.2. Section 4.3 presents 
the results for flow in networks of pores and throats using 
PNS and DNS. We conclude the paper in Sect. 5 with some 
suggestions for further studies.

2  Solid and void space geometry

In this work, we consider regular 2D pore networks with a 
size of 30 × 30. The geometry is composed of regular octa-
gons, as depicted in Fig. 1a. The edges of the octagons are 
equal. The length of throats is defined by lt and their width 
is denoted by dt . The width of a trapezoidal pore body is 
denoted by dR . In PNS terminology, the expansions and con-
tractions at the throat entrance are usually considered half 
of the pore bodies (see Fig. 1b). Together with a throat that 
connects two adjacent pore bodies, they form a flow path 
(FP). These terms are shown in Fig. 1b. Note that each pore 
may be characterized by a circle that is surrounded by the 
pore walls. The circle diameter is denoted by dC . Figure 1c 
exhibits FPs in series as a periodic porous medium.

A schematic of a throat attached to neighbor pores is 
sketched in Fig. 1b. The throat walls consist of two parallel 
plates. In all structures, walls are smooth, and no off-axial 
connection is considered. dR , lt and dt are dimensions that 
characterize the morphology of the media. In this work lt 
is constant ( lt = 6 mm ). Some throats (23%) are randomly 
blocked to make the network more tortuous. Dimensional 
analysis leaves two non-dimensional morphological vari-
ables, say Lt = lt∕dt and DR = dR∕dt or DC = dC∕dt . It is 
worth noting that dR and dC are functions of dt because the 
internal angles of the polygons are fixed (135°). Various 
morphologies are used to study the effect of different vari-
ables, as summarized in Table 1.

dC can be estimated as follows:

(1)dC = 4
A

Π
,
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where A is the pore area, and Π is the pore perimeter. Real 
pores are not exactly circular, but the shape factor (G) can 
be employed to estimate their departure from circularity:

The shape factor for a circle is 0.0796. For other geom-
etries, the shape factors are reported in Joekar-Niasar et al. 
(2010).

In this text, we often use the term isolated FP, which 
means a FP (a contraction section followed by a throat and 
an expansion section) that is not located in a network.

One of the advantages of such a simplified 2D model is 
that all morphological parameters are under control. Moreo-
ver, there is no uncertainty in the PNS results due to inexact 
mapping of morphology and topology into the pore network 
model. Different locations in the network have the same pore 
and throat size. Therefore, it is easy to study the flow pat-
terns due to local heterogeneity. Ma and Ruth (1993) used 

(2)Gp =
A

Π2
.

simple porous media (even periodic) to analyze the source 
of non-Darcy flow in Forchheimer equation.

3  Modeling

3.1  DNS calculations

The incompressible single-phase fluid flow through the 
geometries mentioned above is simulated by solving mass 
and momentum conservation equations under steady-state 
condition:

Mass balance equation:

Momentum balance equation:

Here, � = u� + w� is the velocity vector, and p is the local 
static pressure. Water is set as the working fluid with vis-
cosity � = 0.001 Pa ⋅ s and density � = 998 kg∕m3 . On 
fluid–solid interfaces, no-slip boundary condition is assumed 
( � = 0 ). The network’s top and bottom faces (Fig. 1a, c) are 
exposed to symmetry boundary conditions. A constant mass 
flow rate enters the inlet, and the outlet boundary is exposed 
to zero pressure. Uniform velocity profile upstream the 

(3)∇ ⋅ V = 0

(4)� ⋅ ∇� = −
1

�
∇p +

�

�
∇2�

Fig. 1  a 2D pore network 
(30 × 30) in which a faction of 
throats are randomly blocked; b 
terminology of the network and 
flow path (FP); c fluid paths in 
series ( D

R
=3.12 and L

t
=1.5 ). 

In all sketches, the solid phase 
is shown in white, and the void 
phase is colored

Table 1  Characteristic parameters for DNS and PNS studies. See 
Fig. 1b for more details

Network L
t
= l

t
∕d

t
D

R
= d

R
∕d

t
D

C
= d

C
∕d

t

1 6∕1 9.48 7.71
2 6∕3 3.82 3.55
3 6∕4 3.12 3
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contraction half pore is considered to model fluid flow in an 
isolated FP.

Pressure and velocity in Eqs. (3) and (4) are solved for the 
pore spaces using the semiimplicit method for pressure-linked 
equations (SIMPLE) implemented using the commercial soft-
ware Ansys Fluent. Steady-state convergence is achieved when 
the residual for each component of the velocity becomes less 
than 10−6 . In this study, the quadratic mesh is used to divide 
the domain into computing elements.

3.2  Pore network simulation (PNS)

3.2.1  Basics of mass balance

2D networks of pores and throats are generated based on the 
geometries that are given in Fig. 1. Mass balance around each 
pore body i requires that

where Qij is the mass flow rate entering (leaving) pore body 
i and leaving (entering) the adjacent pore body j. The flow 
rate of each FP is proportional to the pressure drop along 
that segment. Assume the following equations are appli-
cable for contraction–expansion section and throat section 
separately:

where �E , �C , and �t are proportionality parameters for 
expansion, contraction, and throat segments, respectively. 
Note that ΔP is the pressure drop across each element of 
the FP.

Knowing that for f low through a single FP 
QE

ij
= Qt

ij
= QC

ij
= Qij and ΔPij = ΔPE + ΔPt + ΔPC one has:

Inserting Eq. (7) in Eq. (5), one has a set of algebraic equa-
tion (maybe non-linear) which must be solved simultaneously 
to calculate the pressure at each pore:

where

(5)
∑
j

Qij = 0,

(6a)QC
ij
= �CΔPC

(6b)Qt
ij
= �tΔPt

(6c)QE
ij
= �EΔPE,

(7)Qij =

(
1

�E
+

1

�t
+

1

�C

)−1

ΔPij.

(8)[A] [P] = [D],

P is a matrix for the pores’ pressure, and D is a matrix for 
the network’s boundary conditions. Here, [.] denotes a column 
matrix (n × 1) while [.] represents a n × n matrix, where n is the 
number of pore bodies.

3.2.2  Proportionality parameters at the microscale

We use the word “microscale” to describe FP’s components, 
such as a throat, an expansion, or a contraction. Traditionally 
Hagen-Poiseuille (HP) equation describes flow, Qt

ij
 , through-

out the throat so that:

 where b is the depth of the channels normal to the plane. 
Here, it is assumed that the flow is fully developed. How-
ever, this is not an appropriate assumption for short throats 
where the ratio of throat length to its width is not consider-
able. The effect of “vena contracta” at the throat entrance 
adds additional resistance to the fluid flow. As Kanda and 
Shimomukai (2009) stated, there is a significant difference 
between the wall and centerline pressure near the chan-
nel entrance, which contradicts the boundary layer theory 
assumptions (no pressure gradient normal to the main flow 
direction) (Kanda and Shimomukai 2009).

For the contraction and expansion sections, �C and �E are 
functions of pore geometry ( dt and dR ), average velocity, 
and flow patterns (Veyskarami et al. 2016; El-Zehairy et al. 
2019). Different correlations have been suggested yet for 
the contraction pressure drop. Kays submit the most com-
prehensive one in 1950. He analyzed the abrupt pressure 
drop between two long pipes of different diameters. Kays’ 
correlation is limited to Reynolds numbers of the order  105 
and above (the Reynolds number is calculated based on the 
smaller bore size) (Bullen et al. 1987). Bullen et al. (1987) 
proposed a correlation for sudden contraction and suggested 
that the coefficient loss is mildly affected by the Reynolds 
number. Their correlation was reported for large Reynolds 
numbers (Re > 20 ×  103). They examined the effect of edge 
sharpness and showed a considerable variation in the loss 
coefficient. Traditionally, the pressure drop in the contrac-
tion is predicted by

(9)Amn =

⎧
⎪⎨⎪⎩

�
1

�E
+

1

�t
+

1

�C

�−1

mn
m ≠ n

−
∑

n

�
1

�E
+

1

�t
+

1

�C

�−1

mn
m = n

.

(10)�t =
�bd3

t

12�lt
,

(11)

(
ΔP

�v2t

)C

=
1

2

(
1 −

1

Cc

)2

.
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The contraction coefficient, Cc , is a function of � =
dt

dR
 and 

Reynolds number. In the turbulent regime, the contracta 
effect becomes independent of Reynolds number (Bullen 
et al. 1987):

Nevertheless, as is examined by Abdelall and coworkers 
(Chukwudozie and Tyagi 2013), Eq. (11) cannot accurately 
simulate the pressure loss in the laminar regime. Alter-
natively, the following relation is proposed for Re < 1000 
(Chalfi and Ghiaasiaan 2008):

In the mentioned studies, it is assumed that the flow 
approaching the contraction is fully developed. Distur-
bances are propagated upstream, which cause changes in 
the flow patterns at a point of approximately 4dt upstream of 
the contraction. The fully developed flow is re-established 
approximately 4dt -14 dt downstream from the contraction in 
the throat (Bullen et al. 1987). In all the above formulations 
for pressure drop in contractions, the vena contracta effect is 
included in the equation ( Cc ) and is known to be a function 
of flow regime and dimension (Bullen et al. 1987; Abdelall 
et al. 2005).

The dimensionless pressure gradient in the expansion sec-
tion is cubic due to the boundary layer separation (White 
2005). Its value is negligible compared with those of throat 
and contraction sections at small flow rates. An equation 
similar to Eq. (6c) is suggested in the literature for the sud-
den expansion of the fluid flow in the turbulent regime. The 
laminar regime’s flow patterns is highly dependent on the 
Reynolds number, as is proved by different experiments. 
Chalfi and Ghiaasiaan (2008) proposed the following rela-
tion for sudden expansion in the laminar regime:

As far as we know, the equations introduced to predict 
pressure difference in contractions and expansions have 
parameters that must be obtained for each geometry. In real 
porous media, there is a variety in the shape and geometry 
of the pore bodies. If not impossible, it is very inefficient to 
find the constants for each geometry.

(12)Cc = 1 −
1 − �

2.08(1 − �) + 0.5371
.

(13)

(
ΔP

�v2t

)C

= 0.0294 lnRe + 0.0109 +
1

2

(
1 − �2

)
.

(14)
(
ΔP

𝜌v2t

)E

=
1

2

(
𝜎2 − 1

)
− 0.1077 + 0.0021Re − 2.5 × 10−6Re2 Re < 400.

The method for calculating the pressure gradient in 
expansions and contractions is of significant importance. 
Due to the complicated flow regime in the area of size 
change, no accurate measurement is possible. Researchers 
calculate the pressure before and after the size change at 
some points far from it (where the flow is fully developed). 
Then the values are extrapolated to obtain two pseudo pres-
sures at size change. The pressure difference is then calcu-
lated by subtracting these two pseudo pressures. However, 
this is not an appropriate method for porous media calcu-
lations where the developed flow between the obstacles is 
rarely occurred.

Some other relationships are also proposed for laminar flow 
through different converging/diverging capillaries (a FP) by 
other authors (Veyskarami et al. 2016,2018).

This study analyzes the fluid flow in different isolated FPs, 
including trapezoidal and circular half-pores, and calculates 
their pressure gradient using DNS. According to Fig. 1b, the 
geometric parameters affecting the permeability of an isolated 
FP at the microscale level are dt, lt, dR or dC . The fluid and 
flow parameters are �, �, ΔP . Since the throat velocity, vt , has 
the least variations within a FP; we used it as the characteristic 
velocity. With these parameters, there are five sets of dimen-
sionless groups, as suggested by the π-Buckingham method:

Here, the characteristic geometrical parameter is the throat 
width dt and other aspect ratios are calculated as 

Lt = lt∕dt, DR = dR∕dt , DC = dC∕dt and Re = �vtdt
�

.
Upstream an isolated FP a uniform velocity profile is 

defined at the contraction section, and the pressure at any 
micro-segment is calculated. Appendix 1 describes the area-
averaged method for calculating P at each section of the FP.

(15a)

(
ΔP

�v2t

)t

= f
(
Lt, Re, DR or DC

)

(15b)

(
ΔP

�v2t

)C

= f
(
Lt, Re, DR or DC

)

(15c)

(
ΔP

�v2t

)E

= f
(
Lt, Re, DR or DC

)
.
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4  Simulation results and discussion

4.1  Correlations for microscale proportionality 
parameters

We simulated fluid flow in different geometries at the 
microscale level for isolated FPs using DNS. To ensure 
that the results are independent of mesh size, we increased 
the mesh number and inspected the mesh dependency.

First, we studied the effect of each dimensionless 
parameter on ΔP

�v2
t

 of segments. It was observed that 
(

ΔP

�v2
t

)t

 

and 
(

ΔP

�v2
t

)C

 are not affected by their up and downstream 

geometries, while 
(

ΔP

�v2
t

)E

 is influenced by Lt < 3.5 up to 
10%. This sensitivity is interpreted as follows. For small 
Lt , the flow in the throat is not fully developed when it 
enters the expansion section. Consequently, the velocity 
profile in the throat outlet still tends to reshape while 
entering an expansion.

Based  on  82  da t a se t s  fo r  1 ≤ Lt ≤ 15 and 
0.001 ≤ Re ≤ 265, the following correlations are suggested 
in the throat:

(16a)

(
ΔP

�v2t

)t

= 8.753LtRe
−1 + 0.1289 LtRe

−1 ≤ 0.075

(16b)

(
ΔP

𝜌v2t

)t

= 10.472LtRe
−1 LtRe

−1 > 0.075.

Figure 2 compares Eq. (16) with DNS results. As is 

observed HP model 
((

ΔP

�v2
t

)t

= 12LtRe
−1

)
 differs from 

DNS results, especially for Lt
Re

≤ 0.075 since the fully 
developed assumption fails at both ends of the throat. The 
absolute relative error is calculated as follows:

The model predicts a maximum absolute error equal to 
31.7%.

For the circular contraction section, the following relation 
is obtained by analyzing DNS data over 81 datasets:

The maximum and average deviations for Eq. (18) are 
found to be 3.5% and 1.1%, respectively. In Fig. 3, DNS 
results for circular contraction segments are compared with 
Eq. (18) to show the model’s accuracy. DNS data of trap-
ezoidal pores are depicted for better comparison. Despite 
the excellent accuracy for circular pores, Eq. (18) fails to 
predict the hydraulic properties of trapezoidal half pore bod-
ies. Instead, DNS data for trapezoidal pores fit suitably with 
the following correlation (over 70 datasets):

(17)%Abs rel err =

||||
(

ΔP

�v2
t

)
DNS

−
(

ΔP

�v2
t

)
Model

||||
||||
(

ΔP

�v2
t

)
DNS

||||
.

(18)

(
ΔP

�v2t

)C

C

= 2
(
4.61D−1.51

C
+ 1.891

)
∕Re − 0.418D−2.04

C
+ 0.5.

Fig. 2  Dimensionless pressure drop in the throat versus Lt

Re
 . The upper insect shows 

(
ΔP

�v2
t

)
 versus Lt

Re
 for Lt

Re
< 0.1 and the lower one presents the 

absolute relative error
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The maximum and average departure for Eq. (19) are 
2.8% and 0.93%, respectively.

The preceding procedure was repeated for DNS data of 
the expansion section. As cited above, three parameters 

(19)

(
ΔP

�v2t

)C

R

=
(
−8.02D−2.98

R
+ 4.2

)
∕Re − 0.681D−2.308

R
+ 0.4772 .

affect 
(

ΔP

�v2
t

)E

C
 say Lt , DC and Re . Considering several cor-

relations, Eq. (20) was found to correlate the DNS data for 
circular pores with a considerable error as shown in Fig. 4 
(with maximum and the average deviation of 914% and 
47% over 362 datasets, respectively):

(20)

(
ΔP

�v2t

)E

C

= −
0.00367

Lt
+

0.0372

DC

+
0.592

Re
− 4.9 exp (−0.93Re).

Fig. 3  Dimensionless pressure drop for the contraction section calculated by DNS versus that predicted by Eq. (18). Inset shows the absolute 
relative error

Fig. 4  Dimensionless pressure drop for the circular expansion section calculated by DNS versus that predicted by Eq. (20). Inset shows the abso-
lute relative error
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Equation (20) could not accurately correlate DNS data 
for trapezoidal pores (because of substantial deviations, they 
are not indicated in Fig. 4). Instead, it was found that the 
following correlation can precisely simulate DNS data for 
trapezoidal pores with parameters tabulated in Table 1:

 where the coefficients pi are estimated by

Table 2 reports the coefficients ai for Eq. (21b). Note that 
as we used data in Table 1, the effect of Lt is not explic-
itly shown in the equation. Equation (21) correlates DNS 
data for trapezoidal pores with a maximum departure equal 
to 51.4% and an average deviation over 70 datasets equal 
to 17.46%. It is worthwhile to mention that the deviation 
decreases significantly for Reynolds numbers greater than 2.

In sum, the correlations are very sensitive to pores’ shape, 
and using an incorrect pair of correlations in PNS may lead 
to inaccurate results.

4.2  Assessment of the correlations

This section assesses the exactness of correlations derived 
in Sect. 4.1. To this purpose, we selected a FP from the pore 
in series (Fig. 1c), and six FPs form different positions in 
Network 3, far from the inlet and the outlet of the network. 
The dimensionless pressure difference 

(
ΔP

�v2
t

)
 for each micro-

segment is calculated using DNS and compared with the 
predictions of Eqs. (16), (19), and (21). The area-averaged 
formulation is used to calculate the pressure at each intersec-
tion (Appendix 1).

Figure 5 demonstrates the streamlines at six different 
positions within Network 3. Local heterogeneity influences 
the streamlines appreciably. Eddies likewise impress flow 
patterns in pore bodies and the subsequent flow elements. 
Whether PNS could consider these effects will be discussed 
in the following paragraphs.

As shown by Fig. 6, Eq. (16) can suitably resemble DNS 
data extracted from FPs in series, especially at elevated Lt

Re
 . 

(21a)

(
ΔP

�v2t

)E

R

=

(
p1Re

3 + p2Re
2 + p3Re + p4

)
(
Re2 + p5Re + p6

) ,

(21b)pi =
a1DR + a2

DR + a3
.

DNS data from six different FPs in network 3 (as shown in 
Fig. 5) are also used to examine Eq. (16). While Eq. (16) 
fits most DNS data, data series 6 exhibits different behavior, 
particularly at higher Reynolds numbers. In series 6, there 
is a large angle between the throat axis and the streamlines 
upstream. In other words, throat 6 and streamlines in the 
upstream pore are not co-axial due to topology and flow pat-
terns in the upstream pore. The mesh refining effect is pre-
sented in Fig. 6, which shows an excellent agreement with 
the extracted correlation. To this end, we refined the number 
of meshes from 6000#/m to 10,000#/m in isolated FP.

Figure 7 examines the accuracy of Eq. (21) for the expan-
sion section. Except for low Reynolds numbers, DNS data 
from FP in series and Network 3 coincide with the trend 
predicted by Eq. (21). The main reason DNS data and corre-
lation 21 are matched, especially at high Reynolds numbers, 
is jet-like flow at the center of the expansion section. At this 
condition, the shape of the pore body becomes less crucial. 
DNS data after mesh refining of isolated FP are shown, and 
it is evident that Eq. (21) is independent of the mesh size.

The results extracted from DNS data of Network 3 and 
FPs in series poorly follow the trend predicted by Eq. (19), 
as presented by Fig. 8. Nevertheless, the goodness of the cor-
relation for series 2, 4, and 5 is notable. Moreover, Eq. (19) 
can well represent the mesh-refined data of isolated FP.

It is interesting to compare the magnitude of pressure dif-
ference in contraction and expansion segments at the same 
Reynolds number: the pressure difference in an expansion 
segment is negligible compared with a contraction one in 
large Reynolds numbers.

To further explore the flow field in FP, we probed the 
streamlines of an isolated FP (Fig. 9), FPs in series (Fig. 10), 
and FPs in a network 3 (Fig. 11).

Figure 9 show that streamlines are approximately parallel 
and converge following the contraction section’s geometry. 
Eddies appear as a consequence of flow separation down-
stream the expansion section. They get larger as the velocity 
increases until the head of the eddy reaches the throat outlet. 
A large portion of the fluid passes through the expansion 
center at high velocities, known as streamlining or inertial 
core flow (Newman and Yin 2013). No inertial core flow is 
observed in the contraction section due to the defined bound-
ary condition. It is worth reminding that these simulations 
were used to derive the correlations in Sect. 4.1.

With this background, one expects that the eddies down-
stream of an expansion segment influence the flow patterns 

Table 2  Parameters a
i
 for 

Eq. (21b) according to the 
geometries described in Table 1

p
1

p
2

p
3

p
4

p
5

p
6

a
1

0.001718 –0.3767 20.29 86.06 –40.94 –0.001107
a
2

–0.002844 0.6539 –35.02 –142.3 55.4 0.00195
a
3

–0.5757 –0.5223 0.6677 –0.9698 0.6711 0
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in contraction section in a network. This phenomenon is 
observed in Fig. 10 for FP in series. Note that the lower 
boundary is exposed to symmetry boundary condition (see 
Fig. 1c) and has no effective flow rate. Besides, the shape 
of the eddies is noticeable. Steady small eddies are detect-
able at �U∕� = 800 (m−1) , and their size increases with an 
increase in the superficial velocity. Appendix 2 describes 
the method we used to detect the eddies. The head of the 
eddy begins in the expansion section, and as the velocity 
increases, the tail extends into the contraction section. Tails 
disturb the flow patterns, occupy the pore body, and reduce 
the flow-section.

As a consequence of large eddies, the core flow enters the 
contraction section. When the fluid does not experience the 
walls of contraction section, the pressure loss reduces, as 
shown in Fig. 8. It is in contrast with the uniform boundary 
condition applied to obtain Eqs. (18) and (19). Comparing 
Fig. 9 with Fig. 10 shows that eddies can be detected at a 
lower velocity (in FP in series) than they form in isolated FP. 
It is attributed to the existence of obstacles downstream of an 
expansion, which causes reverse flow. That means inertia 
effects start earlier than was expected from isolated FP.

Figure  11 represents the streamlines in a portion of 
network 3 at different velocities and emphasizes some 

Fig. 5  Different FPs in Network 
3 used to validate Eqs. (16), 
(19), and (21). Contours display 
velocity. Hot colors are higher 
in velocity, cooler’s are lower in 
velocity
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differences between flow in isolated FP and FPs in a network 
using five numbers.

Generally, at lower fluid velocity, the flow can spread 
over the pore body showing the significance of shear flow 

compared with inertia flow. By increasing the velocity, the 
fluid has less tendency to reshape because of inertia. Strictly 
speaking, the following deviations are observed in compari-
son with isolated FP:

Fig. 6  Comparison between the 
model prediction and DNS data 
of throats

Fig. 7  Comparison between the 
model prediction and DNS data 
of the expansion section

Fig. 8  Comparison between the 
model prediction and DNS data 
of the contraction section
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• Differences in the shape of the streamlines entering the 
contraction due to eddies, bending, and topology (# 1);

• Inertial core at expansion outlet (# 2);
• Asymmetric flow at contraction inlet (# 3 and # 4);
• Asymmetric flow patterns at expansion outlet due to 

bending (# 4 and # 5);
• Deviation of flow to the corner of the pore body because 

of differences in momentum (# 1 and # 5).

To the best of our knowledge, none of these phenom-
ena is considered in the aforementioned correlations or the 
literature. An interesting phenomenon is the formation of 
eddies at the entrance of the throat. As depicted by circles 
in Fig. 11g, the fluid bypasses other open throats to find less 
resistant paths.

Let us consider Fig. 5 again. The flow patterns entering 
the contraction sections in series 2, 4, and 5, are very similar 

Fig. 9  Streamlines and velocity 
contours for fluid flow in iso-
lated FPs. Hot colors are higher 
in velocity, cooler’s are lower 
velocity
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to those observed at the contraction section in isolated FP 
(Fig. 9). Therefore, a minimum deviation between correla-
tion 19 and DNS data is expected, as asserted by Fig. 8. By 
contrast, deviations in data series 1, 3, and 6 of Fig. 5 are 
attributed to differences between the flow patterns of isolated 
FP and FP in a network at the contraction section. Therefore, 
one expects that eddies in Network 3 are formed at a lower 
velocity than FP in series. Figure 11e shows that eddies can 
be detected visually at �U∕� = 415 (m−1) (see the criteria 

that are discussed in Appendix 2). Here, U = Q∕�ANetwork is 
the superficial velocity, and ANetwork is the area of the net-
work perpendicular to the main flow direction.

Figure  12 reports inverse apparent permeability 
( K−1

app
= ΔP∕L�U ) for FP in series calculated by DNS and 

PNS. First, the HP model accompanied by Eqs. (19) and 
(21) for contraction and expansion sections were used. 
Then, Eqs. (16), (19), and (21) were employed in PNS. 

Fig. 10  Streamlines and veloc-
ity contours for fluid flow in 
periodic FPs. Hot colors are 
higher in velocity, cooler’s are 
lower velocity



 Microfluidics and Nanofluidics (2021) 25:61

1 3

61 Page 14 of 22

The trends in Fig. 12 shows that Eq. (16) is somewhat 
more reasonable. Note that the differences between PNS 
and DNS data are mostly assigned to the inadequacy of 
Eq. (19) in simulating core flow. We marked the point 
where the smallest eddies are seen in the pore body. As 
pointed out before, eddies form in isolated FP at higher 
superficial velocities.

Figure 12 also shows the resistance of each segment 
against the fluid flow in the network (See Appendix 3). 
Evidently, the throat and contraction sections together 
have the primary resistance against flow transfer. The 
effect of the expansion section can be ignored, as sug-
gested by Eq. (19).

PNS over predicts the apparent permeability at lower 
velocities and under predicts that at the higher ones. Fig-
ure 7 expressed that the expansion model is inaccurate at 
lower velocities. With inertial core flow at higher veloci-
ties, less portion of the fluid experiences the pores’ walls, 
leading to fewer shear stresses. Due to the periodic nature 
of FPs in series, pressure drag and viscous drag on the 
solid walls control the pressure loss on every single FP in 
the system. It can be claimed that eddies formed in pore 
bodies cause adverse pressure gradients that decrease the 
pressure and viscous drag.

Eddies have just minor impacts on the total viscous dis-
sipation. PNS does not account for the pressure loss due to 

Fig. 11  Streamlines for fluid flow in Network 3. Numbers are used to emphasizing the differences with isolated FP as explained in the text



Microfluidics and Nanofluidics (2021) 25:61 

1 3

Page 15 of 22 61

core flow (fluid–fluid interaction) in the contraction sec-
tion. In contrast, the correlation for the contraction section 
inherently assumes that the fluid entering an isolated FP 
touches the pore walls entirely at the contraction section.

4.3  Pore network simulation

This section assesses PNS, equipped with the correlations 
obtained in previous sections, and compares the results with 
those of DNS in networks of octagon obstacles, as drawn 
schematically in Fig. 1a. For each geometry, the inlet flow 
rate varies, and the pressure drop over the entire network is 
calculated. Figure 13 displays the apparent permeability for 

different networks. As can be seen, the apparent permeabil-
ity increases drastically with an increase in throat diameter.

The number of grids on each wall was increased from 10 
to 30 to check the mesh independence. Due to limitations in 
computational facilities, more refinement was not applicable. 
Figure 14 exhibits the effect of mesh refinement for Network 
3 at the maximum studied flow rate. No substantial change 
in the pressure drop is achieved by increasing the number of 
nodes above 25. Another interesting factor in studying mesh 
independence is analyzing the rate of dissipation of energy in 
the fluid due to internal viscous forces. Theoretically, the rate 
of viscous dissipation is proportional to Δp over the entire net-
work (Fourar et al. 2004; Talon et al.2012; Raeini et al. 2014):

Fig. 11  (continued)
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where � is the energy dissipation, and dv is the volume of 
each computing element. Integration is performed over all 

(22)QΔP = �∫ �dv,
the fluid domain. Figure 14 also shows how this equality 
is accomplished as the mesh is refined. In this study, we 
used the normal ( Fn ) and tangential ( Ft ) forces in the flow 
direction to calculate the pressure drop in the Networks 1–3 
( ΔP =

(
Fn + Ft

)
∕ANetwork).

Fig. 12  Inverse apparent perme-
ability computed by DNS and 
PNS for FP in series

Fig. 13  DNS obtained from 
different networks. Lines are 
drawn to aid the eye

Fig. 14  Mesh analysis for Net-
work 3 at the maximum studied 
flowrate



Microfluidics and Nanofluidics (2021) 25:61 

1 3

Page 17 of 22 61

Different schemes for calculating pressure drop in the 
system are discussed elsewhere, and it is shown that they 
approximately give the same results (Raeini et al. 2014). 
However, Fig. 14 shows the dependency of the viscous 
dissipations algorithm (Eq. 22) on the grid number. Such 
dependency would be a significant problem in resolving the 
fluid flow in materials with too thin pores or networks of 
high heterogeneity.

Figure 15 compares PNS simulation results with DNS 
for different networks. Throat correlations (HP model and 
Eqs. 16) accompanied by pore side equations (Eqs. 19 and 
21) are shown separately. The pore body and throat section’s 
contributions to permeability are also drawn (Appendix 3). 
In all figures, we marked the point where eddies are detect-
able (Appendix 2). As was expected, the eddies appear at a 
lower superficial velocity in Network 3 than those observed 
in Fig. 12. Eddies form still at a lower velocity in Network 1 
with DR = 9.48 . Eddy is likely to occur in systems with the 
most contrast between throats and pore sizes (Newman and 
Yin 2013). This event influences the cessation of the Darcy 
equation as well.

Regarding the difference in geometry between Network 
2 ( DR = 3.82 ) and Network 3 ( DR = 3.12 ), one may expect 
that eddies should be found earlier in Network 2 than 3. 
However, this is in contradiction with what is observed. For 
further study, we calculated the tortuosity of the networks 
as (Koponen et al. 1996):

where ⟨�⟩ is the average magnitude of the intrinsic velocity 
over the entire network area, and ⟨u⟩ is the average of its 
component along the main flow direction. It can be seen that 
the tortuosity of Network 2 is lower than that of Networks 1 
and 3. From the viewpoint of mathematics, a larger tortuos-
ity means a larger portion of fluid transporting perpendicular 
to the main flow direction. Therefore, the fluid in Network 
3 encounters more obstacles rather than Network 2, leading 
to form larger eddies at a lower velocity. It can be concluded 
here that the local heterogeneity in the networks (despite 
equal mean connectivity) are essential in analyzing the flow 
patterns (Aramideh et al. 2018).

The criterion for the onset of non-Darcy flow in this study 
is the point where Kapp

KD

= 0.99 . Comparing Fig. 10d (forma-
tion of eddy) with Fig. 10e (cessation of Darcy equation), it 
can be inferred that non-Darcy flow initiates when eddies 
grow up and continue to fill the contraction section.

Throat resistance: As indicated in Fig. 15, throat resist-
ance plays the most central role against the fluid’s permea-
tion. In Network 1 the magnitude of pore resistance is about 
one-tenth of the throat resistance. Therefore, any uncer-
tainty in predicting flow patterns in pores is insignificant. 

(23)T =
⟨�⟩
⟨u⟩ ,

Increasing the size of the pore bodies enhances their relative 
importance as well. Evidently, Eq. (16) is more reliable than 
the traditional HP equation.

Combined pore-throat resistance: Increasing width of 
the throats in networks postpones the onset of core flow, 
and increases viscous effect in the pore body. This effect is 
simulated by Eq. (19) and, and to some extent, by Eq. (21). 
As explained in the preceding paragraphs, the importance of 
flow patterns in the pore body becomes noteworthy when the 
pore size is comparable to the throat size (Networks 2 and 3). 
Half-pore correlations do not forecast the asymmetric flow 
patterns due to bending, branching, and eddies in networks 
with less open throats. These phenomena have convoluted, 
mostly unknown, impacts on fluid flow. For example, eddies 
cause viscous energy dissipation. They may lead the fluid 
to choose the shortest path, on the other hand. The majority 
of bending and branching is another anonymous phenom-
enon in PNS. Therefore, the inaccuracy of PNS results in 
Fig. 15 is assigned to the contribution of pore body in total 
permeability: with decreasing DR , the importance of pore 
contribution to total resistance increases. Meanwhile, the 
contraction resistance predicted by Eq. (19) is not accurate 
enough in simulating such complicated flow. It can roughly 
be estimated here that the influence of eddies, branching, 
splitting, and core flow is much stronger than the contribu-
tion of fluid–solid as is considered in PNS (shear stresses 
in contraction section). PNS predicts negligible relative 
resistance of the expansion section for all three networks 
compared to the throat and the contraction segments.

Our findings are in agreement with the results of El-
Zehairy et al. (2019) who simulated the fluid flow in four 
different natural and synthetic porous media using PNS 
and the correlations introduced by Kays. They compared 
their simulations with the results obtained by DNS (Mul-
jadi 2016) and experimental data. Bentheimer and Estail-
lades sandstones have approximately the same topological 
characteristics with coordination numbers of 4.5 and 3.4, 
respectively, and can be compared according to morphologi-
cal properties. Nevertheless, the porous media they studied 
have broad pore and throat size distributions. Suppose one 
uses the average pore and throat size as the representative 
for all morphological data. In that case, one has D = 1.893 
and 1.69 for Bentheimer and Estaillades, respectively, where 
D is the ratio of pore size to throat size. The results obtained 
in El-Zehairy et al. (2019) show that PNS underestimates 
the permeability for Bentheimer while it over predicts the 
permeability for Estaillades. Again for beadpack with D = 2 , 
PNS underestimates DNS data. This is in line with the find-
ings in the previous paragraph that increasing DR leads to 
overpredicting the permeability if one uses PNS.

Darcy permeability ( KD ) is calculated by plotting the 
product �U v.s. the pressure gradient 

(
ΔP

L

)
 near the zero 
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Fig. 15  PNS results for networks 1–3 as compared with DNS data
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velocity. The slope of the depicted line is reported as the 
Darcy permeability factor. At high velocities, the apparent 
permeability ( Kapp ) of the system is predicted by Forch-
heimer equation as follows:

 where� factor is deduced from the slope of the Forchheimer 
graph in the non-Darcy regime. Table 3 conveys KD , KF , and 
� for different structures used in this work. Table 3 shows 
that PNS using the correlations mentioned above is not con-
sistent unless for Network 1 where throat resistance controls 
ΔP . The inaccuracy in predicting the Forchheimer coeffi-
cient ( � ) is more remarkable.

Some authors have recently started a new approach to 
benefit PNS and DNS’s strengths simultaneously (Valvatne 
and Blunt 2004; Miao et al. 2017; Rabbani and Babaei 2019; 
Costa et al. 2018). They extracted the throats from tomogra-
phy images modeled fluid flow in throats independently to 
find correlations for the throats’ pressure drop. The bound-
ary condition at these extracted throats is either uniform 
pressure or fully developed velocity. According to the find-
ings in this study, these methods are reliable in Darcy flow 
merely, where viscous forces are dominant.

5  Conclusion

This article focuses on the exactness of PNS in estimating 
the permeability of 2D networks. Fluid passes over matrices 
of regularly arranged octagons. Each flow path consists of 
two half-pore bodies with a trapezoidal shape connected to 
a throat. The correct permeability is calculated by solving 
continuity and momentum equations using DNS. Appropri-
ate correlations for pressure drop in each element of an FP 
are introduced and utilized in PNS. At the next step, we 
investigate the permeability data computed by PNS and DNS 
methods.

The following conclusions are drawn:

• The equations introduced in the literature for flow in 
expansions and contractions are mostly extracted for 
turbulent flow, and utilizing them in laminar flow is not 
justified. Most of them are not functions of the Reynolds 
number. In addition, they are extracted for some limited 
geometries.

• DNS data of isolated FPs do not justify the Hagen–Poi-
seuille equation. The developed flow criterion to derive 
the HP model is inexact for short wide throats.
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• Correlations used to model pressure drop in circular 
pores (contraction or expansion) are seldom applicable 
to trapezoidal pore bodies.

• Analyzing the fluid flow in a selected FP in a periodic 
porous medium (FPs in series) shows that the correla-
tions can reasonably simulate the flow in the throats and 
the expansion sections. For the contraction section, the 
correlation failed to stimulate pressure loss. Investigating 
some selected FPs at different locations of the random 
network results in the same conclusion.

• We have examined the fluid streamlines in three differ-
ent modes, i.e., isolated FP, FPs in series, and 2D pore 
networks. This examination uncovers the differences 
between correlations and single FP as follows:

• Downstream an expansion half pore, eddies form due to 
flow separation at high velocities, inducing the inertial 
core flow. This phenomenon is observed for a FP, iso-
lated, or in a network.

• The tail of eddies may extend into the contraction half-
pore section. Moreover, the upstream inertial core flow 
may enter the downstream throat without being affected 
by the contraction walls. Eddies might change the direc-
tion of streamlines compared with the isolated FPs.

• For isolated FP, the inlet flow to the contraction section 
is nearly flat (uniform flow) defined by the boundary con-
ditions. However, an FP situation in periodic geometry 
or an FP in a network is quite different. The contraction 
section is affected by its upstream flow.

• Topology and flow patterns in the pore upstream a throat 
set the boundary conditions of that throat. It means that 
short-range correlations are important in modeling fluid 
flow in porous media at microscale.

• Due to the deviations explained mainly in the contraction 
section, PNS cannot accurately simulate DNS permeabil-
ity data. However, if the contribution of throat resistance 

is much higher than the pore body resistance, PNS is 
reliable.

Appendix 1: Pressure Profile in a FP

Figure 16 depicts the pressure profile in a single isolated 
FP. The average pressure at the inlet and outlet boundaries 
of each section are calculated using Eq. (25) and shown in 
the figure:

In this equation, d is the width of the FP perpendicular to 
x-direction ( dt or dR).

Appendix 2: Eddy identification

To have a clearer picture of the number of eddies and how 
they affect the micro and macro flow, it is more convenient 
to compare the vortices’ core and boundary directly. Here, 
we used the vortex identification method (Graftieaux et al. 
2001; Epps 2017; Lahooti and Kim 2019), in which two sca-
lars Γ1 and Γ2 indicate the core and boundary of the vortices, 
respectively. These scalars are computed as follows:

(25)P(x) =
1

d

d

∫
0

p(x, y)dy.

(26)Γ1

(
xP

)
=

1

N

∑
s

[
r
PM

× vM
]
⋅ n

||rPM||.||vM||

(27)Γ2

(
xP

)
=

1

N

∑
s

[
r
PM

×
(
�M − �P

)]
⋅ n

||rPM||.||vM − vP
||

.

Fig. 16  Pressure profile in an isolated FP and the associated averaged pressure
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For any arbitrary point xP in the computing domain, we 
defined an area s of 10 × 10 grid points surrounding xP , with 
a vector n normal to the area s. The vector connecting xP 
and any other point xM in s is rPM.�P and �M are the fluid 
velocities in the corresponding cells. Iso-counters ||Γ2

|| = 0.5 
are used to identify the boundary of the vortexes. Vortices’ 
core are recognized as the cells of ||Γ1

|| = 0.8 . According 
to the computation grid used in this study, eddies larger 
than 5 × 5grid cells can be detected visually and are shown 
Fig. 11.

Appendix 3: Segment resistance

The resistance of each segment against the fluid flow is 
defined as the ratio of pressure drop across that segment to 
L�U . For instance, the resistance of the contraction can be 
estimated as follows. Combining Eqs. (6) and (7), we have:

Multiplying both sides by K−1
app

= ΔP∕L�U , one has:

Knowing that ΔPC = ΔPC + Δ
⌣

P

C

 and ΔPij = ΔPij + Δ̃Pij 
where ⟨m⟩ denotes average of m in the network and over tilde 
stands for deviation from the average value with the property 
of ⟨m̃⟩ = 0.

Averaging Eq. (27) results in

Neglecting the second correlation term on the RHS and 
using the smooth field approximation (SFA) for ΔP

ΔPij

, we 
have:

which is the resistance of the contraction section in the 
network.
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on the manuscript and performing some additional analysis in obtain-
ing Eq. (21).
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