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Abstract
In the present paper, we provide evidence of the vital impact of inertia on the flow in microfluidic networks, which is dis-
closed by the appearance of nonlinear velocity–pressure coupling. The experiments and numerical analysis of microfluidic 
junctions within the range of moderate Reynolds number (1 < Re < 250) revealed that inertial effects are of high relevance 
when Re > 10. Thus, our results estimate the applicability limit of the linear relationship between the flow rate and pressure 
drop in channels, commonly described by the so-called hydraulic resistance. Herein, we show that neglecting the nonlinear in 
their nature inertial effects can make such linear resistance-based approximation mistaken for the network operating beyond 
Re < 10. In the course of our research, we investigated the distribution of flows in connections of three channels in two flow 
modes. In the splitting mode, the flow from a common channel divides between two outputs, while in the merging mode, 
streams from two channels join together in a common duct. We tested a wide range of junction geometries characterized by 
parameters such as: (1) the angle between bifurcating channels (45°, 90°, 135° and 180°); (2) angle of the common channel 
relative to bifurcating channels (varied within the available range); (3) ratio of lengths of bifurcating channels (up to 8). The 
research revealed that the inertial effects strongly depend on angles between the channels. Additionally, we observed substan-
tial differences between the distributions of flows in the splitting and merging modes in the same geometries, which reflects 
the non-reversibility of the motion of an inertial fluid. The promising aspect of our research is that for some combinations of 
both lengths and angles of the channels, the inertial contributions balance each other in such a way that the equations recover 
their linear character. In such an optimal configuration, the dependence on Reynolds number can be effectively mitigated.

1 Introduction

Classical microfluidics is seen as a domain of viscous-
dominated flows, where simple Ohm-like circuit analysis 
(analogical to electric circuits) can be applied with suffi-
cient precision (Oh et al. 2012). That approach completely 

neglects inertia. However, there are loads of examples utiliz-
ing the inertial effects in microfluidics (Carlo 2009; Nunes 
et al. 2014; Amini et al. 2014; Zhang et al. 2015), showing 
that the impact of inertia can be significant. Thus, this arises 
vital questions: how we can recognize if the inertia can be 
neglected in a particular microfluidic system; what are the 
consequences of the unjustified omit of this inertia; what are 
the limitations for the applicability of the electric-like-circuit 
analysis in microfluidics?

The ratio of inertial and viscous interactions is described 
by the Reynolds number. For the flow through a long chan-
nel, the Reynolds number is defined as Re = �UW∕� , where 
� and � are density and dynamic viscosity of the liquid, 
respectively, U—mean velocity of the fluid, W—the width 
of the channel. In the case of a circular pipe, experimen-
tally obtained critical Reynolds number Re ≈ 2300 gives the 
upper limit for which the inertial effects can be neglected. In 
this range, the flow through a pipe is thought to be laminar. 
According to Hagen–Poiseuille’s law, stationary, viscous, 
laminar and incompressible flow satisfies the linear relation 
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between the pressure drop and volumetric flow rate. There-
fore, Hagen–Poiseuille’s law can be seen to be analogical 
to Ohm’s law, where the pressure drop is equivalent to the 
voltage drop, the volumetric flow rate is equivalent to the 
electric current and the so-called hydraulic resistance is 
equivalent to the electric resistance (Mortensen et al. 2005). 
This analogy provides a simplified description of the flow 
through a microfluidic channel, where the channel is treated 
as a one-dimensional wire, characterized by the constant 
resistance. The fact that the hydraulic resistance is propor-
tional to the length of a channel and inversely proportional 
to the square of its cross-sectional area (the diameter to the 
power of 4) allows to obtain the required resistance of the 
channels during the process of design and fabrication. More-
over, if the electric circuit analogy is satisfied, the analytical 
solutions describing fluid flow in microfluidic networks can 
be derived from equivalent electric circuit equations which 
typically reduce to a system of linear algebraic equations 
(Oh et al. 2012).

Due to its convenience, this methodology is very com-
monly applied in microfluidics (Oh et al. 2012), e.g.: in the 
design of concentration-dependent microfluidic networks 
(Dertinger et al. 2001; Yamada et al. 2006; Lee et al. 2009, 
2010), prediction of flow distribution in hierarchical net-
works (Hulme et al. 2007) design of systems built with com-
binations of discrete 3D modules (Bhargava et al. 2015), 
investigation of systems for filtering particles (Stiles et al. 
2005), analysis of hydrodynamic trapping of droplets (Bithi 
and Vanapalli 2010; Korczyk et al. 2013; Zaremba et al. 
2018), prediction of flow of droplets in microfluidics net-
works (Engl et al. 2005; Fuerstman et al. 2007; Cybulski 
et al. 2015, 2019; Zaremba et al. 2019), description of for-
mation of droplets in microfluidic systems (van Steijn et al. 
2013; Korczyk et al. 2019) and the generation of concentra-
tion gradation in droplets (Wegrzyn et al. 2012).

Despite numerous examples of successful and impressive 
applications of linear approximation in modelling of flows 
in microfluidics, this approach has significant limitations. 
Its reliability requires elimination from the design process 
any nonlinearity. However, inertial effects, even if negligible 
in straight, regular channels can appear for Re ≪ 2300 in 
any non-regular element of the microfluidic network (Amini 
et al. 2014) where the flow is forced to submit to a sudden 
change of speed or direction (e.g. bends, branching point, 
contractions and expansions).

To minimize the impact of inertia, the microfluidic net-
work can be built of only straight channels. However, the 
junctions linking the channels are unavoidable in the con-
struction of non-trivial microfluidic networks. Commonly, 
the effect of branching points is assumed to be negligible in 
comparison with the resistance of channels. Although such a 
condition could be achieved by the use of appropriately long 
channels, it would cost the enlargements of the microfluidic 

architecture’s size. Moreover, such an increase in the size 
of the device is contrary to the idea of miniaturization—the 
vital advantage of microfluidics. Another way to damp iner-
tial effects is to keep Reynolds number low (e.g. Re < 1 ), 
what can be obtained simply by decreasing the rate of flow 
but with the cost of limiting the maximum throughput of 
the device. Microfluidics is a very rapidly developing disci-
pline with an increasing area of applications including those 
which require high throughput (van Berkel et al. 2011). In 
this context, the expansion of microfluidics towards moder-
ate Reynolds numbers (or even higher ones) seems to be 
the unavoidable process. The challenge which microfluidics 
faces now is to develop more complex, but still tractable, 
mathematical model(es) containing nonlinear effects, as 
there is no remedy to eliminate inertia. The main aim of 
this paper is to propose, verify and validate a new modelling 
approach concerning aforementioned issues.

In this paper, we analyse a junction as a source of non-
linearity in microfluidic networks for moderate Reynolds 
numbers ( 1 < Re < 250 ). A junction, which connects at 
least three channels, is a ubiquitous element in microfluidic 
devices. As shown in Fig. 1a, this junction allows for divid-
ing one inlet flow ( Qin ) into two output flows Q1 and Q2 , 
where Qin = Q1 + Q2 . In the reverse arrangement, it can be 
used to combine two input flows into one output flow.

The series of consecutive operations of splitting and 
merging of streams containing a sample and a buffer allow 
for the precise manipulation on concentrations of com-
pounds. This approach is used to generate the desired dis-
tribution of concentration of reagents and for the generation 
of precisely defined gradients (Dertinger et al. 2001; Yamada 
et al. 2006; Lee et al. 2009, 2010). The final result of the 
cascade of splitting and merging of flows relies on the ratio 
of output flows � = Q1∕Q2 distributed in each splitting node. 
Hence, this distribution ratio needs to be determined at the 
design stage.

According to the linear approximation (as shown in the 
circuit diagram in Fig. 1b), the geometry of the junction is 
described by two parameters—the linear resistances of out-
put arms R1 , R2 . Thus, the pressure drops in both output arms 
are: Δp1 = pin − p0 = Q1R1 and Δp2 = pin − p0 = Q2R2 , 
respectively. If the channels have the same cross sec-
tions, the resistances depend only on the lengths of arms 
( L1 and L2 ). Because Δp1 = Δp2 , the ratio of flows after 
splitting is given by the inverted ratio of lengths of outlet 
arms: � = Q1∕Q2 = R2∕R1 = L2∕L1 . Note that although 
the real geometry of the junction is also described by the 
angles between the channels: �1 and �2 , these angles are not 
taken into account in the linear approximation. The con-
sequence of such a reduced description is that the linear 
model predicts the output flows ratio � constant, regardless 
of the change of the magnitude of total incoming flow Qin . 
In other words, it does not account for any dependence of 
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� on the Reynolds number. In the range of Re numbers in 
which this linear approximation is correct, the design of the 
microfluidic network enables the encoding of an arbitrary 
series of dilutions, where each dilution is hard-wired into 
the architecture by the ratio of lengths of channels behind 
each splitting point.

Although the linear approach has been commonly applied 
for a variety of microfluidic systems, there are examples in 
the literature, where the linear approximation for microflu-
idic junctions failed the proper prediction of the splitting 
ratio. Zeitoun et al. analysed the T-junction as an asymmetric 
splitter of incoming flow introduced through the inlet arm 
connecting with both outlet arms at a right angle (Zeitoun 
et al. 2013). The asymmetry was introduced by different 
lengths of outlet arms (different hydraulic resistances). They 
proved that the ratio of the output flows depends on the mag-
nitude of the input flow. The higher the input flow Qin (the 
higher Re), the higher the discrepancy from the prediction 
of � given by the linear resistance analysis. The authors have 
assumed that these nonlinearities are introduced by the start-
up flow effect. This model, however, does not include any 
impact of the angle between the arms.

The experimental flow observations and CFD simula-
tions in microfluidic junctions revealed that the first signs 
of secondary flows could appear for Re < 1 (S. Suteria et al. 
2018). Other research disclosed formation of three-dimen-
sional flow patterns with more complex morphology (even 
for Re < 200), such as standing recirculation zones with thin-
layered spiral secondary flows (Karino et al. 1990; Vigolo 
et al. 2014; Ault et al. 2016; Oettinger et al. 2018) and even 
flow reversal zones (Karino et al. 1990). Due to the high dis-
sipativity of such structures, they significantly contribute to 
the pressure drop driving the flow. The asymmetry of those 

structures in asymmetrical junctions can be problematic for 
the prediction of the splitting ratio of output flows.

Berkel et al. built a system for rapid blood cell analysis 
(van Berkel et al. 2011). They used this system containing 
a junction to divide the sample liquid into parts in required 
proportions, which then were being mixed with a buffer 
to finally obtain the required concentration of the sample. 
To circumvent the impact of the nonlinearity and make 
the device independent on the input flows, they investi-
gated numerically different junction combinations. Finally, 
through a series of trials, they found the geometry which sat-
isfied their requirements. This work has shown that inertial 
effects depend on the angles between the channels. However, 
the analysis of the impact of the angles has been limited only 
to the optimization of a single device.

Oh et al. in their review on electric circuit analogy in 
microfluidics noticed that nonlinearities in junctions can be 
problematic (Oh et al. 2012). They advised the use of slanted 
junctions instead of right-angle junctions to minimize these 
effects. This conclusion rightly suggests the impact of the 
angles on the inertial effects; however, it is rather an intui-
tive remark, which lacks deeper quantitative consideration.

The junctions in larger scales and for high Reynolds num-
ber have been investigated as a part of pipe systems (Mat-
thew 1975; Hager 1984; Bassett et al. 2001) or as a part of 
vascular networks (Mynard and Valen-Sendstad 2015). In 
hydraulics, elements such as junctions or bends are con-
sidered to be a source of substantial pressure losses and 
described by the local pressure losses coefficients. These 
coefficients have been in general estimated experimentally 
for different geometries and are widely used in the prac-
tice of design of pipe systems (Idelchik 2005). While some 
concepts of hydraulics can be transferred into microfluidics, 

Fig. 1  The geometry of a junction and its electric representations. a 
The scheme of the microfluidic junction. b Electrical circuit diagram 
representing the junction in linear approximation—the flow depends 
only on linear resistances determined by the lengths of its arms. c The 
extended diagram, which includes dependence on the angle between 

arms of the junction. The influence of the angle between the arms on 
the local pressure loss is presented in the diagram as variable resist-
ances R̃1 and R̃2 depended on Re. The highlighted red area in all 
graphs corresponds to the region of the junction or its representation 
in an equivalent circuit diagram
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that cannot be done directly without appropriate adaptation. 
The reason is that the scope of hydraulics is the range of 
high Reynolds numbers, while microfluidics operates within 
small or moderate Reynolds numbers, where both viscous 
and inertial interactions are essential.

Therefore, the challenge is to describe pipe-like systems 
within the transitional range starting from low to moderate 
Reynolds number—in the range of the majority of microflu-
idics applications. The knowledge of this transition is vital 
to judge the applicability of the linear, electric-like circuit, 
analysis of microfluidic systems. The other goal is to find 
the description, which takes into account nonlinearities 
and allows for the proper analysis of nonlinear microfluidic 
systems.

In this paper, we developed an experimental approach, 
which allows for precise and effective investigation of the 
splitting ratio � in microfluidic junctions for moderate Re. 
We show measurements of � as a function of Reynolds num-
ber in a simple microfluidic system of junctions. Significant 
variations of � clearly prove the discrepancy from the lin-
ear model. We show that the magnitude of these variations 
strongly depends on the angles between channels of the junc-
tion and more importantly, that for some combinations of 
angles these variations can be damped.

Additionally, we propose a mathematical model of a junc-
tion accounting for the inertial effects and its dependence on 
angles. The knowledge about the role of geometry allows 
us to design a microfluidic junction, in which the sum of all 
nonlinear elements in the equations vanishes and the solu-
tion recovers its linear character and independence from the 
Reynolds number. This work provides a practical guide for 
minimization of the nonlinear effects by the optimization of 
the junction geometry.

2  Materials and methods

2.1  Fabrication of microfluidic devices

The microfluidic devices were fabricated by direct milling 
of the structure of channels in transparent, 5-mm-thick poly-
carbonate plates  (Makrolon® GP, Bayer, Germany) using a 
CNC milling machine (MFG4025P, Ergwind, Poland) and a 
2-flute fishtail milling bit with a diameter of 385 µm (FR208, 
InGraph, Poland). Engraved channels (grooves) were 
cleaned out with a high-pressure water washer (Karcher, K7 
Premium, Germany), to remove turnings and loosely bound 
bulk material, formed during the milling process. Further, 
the milled chips were washed by hand with 1% water solu-
tion of Alconox detergent (Alconox, Alconox Inc., USA), 
washed with isopropanol and deionized water and finally 
dried out by compressed air. Then, to obtain closed micro-
fluidic channels, the engraved plate was bounded to another 

flat slab of polycarbonate using a hot press (AW03, Argenta, 
Poland) at a temperature of 135 °C and with 0.1 bar/cm2 
pressure. The chip was kept in the press at this high tem-
perature for 10 min and then allowed to cool down remain-
ing under pressure. No further channel modifications were 
applied.

2.2  Measurements of the dye’s concentration

In all presented experiments, we used as an indicator sodium 
pyruvate (Sigma-Aldrich, Germany) in aqueous solution 
with starting concentration C0 = 100 mM. As the buffer liq-
uid, we used distilled water.

We used a Multiskan Go Microplate Spectrophotometer 
(Thermo Scientific) to measure the absorbance of the mix-
ture collected in PMMA UV cuvettes (BRAND, Germany) 
with a minimum filling volume of 1.5 mL.

All absorbance measurements were taken at the wave-
length of 316 nm, which corresponds to the local maximum 
in the spectrum of absorbance we took in the wavelength 
range from 200 to 500 nm.

As the principle of concentration estimation based on 
the measurements of absorbance, it is important to oper-
ate in the linear regime. Before all measurements of flow 
ratios, the calibration curve was determined to investigate 
relation between absorbance and concentration. The series 
of measurements for concentrations of sodium pyruvate up 
to 600 mM allowed us to estimate the maximum level for 
the linear regime—about 100 mM. We used this maximum 
value of concentration as a base starting value of concentra-
tion in our experiments.

2.3  Flow control

The chip was connected with the syringes via polyethylene 
tubing (PE60 Intramedic Tubing, Becton–Dickinson, USA), 
and the liquids were dispensed by syringe pumps (NE-1000, 
New Era Systems Inc.). 100 mM aqueous solution of sodium 
pyruvate was inducted into one of the microchannels, while 
for the other input we used distilled water. Both pumps oper-
ate with equal flow rates between: 5 and 350 mL/h. After 
flushing the channels for 3–5 min and eliminating the bub-
bles to stabilize the flow, 1.5 mL of the solutions was col-
lected in two cuvettes from each of two outlets. In order to 
reduce evaporation and changes in the concentration of the 
liquids, the cuvettes were closed at the end of every experi-
ment. Afterwards, the measurements of concentration from 
each cuvette were performed.

2.4  Numerical simulations

For the numerical analysis of the water flow through the 
investigated channel’s junctions, we used steady, isothermal, 
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laminar model of incompressible, viscous liquid flow, imple-
mented in ANSYS Fluent software. Therein, discretization 
of the liquid flow model governing equations is obtained 
using the finite volume method. Full, three-dimensional 
models of the analysed channel’s junctions were designed 
and created in Autodesk AutoCAD software and then trans-
ferred to ANSYS Meshing to generate the computational 
meshes representing the experimental devices. The bound-
ary conditions (known from experiment) were set as velocity 
inlets at the inlets to the model, and as pressure outlets (pres-
sure = 0) at the outlets. In the preliminary analysis, different 
meshes were tested until a mesh independent solution was 
obtained. As a compromise between accuracy and compu-
tational cost, we choose the mesh having 20 × 20 elements 
in the cross section of the channel. Further, mesh refining 
caused much higher consumption of the computer’s operat-
ing memory and little to none changes of velocity magni-
tude in the centre of the channel (less than 0.1%). Performed 
computations delivered accurate details about the flow struc-
ture in the analysed devices, including the flow rates in indi-
vidual segments of the channel’s network.

3  Results and discussion

In the following, we show the experimental evidence of the 
angle’s impact on the flow distribution in a microfluidic 
junction, on the example of a specially designed microfluidic 
rectangular device. Afterwards, we extend the classical cir-
cuit analysis to provide the mathematical model accounting 
for the angles of the junctions. Next, using the new model we 
analyse numerically the microfluidic junctions to investigate 
the possibilities for the mitigation of inertial effects by the 
adjusting of angles. Finally, on the example of the rectangu-
lar device, we show the minimization of the inertia’s impact 
which can be achieved by using the optimization formula 
obtained in the course of this research.

3.1  Experimental and numerical evidence 
of the effect of inertia

3.1.1  Experiments

The experimental investigations of the single microfluidic 
junction (as shown in Fig. 1) may be problematic. They 
would require the use of direct measurements of the flow 
with the use of: flow-metres, pressure sensors (Kim et al. 
2006); or indirect methods, e.g.: utilizing photobleaching 
(Cooksey et al. 2019), micro-PIV measurements (Santiago 
et al. 1998; Blonski et al. 2007) or weighting the output 
flows (Zeitoun et al. 2013).

Here, we propose the concept of a symmetric, rectangu-
lar device for the precise estimation of the flow distribution 

via the measurement of the indicator’s concentration. The 
microfluidic device consists of two identical junctions (see 
Fig. 2a), which outputs are so connected that they ensure 
rotational symmetry on the whole device. Thus, the arms of 
the junctions form an internal rectangle. Two inputs of two 
independent inflows are placed in the opposite vertices of 
the rectangle. Two other opposite corners serve as outputs.

If two input flows are equal, the channel’s symmetry 
implies the symmetry of the flow in the device. Therefore, 
the flow rates on opposite sides of the rectangle are equal. 
Particularly, flow rates in both long sides (of the length L1 ) 
are the same and equal Q1 and similarly, flow rates in both 
short arms ( L2 ) are identical and equal Q2 (see Fig. 2a).

Let us consider the addition of the optical indicator with a 
concentration C0 in the liquid injected to one of the inlets (as 
shown in Fig. 2a) while the clear buffer is injected into the 
opposite inlet. As illustrated in Fig. 2a, in our device the flow 
of indicator Q1 encounters the flow of a buffer Q2 at the outlet 
I, while the flow of indicator Q2 encounters the flow of buffer 
Q1 at outlet II. In result, we obtain different mixing ratios at 
each outlet. Thus, the resultant concentrations of the indica-
tor are CI = C0Q1∕

(

Q1 + Q2

)

 and CII = C0Q2∕
(

Q1 + Q2

)

 for 
outputs I and II, respectively (see Fig. 2a). What is important 
for our investigations, is that the ratio of these concentrations 
equals the ratio of flows: CI∕CII = Q1∕Q2 = �.

As the concentration of the indicator is its quantity, which 
can be easily measured by the use of a spectrophotometer, 
the proposed design of the device provides a convenient 
method for the accurate and non-invasive measurement of 
the ratio of flows Q1∕Q2 . In our experiments, the quantity 
we measured directly by the use of a spectrophotometer 
was the absorbance A , which according to the Beer–Lam-
bert law is proportional to the concentration. Thus, the ratio 
of flows was estimated directly as the ratio of absorbances: 
� = Q1∕Q2 = AI∕AII . This makes the estimation of � inde-
pendent of possible fluctuations of starting concentration 
C0 . The above-proposed approach ensures the high preci-
sion of measurements and a high reproducibility of results. 
The spectrophotometer is a very common and rather stand-
ard equipment available in most laboratories. Hence, this 
method may be very simply implemented in the investigation 
of flow distributions within microfluidic networks.

In order to investigate the impact of angles between 
channels on the flow distribution in junctions, we con-
ducted a series of experiments in rectangular devices with 
different angles �1 and �2 (Fig. 2b). To focus solely on 
the impact of angles, we kept other geometric parameters 
constant, i.e. both lengths L1 = 16.67mm and L2 = 10mm 
with the constant �0 = L2∕L1 = 0.6 and a constant sum of 
both angles �1 + �2 = 90◦ , which sets the right angles 
between the output arms. All channels had a square cross 
section of the width W = 0.385mm , and relative lengths 
of arms were: l1 = L1∕W = 43.29 and l2 = L2∕W = 25.97 . 
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The internal rectangle formed by the sides L1 and L2 was 
an element repeated in the architecture of each device used 
in this research. The only elements with varying configu-
rations were two inlet channels and two output channels, 
which are connected to vertices of the rectangle at differ-
ent angles �1 and �2 as shown in Fig. 2b. To minimize the 
number of varying parameters, the inlet and output chan-
nels were connected at the same angle ensuring the sym-
metry of the whole device. We have produced and tested 
devices characterized by the set of angles �1 with a step 
of 22.5◦ ; however, investigations herein are limited only 
to cases where both values of angles �1 and �2 were not 
larger than 135◦ and not smaller than −135◦ . The reason 
for that is, for the omitted values of angles, the input and 
output channels would partially overlap the channels of 
the internal rectangle, as, e.g. for angles 180◦ or −180◦ 
they would overlap completely. Taking this into account, 
we chose the following set of angles �1 : − 135°, − 45°, 
− 22.5°, 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°.

In order to obtain identical flow symmetry of the flow, 
we ensured the same conditions at both inlets and the same 
conditions at both outlets (as shown in Fig. 2). The liquids 
flowing out from the outputs were directed into UV cuvettes 
via tubing of equal lengths. The collecting cuvettes were 

placed at the same level, which ensured equal pressures at 
both outlets.

3.1.2  Experimental results and numerical simulations 
of rectangular devices

Parallelly to the experiments, we investigated the same set of 
microfluidic geometries by the use of 3D numerical simula-
tions. In order to simulate the conditions of the experiments, 
we applied the same conditions to the device, i.e. equal volu-
metric flow rates to both input channels and equal pressure 
to both output channel. Unlike in the experiments, where we 
used the chemical indicator and optical methods for indi-
rect measurement of the flow ratio, in the numerical simula-
tions, the flow rates in both channels-sides-of-rectangle were 
measured directly.

Figure 3 depicts the results of measurements of � normal-
ized by �0 for different devices characterized by the specific 
angle �1 taken in a wide range of Re. Therein, we present 
the results of numerical simulations as well. Both numerical 
and experimental data are very similar to each other. The 
minimal quantitative differences between simulations and 
experiment could be explained as a discrepancy between 
the ideal in silico case and the real experiment, which may 

Fig. 2  Schematic view of the experimental setup. a The idea of the experiment, b Configurations of inlets and outlets in the investigated micro-
fluidic devices for all considered angles



Microfluidics and Nanofluidics (2020) 24:14 

1 3

Page 7 of 15 14

be influenced by a number of factors. In the particular case 
of our experiments, the main issue might be the fabrication 
precision of the microfluidic chip, which relies on a two-
step process including micro-milling and bonding. However, 
despite some quantitative discrepancies, the qualitative simi-
larity between both approaches is very good. Hence, we con-
clude, the numerical model can be used for the prediction of 
the flow distribution in microfluidic junctions.

Analysing data sets in Fig. 3, we can notice that for low 
Re all data for different angles converge to unity ( �∕�0 = 1 ), 

what proves for low Re the inertial effects vanish. So, in the 
regime of low Re there is no effect of the angle between the 
arms of the junction.

Observations of the data in Fig. 3 for higher values of Re 
implies that we can distinguish Re = 10—an arbitrary transi-
tion threshold between the range of Re where inertial effects 
can be neglected, and the range of Re where the inertia sig-
nificantly impacts on the distribution of flows ( Re > 10 ). In 
the latter regime, the larger the Re is the larger the devia-
tion of �∕�0 from unity. The rate of growth of this deviation 

Fig. 3  Results of the experimen-
tal measurements (solid lines) 
and numerical simulations 
(dashed lines) for the rectangu-
lar devices with �0 = 0.6 and 
with different angles of inlets 
and outlets. a The range of 
angles from − 22.5° to 112.5°. b 
The range of angles from 112.5° 
to − 22.5°
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depends on the angle �1 and—more importantly—for each 
geometry the slope of the curves in Fig. 3 depends on Re.

Extreme deviations of �∕�0 unity in the case of our data 
sets are observed for �1 = −22.5◦ and �1 = 112.5◦ . Those 
observations directly prove that the angles between the arms 
of a junction can significantly influence the distribution of 
flow in junctions. Thus, the linear approximation may be 
completely inadequate for the mathematical description of 
flows in branching points for moderate Re.

The other interesting fact that we infer from the results in 
Fig. 3 is that the smallest deviations of �∕�0 can be expected 
between �1 = 45◦ and �1 = 67.5◦ . Notice that �∕�0 rises 
with Re for �1 = 45◦ and decreases for �1 = 67.5◦ . Thus, 
we can hypothesize that between these values of the angle 
�1 , there exists an optimal value for which the dependence 
on Re vanishes.

3.2  Mathematical analysis

The classical circuit analysis commonly used in microfluid-
ics does not account for any nonlinear effects and cannot 
explain the results of above-described experiments, where 
we observed the dependence of flows on both angle and Re. 
In this section, we propose a mathematical description which 
extends the linear circuit analogy. Here, we take into account 
the possible inertial effect that can occur in the junction. In 
this purpose, we adapt the hydraulic approach to the simpli-
fied description of a network of channels.

3.2.1  Description of the pressure losses in hydraulics

The pressure losses in the course of the motion of a fluid are 
due to the irreversible transformation of mechanical energy 
into heat. In classical hydraulics, two kinds of pressure 
losses are distinguished in principle: major losses (or fric-
tional losses) ΔpF due to friction and minor losses (or local 
losses) ΔpL due to the change of velocity, e.g.: in bends, 
expansions, contractions, valves, etc. (Idelchik 2005).

The energy difference can be expressed in terms of the 
Bernoulli theorem, which results in the following equation 
commonly used in hydraulics:

Here, pstart and pend are static pressures at the start point 
and the endpoint of the hydraulic conduit, respectively. 
1

2
�U2

start
 and 1

2
�U2

end
 are dynamic pressures, which depend 

on the mean velocities Ustart and Uend at selected points. The 
hydrostatic pressure is constant and is not relevant in this 
paper.

The major loss ΔpF is caused by a viscous friction during 
the flow of liquid in pipes and can be expressed by the use of 
the Darcy–Weisbach equation: ΔpF =

1

2
��U2L∕W . Where � 

(1)
(

pstart +
1

2
�U2

start

)

−
(

pend +
1

2
�U2

end

)

= ΔpF + ΔpL

is the density of the liquid, L—channel length, W—hydraulic 
diameter (here equal the width of the channel), U = Q∕S

—the mean flow velocity calculated as the volumetric flow 
rate Q divided by the cross-sectional area of the channel S.

The friction factor � depends on the Reynolds number 
and the characteristics of the channel such as the shape of 
its cross section and roughness of walls. The friction factor 
in laminar flows depends on the Re as: � ∝ Re−1 . Thus, in 
the laminar regime, flow through the pipe can be expressed 
in terms of the modified Hagen–Poiseuille equation, which 
general form, applicable to any cross section of the channel 
is:

Here, R is the hydraulic resistance and � is a non-dimen-
sional coefficient of resistance depending only on the shape 
of the cross-section, e.g. � = 28.6 for square (Mortensen 
et al. 2005).

The minor losses (or local losses) appear at a disturbance 
of the flow in regions, where the flow encounters a sud-
den change of geometry. While viscous losses take place 
along the entire length of the microchannel (and depend 
on L ), minor losses are taken into account only locally: 
ΔpL =

1

2
��U2 , where � is the local loss coefficient, specific 

for the geometry, in which the pressure loss takes place 
(Idelchik 2005).

In the case of the junction, we can expect that the local 
coefficients � can display the impact of angles between the 
channels connected in the junction (Matthew 1975; Hager 
1984; Bassett et  al. 2001; Mynard and Valen-Sendstad 
2015). Indeed, the angles determine the change of flow 
direction, but usually, they are neglected in the electric-like-
analysis of microfluidic systems, where branching points are 
reduced to point nodes.

Here, we consider a junction connecting three channels 
of the same, square cross sections characterized with the 
width W  . At first, we consider only the case of a dividing 
junction which splits the incoming flow Qin into two out-
coming flows Q1 and Q2 . We can expect that inertial effects 
can influence the splitting ratio � = Q1∕Q2 = U1∕U2.

Let us write the Bernoulli equations for both outflows in 
terms of local losses:

where �1 and �2 are coefficients of local pressure losses for 
both outputs. We assume that they can be expressed by the 

(2)ΔpF = QR = Q�L�S−2

(3)

(

pin + �
U2

in

2

)

−

(

p0 + �
U2

1

2

)

= �1�
U2

1

2
+ Q1

�

W4
�L1

(4)

(

pin + �
U2

in

2

)

−

(

p0 + �
U2

2

2

)

= �2�
U2

2

2
+ Q2

�

W4
�L2
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common function �
(

�i,�j

)

 of angles, �1 = �
(

�1,�2

)

 and 
�2 = �

(

�2,�1

)

 , respectively.
The above set of equations can be expressed with the 

terms of pressure drop Δp = pin − p0 , hydraulic resistances 
R1 and R2 and ‘inertial’ resistances R̃1 and R̃2 (see Fig. 1c):

where the hydraulic resistances are:

and the inertial resistances are:

Here, the Reynolds number is taken for the inlet flow: 
Re = �UinW∕� . For the simplicity of further calcula-
tions, we introduced K1 = K

(

�1,�2

)

=
1

2

(

�1 + 1
)

∕� and 
K2 = K

(

�2,�1

)

=
1

2

(

�2 + 1
)

∕� , where K
(

�i,�j

)

 is a func-
tion of the angles �i and �j of the junction.

The set of Eqs. (5)–(6) leads to the following equation 
for �:

where �0 is a constant coefficient set by the ratio of the 
lengths of the arms—�0 = R2∕R1 = L2∕L1 = const . In this 
equation, the inertial resistances introduce dependence on 
Re . Notice that if the numerator and the denominator in 
Eq. (11) are equal, it simplifies to the form:

where �opt is the optimal value of �0 , ensuring the independ-
ence of � on Re . Finally, from Eqs. (7)–(12), we obtain the 
following relation:

Here, the coefficient �opt
(

�1,�2

)

 is the optimal ratio of 
arms �0 = L2∕L1 for which �(Re) = const = �0 . The above 
implies that �opt is solely a function of angles; hence, the con-
dition �(Re) = �0 can be obtained by the proper adjustment 

(5)Δp = R1Q1 + R̃1Q1

(6)Δp = R2Q2 + R̃2Q2

(7)R1 =
�

W4
�L1 =

�

W3
�l1

(8)R2 =
�

W4
�L2 =

�

W3
�l2

(9)R̃1 = Re
𝛽

𝛽 + 1

(

K1𝛼 −
1

2

(1 + 𝛽)2

𝛽2

)

𝜇

W3

(10)R̃2 = Re
1

𝛽 + 1

(

K2𝛼 −
1

2
(1 + 𝛽)2

)

𝜇

W3

(11)𝛽 =
Q1

Q2

= 𝛽0
1 + R̃2∕R2

1 + R̃1∕R1

(12)� = �0 = �opt

(13)�opt
�

�1,�2

�

=
√

K2∕K1 =

�

K
�

�2,�1

�

∕K
�

�1,�2

�

of the lengths of the arms L1 , L2 and angles �1 and �2 . In the 
optimal configuration, �0 = L1∕L2 = �opt

(

�1,�2

)

 and � does 
not depend on Re.

Although we do not know the exact form of the equation, 
defining �opt as a function of angles, we can state here the 
hypothesis that optimal adjustment of the geometry of the 
junction can exist. We explore this hypothesis later.

The set of Eqs. (7)–(11) yields the following equation 
for �:

where l1 = L1∕W .
Introducing �2

opt
= K2∕K1 , Eq. (14) reads:

The only non-negative solution of quadratic Eq. (15) is 
given by:

Here, we still do not know the values of K1 , K2 and so �opt , 
but we can assume all of them to be positive.

Investigating the limits of � for both vanishing and high 
values of Re , we obtain the limits:

and

Equation (17) is in line with our previous expectation and 
the data from the investigations of the rectangular device. 
This explains that � starts from �(Re = 0) = �0 so for low 
Re it works analogically to electric circuits. Equation (18) 
implies that for large values of Re , value of � tends to �opt.

In other words, in the limit of low Re [see Eq. (17)] the 
distribution of flows is determined only by the lengths of the 
arms of the junction ( �0 = L2∕L1 ), while for large Re [see 
Eq. (18)] this distribution is determined by the angles (as 
�opt is the function of angles only). Thus, we can expect that 
�(Re) is an increasing function if 𝛽0 < 𝛽opt or a decreasing 
function if 𝛽0 > 𝛽opt . For �0 = �opt , the dependence on Re 
disappear. Thus, the above conclusions from the hydraulic 
description of the junction are in qualitative agreement with 
the previously obtained data.

In the following, we investigate separate junctions by the 
use of numerical simulations to show the difference between 

(14)Re
1

l1

(

K1�
2 − K2

)

=
(

�0 − �
)

⋅ (1 + �)

(15)Re
K1
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(
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)

=
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⋅ (1 + �)

(16)

� =

(

�0 − 1
)

+

√

4
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Re→0
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the splitting junctions and the merging ones. Afterwards, 
we show that even with the lack of the explicit form of 
K
(

�1,�2

)

 we can provide the approximate description of 
�opt as a function of angles.

3.3  Numerical investigations of separate junctions

Once the numerical model had been verified on the base 
of experimental data, we performed a series of numerical 
investigations of single junctions. The great advantage of 
numerical simulations is that the boundary conditions can 
be easily and precisely defined, and all parameters can be 
measured without any disturbance of the system.

Particularly in the case of our research, thanks to numeri-
cal simulations, we could investigate separately, single junc-
tions. The rectangular device used in experiments consists 
of four junctions, two splitting junctions and two merging 
ones. Measurements from that device yielded the evidence 
of the impact of angles, but the results are the combinations 
of effects from both junctions of different types.

Although the general mathematical description can be 
applied to both kinds of junctions, due to the irreversibility 
of inertial flows, we can expect that local losses are differ-
ent. To investigate these effects separately, we conducted a 
series of numerical experiments in single junctions of both 
types (see Fig. 4). In the case of simulating the single split-
ting junction, we set the same pressure on both outlets of the 
junction and a constant flow rate in the input channel. In the 
case of the simulation of the single merging junction, we set 
the same pressure on both inputs and the constant flow rate 
in the common output channel.

In order to avoid uncertainties in the comparison of 
results from different separate junctions, in all considered 
cases we kept L1 = 10mm constant, changing �0 = L2∕L1 
by adjusting L2.

3.3.1  Flow through a splitting junction

The example results of the simulations of the flow through 
the splitting junctions are presented in Fig. 5a where we 

compare data for junctions characterized by two different 
values of parameter �0 (0.5 and 4). We investigated differ-
ent configurations of junctions changing angles �1 and �2 , 
keeping the sum of these angles constant ( �1 + �2 = 90◦ ). 
Hence, two output arms form the right angle and only the 
angle of the input channel changes. The length of the first 
arm in both cases was the same and equal to L1 = 10mm , 
what for the width of the channel W = 0.385mm results 
in a non-dimensional length l1 = L1∕W = 25.97 . For both 
values of �0 , we used a set of angles of the inlet channel 
characterized by the angle �1 within the range from –45° 
to 135° with a step of 22.5°. For each geometry of the 
junction in numerical simulations, we estimated the ratio 
of flows � = Q1∕Q2 as a function of Reynolds number in 
the range from 3.85 to 269.5.

The results, depicted in Fig. 5a, reveal the significant 
differences between junctions with different angles. Value 
of � = Q1∕Q2 is approximately equal �0 for small Re, while 
for larger Re, � depends significantly on Re. Depending on 
the value of �1 , � can be a decreasing or increasing func-
tion of Re. In any case, the deviation of � from the value of 
�0 rises systematically with Re, with the rate of this devia-
tion depending strongly on the angle �1 . We can guess 
from the graph that the least deviation can be observed 
in the case for �0 = 0.5 for the angle �1 between 45° and 
67.5°, while for �0 = 4 the optimal angle is less than 22.5° 
but more than 0°. These observations confirm our previous 
assumption that the optimal angles of the junctions are not 
universal, but they depend on �0 . In order to compare the 
deviation rate of different curves from the characteristic 
value of �0 , we quantified it by the use of a non-dimen-
sional deviation coefficient �  defined as follows:

where Remax is the top limit of the range of Reynolds num-
ber used in the simulations. Figure 5b plots the values of the 

(19)

�
(

�0,�1,�2

)

=

√

1

Remax ∫
Remax

0

(

�(Re)

�0
− 1

)2

dRe

Fig. 4  Two arrangements of the 
flow in junctions: a the splitting 
junction, b the merging junction
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deviation coefficient �  as a function of angle �1 calculated 
for the data sets from Fig. 5a.

This clearly shows the high variation of the deviation 
rate for different angles for a given junction. Dependence 
of the coefficient �  on the angle can be used for the esti-
mation of the optimal configuration by finding the mini-
mum of �  . In this paper, for practical reasons, we limited 
ourselves only to the minimization of �  for positive values 
of angles �1 and �2 , however, as we can see in Fig. 5b the 
optimal conditions may exist for negative angles as well 

(see data for �0 = 4 , �1 = −45◦ ). For better resolution of 
the optimal value estimation of the angle �opt , we used 
quadratic interpolation for three data points nearest to the 
local minimum.

We repeated the above-mentioned optimization procedure 
for more junction configurations changing the value of �0 
within the range from 0.25 to 8 and for different sums of 
angles �1 and �2 (45°, 90°, 135°, 180°), keeping l1 = 25.97 
constant for all junctions. The optimal sets of angles for dif-
ferent values of �0 are plotted in Fig. 6.

Fig. 5  Numerical analysis of the 
dividing junction. a � = Q1∕Q2 
as a function of Re for two 
examples of �0 (= 4,0.5) and for 
�1 + �2 = 90◦ . Each data series 
corresponds to different angles 
between channels character-
ized by the specific values of �1 
(see the legend and schematic 
presentations of the geometry 
of junctions on the side panels). 
b Non-dimensional deviation 
coefficient � [see Eq. (19)] 
as a function of angle �1 for 
the data series presented in a. 
The additional solid lines—the 
quadratic interpolation for three 
data points nearest the local 
minimum. The inset—optimal 
geometries of junctions, corre-
sponding to estimations of �opt
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Looking for an effective and simplified optimization for-
mula, we fitted the following equation to the obtained data 
points:

In result, we obtained the following values of fitting 
parameters: a = 0.5 ⋅ 10−4 ± 2.0 ⋅ 10−4 and b = −3.8

◦

± 0.2
◦ . 

Neglecting the vanishing parameter a , we rewrite the opti-
mization formula in the following compact form:

To test this optimization formula, we plotted in Fig. 6 
additional lines for constant values of �0 , which very 
well agree with the data points obtained from numerical 
optimization.

3.3.2  Flow through a merging junction

We conducted numerical simulations for junctions, with 
reversed flow (see Fig. 4). In this case, two input flows 

(20)�0 =
a ⋅ �2

2
+ �2 + b

a ⋅ �2
1
+ �1 + b

(21)�0 =
�2 − 3.8

◦

�1 − 3.8
◦

meet in the junction and merge forming one output flow. 
In order to describe the flow, by analogy, we can use an 
equation similar to Eq. (14):

where the additional coefficients K̂1 and K̂2 are introduced 
to distinguish them from the coefficients K1 and K2 for the 
splitting junction. Function K̂

(

𝜙i,𝜙j

)

 describes the depend-
ence of the local loss coefficients on angles: K̂1 = K̂

(

𝜙1,𝜙2

)

 
and K̂2 = K̂

(

𝜙2,𝜙1

)

.
In this case, the numerical results reveal that unlike in 

the case of a splitting junction, in the merging junction 
� does not depend significantly on the angles (compare 
Figs. 5a and 7). This is not surprising as the local reverse 
flow regions are not created. That suggests that in the case 
of the merging junction the main reason for the pressure 
loss is the change of the total cross section of the flow.

Let us assume that K̂
(

𝜙i,𝜙j

)

 can be expressed as a sum 
of a constant coefficient � and an angle-dependent part 
�
(

�i,�j

)

 : K̂
(

𝜙i,𝜙j

)

= 𝛬 + 𝜅
(

𝜙i,𝜙j

)

 . Because we observed 
that � weakly varies with the angle in the merging junc-
tion, we can assume that 𝛬 ≫ 𝜅

(

𝜙i,𝜙j

)

 . Applying the fol-
lowing substitution K̂1 ≈ K̂2 ≈ 𝛬 in Eq. (22) and dividing 
both sides of the equation by (1 + �) , we obtain:

In the range of Re where � does not significantly 
differ from �0 , we can use the following approxima-
tion—(� − 1) ≈

(

�0 − 1
)

 , which applied to Eq. (23) leads 
to the following linear relation for �(Re):

Via the fitting of Eq.  (24) to the data sets obtained 
from numerical simulations, we estimated that parameter 
� = 0.01.

The optimizing formula given by Eq. (13) is formally 
the same in the case of both type of junctions, so in case 
of the merging junction we can state:

Here, we distinguish 𝛽opt as an optimum for the merging 
junction. As we mentioned above in the case of the merging 
junction K̂1 ≈ K̂2 , thus 𝛽opt ≈ 1 . The conclusion is that unlike 
in the case of a splitting junction, the flows in merging junc-
tions weakly depend on angles. So, practically this implies 
that the merging junction cannot be balanced for �0 other 
than 1 while adjusting the angle.

(22)Re
1

l1

(

K̂1𝛽
2 − K̂2

)

=
(

𝛽0 − 𝛽
)

⋅ (1 + 𝛽)

(23)Re
�

l1
(� − 1) =

(

�0 − �
)

(24)�(Re) = �0 + Re
�

l1

(

1 − �0
)

(25)𝛽opt =

√

K̂2∕K̂1

Fig. 6  Optimal values of angles �1 and �2 for different values of �0 
estimated from numerical simulations. Markers—the data obtained 
from numerical optimization (see legend). The solid lines—plots of 
the optimization formula [see Eq.  (21)] for different values of �opt , 
as indicated in the graph. The dashed lines—isolines of the constant 
sum of angles
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3.4  Optimization of the rectangular device

Above, we analysed the effect of inertia in both the splitting 
and the merging junctions, separately. Usually, microfluidic 
networks consist of both these types of junctions (e.g. our 
rectangular device). The effective minimization of inertial 
components in the mathematical models of such networks 
requires knowledge about the values of coefficients K

(

�i,�j

)

 
and K̂

(

𝜙i,𝜙j

)

 . However, this preliminary study does not 
provide the explicit formulas of angle-dependence of these 
important coefficients.

Despite the lacks mentioned above, the important and 
useful result of this work is the optimization formula for 
the splitting junction given by Eq. (21). Hence, that raises 
the question, if this formula can be used for the first attempt 
of inertial effect mitigation in microfluidic systems com-
prising both kinds of junctions. Comparing the results from 
the rectangular device (Fig. 3) and both types of junctions 
(Figs. 5 and 7), we can observe the qualitative similarity of 
the rectangular device and the splitting junction, consisting 
in the high dependence on the angle in both cases. That sug-
gests that in the system consisting of both the splitting and 
the merging junctions the inertial effects occurring in the 
splitting junctions dominate in regards to the performance 
of the whole device.

These conclusions imply that the first attempt of microflu-
idic network optimization can be made by neglecting the merg-
ing junctions and by only accounting for the splitting junc-
tions. We applied this approach in the case of our rectangular 
device using the optimization formula [Eq. (21)] for �0 = 0.6 , 
�2 = 90

◦

− �1 and obtained �1 = 55
◦ . It is worth to notice the 

yielded value of �1 is between 45◦ and 67.5◦ as we predicted 
from the experimental analysis of the rectangular device.

In order to test the efficiency of this optimization, we per-
formed both numerical and experimental analysis of the rec-
tangle device with �1 = 55

◦ , as presented in Fig. 8. The results 
show that thanks to the application of the simplified optimiza-
tion procedure, the impact of inertia in the microfluidic net-
work can be effectively reduced. In the case of the presented 
data, the deviation caused by the inertia is less than 5%. Even, 
if the inertial effects do not vanish completely, it is still much 
better to use the proposed optimization than choose the angle 
randomly (compare Figs. 3 and 8).

4  Conclusions

In this study, we show the experimental evidence of the 
impact of inertia on the distribution of flows in microfluidic 
networks in the range of moderate Re. To our knowledge, 

Fig. 7  Numerical analysis of the merging junctions. � = Q1∕Q2 as a function of Re for four examples of �0 (= 4, 2, 1, 0.5) and for �1 + �2 = 90◦ . 
Each data series corresponds to different angles between channels characterized by the specific values of �1 (see the legend)
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this is the first attempt to estimate the effect of angles 
between channels on the magnitude of inertial effects and 
assess the consequences of this effect for the flow distribu-
tion in microfluidic architectures. We show that the iner-
tial effects, within the range of moderate Re, cannot be 
neglected; contrary, they may be critically affecting the flow.

The important outcome of this research is the optimiza-
tion formula, which can be used for the effective mitigation 
of the nonlinear effects via the proper design of connections 
between channels. Thus, the output of this research is essen-
tial for the correct prediction of the operation of microfluidic 
networks and for its practical applications.

The presented study is a preliminary attempt to deal with 
nonlinearities in microfluidics. Some questions arose in the 
course of this work have been left without an answer and 
require further analysis. Although we provide guidelines, 
which can help in the finding of optimal angles for the miti-
gation of nonlinearities, we do not explain why a particular 
set of angles favours balancing the inertial effects in both 
arms of junctions. Our preliminary observations of flow pat-
terns obtained from CFD revealed the spatial complexity of 
three-dimensional structures including secondary flows and 
flow reversal zones. The understanding of the role of these 
structures requires the analysis of their effect on the dissipa-
tion of energy and will be the focus of future works. This 
understanding of a variety of possible inertial phenomena 
that can occur in microfluidic systems is still the challenge 
and is a field for future exploration.

Acknowledgements The Project operated within the Grant No. 
2014/14/E/ST8/00578 financed by National Science Centre, Poland 
and within the First Team Grant (POIR.04.04.00-00-3FEF/17-00) of 

the Foundation for Polish Science co-financed by the EU under the 
Smart Growth Operational Programme. We thank Howard A. Stone for 
the critical reading of the manuscript and for all the helpful comments. 
We thank Filippo Pierini for the help with the choice of the optical 
indicator and the helpful comments on the use of spectrophotometry 
for concentration estimation.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Amini H, Lee W, Carlo DD (2014) Inertial microfluidic physics. Lab 
Chip 14:2739–2761. https ://doi.org/10.1039/C4LC0 0128A 

Ault JT, Fani A, Chen KK et al (2016) Vortex-breakdown-induced par-
ticle capture in branching junctions. Phys Rev Lett 117:084501. 
https ://doi.org/10.1103/PhysR evLet t.117.08450 1

Bassett MD, Winterbone DE, Pearson RJ (2001) Calculation of 
steady flow pressure loss coefficients for pipe junctions. Proc 
Inst Mech Eng C J Mech Eng Sci 215:861–881. https ://doi.
org/10.1177/09544 06201 21500 801

Bhargava KC, Thompson B, Iqbal D, Malmstadt N (2015) Predicting 
the behavior of microfluidic circuits made from discrete elements. 
Sci Rep 5:15609. https ://doi.org/10.1038/srep1 5609

Fig. 8  Optimization of the rec-
tangle device. The plot shows 
the comparison of numerical 
(dashed lines) and experimental 
(solid lines) results for rectan-
gular device for the optimized 
geometry with �1 = 55◦ . The 
results for the two nearest 
angles �1 = 45◦ and �1 = 67.5◦ 
from Fig. 3 are presented for the 
reference

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1039/C4LC00128A
https://doi.org/10.1103/PhysRevLett.117.084501
https://doi.org/10.1177/095440620121500801
https://doi.org/10.1177/095440620121500801
https://doi.org/10.1038/srep15609


Microfluidics and Nanofluidics (2020) 24:14 

1 3

Page 15 of 15 14

Bithi SS, Vanapalli SA (2010) Behavior of a train of droplets in a flu-
idic network with hydrodynamic traps. Biomicrofluidics 4:44110. 
https ://doi.org/10.1063/1.35230 53

Blonski S, Korczyk P, Kowalewski T (2007) Analysis of turbulence in 
a micro-channel emulsifier. Int J Therm Sci 46:1126–1141. https 
://doi.org/10.1016/j.ijthe rmals ci.2007.01.028

Carlo DD (2009) Inertial microfluidics. Lab Chip 9:3038–3046. https 
://doi.org/10.1039/B9125 47G

Cooksey GA, Patrone PN, Hands JR et al (2019) Dynamic measure-
ment of nanoflows: realization of an optofluidic flow meter to the 
nanoliter-per-minute scale. Anal Chem 91:10713–10722. https ://
doi.org/10.1021/acs.analc hem.9b020 56

Cybulski O, Jakiela S, Garstecki P (2015) Between giant oscillations 
and uniform distribution of droplets: the role of varying lumen of 
channels in microfluidic networks. Phys Rev E 92:063008. https 
://doi.org/10.1103/PhysR evE.92.06300 8

Cybulski O, Garstecki P, Grzybowski BA (2019) Oscillating droplet 
trains in microfluidic networks and their suppression in blood flow. 
Nat Phys 15:706–713. https ://doi.org/10.1038/s4156 7-019-0486-8

Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation 
of gradients having complex shapes using microfluidic networks. 
Anal Chem 73:1240–1246. https ://doi.org/10.1021/ac001 132d

Engl W, Roche M, Colin A et al (2005) Droplet traffic at a simple junc-
tion at low capillary numbers. Phys Rev Lett 95:208304

Fuerstman MJ, Garstecki P, Whitesides GM (2007) Coding/decoding 
and reversibility of droplet trains in microfluidic networks. Sci-
ence 315:828–832. https ://doi.org/10.1126/scien ce.11345 14

Hager WH (1984) An approximate treatment of flow in branches 
and bends. Proc IMechE 198:63–69. https ://doi.org/10.1243/
PIME_PROC_1984_198_088_02

Hulme SE, Shevkoplyas SS, Apfeld J et al (2007) A microfabricated 
array of clamps for immobilizing and imaging C. elegans. Lab 
Chip 7:1515–1523. https ://doi.org/10.1039/B7078 61G

Idelchik IE (2005) Handbook of hydraulic resistance. Jaico Publishing 
House, Mumbai

Karino T, Motomiya M, Goldsmith HL (1990) Flow patterns at 
the major T-junctions of the dog descending aorta. J Biomech 
23:537–548. https ://doi.org/10.1016/0021-9290(90)90047 -7

Kim D, Chesler NC, Beebe DJ (2006) A method for dynamic sys-
tem characterization using hydraulic series resistance. Lab Chip 
6:639–644. https ://doi.org/10.1039/B5170 54K

Korczyk PM, Derzsi L, Jakieła S, Garstecki P (2013) Microfluidic traps 
for hard-wired operations on droplets. Lab Chip 13:4096–4102. 
https ://doi.org/10.1039/C3LC5 0347J 

Korczyk PM, van Steijn V, Blonski S et al (2019) Accounting for cor-
ner flow unifies the understanding of droplet formation in micro-
fluidic channels. Nat Commun 10:2528. https ://doi.org/10.1038/
s4146 7-019-10505 -5

Lee K, Kim C, Ahn B et al (2009) Generalized serial dilution module 
for monotonic and arbitrary microfluidic gradient generators. Lab 
Chip 9:709–717. https ://doi.org/10.1039/B8135 82G

Lee K, Kim C, Jung G et al (2010) Microfluidic network-based combi-
natorial dilution device for high throughput screening and optimi-
zation. Microfluid Nanofluid 8:677–685. https ://doi.org/10.1007/
s1040 4-009-0500-z

Matthew GD (1975) Simple approximate treatments of cer-
tain incompressible duct flow problems involving separa-
tion. J Mech Eng Sci 17:57–64. https ://doi.org/10.1243/
JMES_JOUR_1975_017_011_02

Mortensen NA, Okkels F, Bruus H (2005) Reexamination of Hagen–
Poiseuille flow: shape dependence of the hydraulic resistance in 

microchannels. Phys Rev E 71:057301. https ://doi.org/10.1103/
PhysR evE.71.05730 1

Mynard JP, Valen-Sendstad K (2015) A unified method for estimat-
ing pressure losses at vascular junctions. Int J Numer Methods 
Biomed Eng 31:e02717. https ://doi.org/10.1002/cnm.2717

Nunes JK, Wu C-Y, Amini H et al (2014) Fabricating shaped microfib-
ers with inertial microfluidics. Adv Mater 26:3712–3717. https ://
doi.org/10.1002/adma.20140 0268

Oettinger D, Ault JT, Stone HA, Haller G (2018) Invisible anchors trap 
particles in branching junctions. Phys Rev Lett 121:054502. https 
://doi.org/10.1103/PhysR evLet t.121.05450 2

Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven 
microfluidic networks using electric circuit analogy. Lab Chip 
12:515–545. https ://doi.org/10.1039/C2LC2 0799K 

Santiago JG, Wereley ST, Meinhart CD et al (1998) A particle image 
velocimetry system for microfluidics. Exp Fluids 25:316–319. 
https ://doi.org/10.1007/s0034 80050 235

Stiles T, Fallon R, Vestad T et al (2005) Hydrodynamic focusing for 
vacuum-pumped microfluidics. Microfluid Nanofluid 1:280–283. 
https ://doi.org/10.1007/s1040 4-005-0033-z

Suteria NS, Nekouei M, Vanapalli SA (2018) Microfluidic bypass 
manometry: highly parallelized measurement of flow resistance 
of complex channel geometries and trapped droplets. Lab Chip 
18:343–355. https ://doi.org/10.1039/C7LC0 0889A 

van Berkel C, Gwyer JD, Deane S et al (2011) Integrated systems for 
rapid point of care (PoC) blood cell analysis. Lab Chip 11:1249–
1255. https ://doi.org/10.1039/C0LC0 0587H 

van Steijn V, Korczyk PM, Derzsi L et al (2013) Block-and-break 
generation of microdroplets with fixed volume. Biomicrofluidics 
7:024108. https ://doi.org/10.1063/1.48016 37

Vigolo D, Radl S, Stone HA (2014) Unexpected trapping of particles 
at a T junction. PNAS 111:4770–4775. https ://doi.org/10.1073/
pnas.13215 85111 

Wegrzyn J, Samborski A, Reissig L et al (2012) Microfluidic archi-
tectures for efficient generation of chemistry gradations in drop-
lets. Microfluid Nanofluid 14:235. https ://doi.org/10.1007/s1040 
4-012-1042-3

Yamada M, Hirano T, Yasuda M, Seki M (2006) A microfluidic flow 
distributor generating stepwise concentrations for high-through-
put biochemical processing. Lab Chip 6:179–184. https ://doi.
org/10.1039/B5140 54D

Zaremba D, Blonski S, Jachimek M et al (2018) Investigations of 
modular microfluidic geometries for passive manipulations on 
droplets. Bull Pol Acad Sci Tech Sci 66:139–149. https ://doi.
org/10.24425 /11906 8

Zaremba D, Blonski S, Marijnissen MJ, Korczyk PM (2019) Fixing the 
direction of droplets in a bifurcating microfluidic junction. Micro-
fluid Nanofluid 23:55. https ://doi.org/10.1007/s1040 4-019-2218-x

Zeitoun RI, Langelier SM, Gill RT (2013) Implications of variable 
fluid resistance caused by start-up flow in microfluidic networks. 
Microfluid Nanofluid 16:473–482. https ://doi.org/10.1007/s1040 
4-013-1241-6

Zhang J, Yan S, Yuan D et al (2015) Fundamentals and applications of 
inertial microfluidics: a review. Lab Chip 16:10–34. https ://doi.
org/10.1039/C5LC0 1159K 

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1063/1.3523053
https://doi.org/10.1016/j.ijthermalsci.2007.01.028
https://doi.org/10.1016/j.ijthermalsci.2007.01.028
https://doi.org/10.1039/B912547G
https://doi.org/10.1039/B912547G
https://doi.org/10.1021/acs.analchem.9b02056
https://doi.org/10.1021/acs.analchem.9b02056
https://doi.org/10.1103/PhysRevE.92.063008
https://doi.org/10.1103/PhysRevE.92.063008
https://doi.org/10.1038/s41567-019-0486-8
https://doi.org/10.1021/ac001132d
https://doi.org/10.1126/science.1134514
https://doi.org/10.1243/PIME_PROC_1984_198_088_02
https://doi.org/10.1243/PIME_PROC_1984_198_088_02
https://doi.org/10.1039/B707861G
https://doi.org/10.1016/0021-9290(90)90047-7
https://doi.org/10.1039/B517054K
https://doi.org/10.1039/C3LC50347J
https://doi.org/10.1038/s41467-019-10505-5
https://doi.org/10.1038/s41467-019-10505-5
https://doi.org/10.1039/B813582G
https://doi.org/10.1007/s10404-009-0500-z
https://doi.org/10.1007/s10404-009-0500-z
https://doi.org/10.1243/JMES_JOUR_1975_017_011_02
https://doi.org/10.1243/JMES_JOUR_1975_017_011_02
https://doi.org/10.1103/PhysRevE.71.057301
https://doi.org/10.1103/PhysRevE.71.057301
https://doi.org/10.1002/cnm.2717
https://doi.org/10.1002/adma.201400268
https://doi.org/10.1002/adma.201400268
https://doi.org/10.1103/PhysRevLett.121.054502
https://doi.org/10.1103/PhysRevLett.121.054502
https://doi.org/10.1039/C2LC20799K
https://doi.org/10.1007/s003480050235
https://doi.org/10.1007/s10404-005-0033-z
https://doi.org/10.1039/C7LC00889A
https://doi.org/10.1039/C0LC00587H
https://doi.org/10.1063/1.4801637
https://doi.org/10.1073/pnas.1321585111
https://doi.org/10.1073/pnas.1321585111
https://doi.org/10.1007/s10404-012-1042-3
https://doi.org/10.1007/s10404-012-1042-3
https://doi.org/10.1039/B514054D
https://doi.org/10.1039/B514054D
https://doi.org/10.24425/119068
https://doi.org/10.24425/119068
https://doi.org/10.1007/s10404-019-2218-x
https://doi.org/10.1007/s10404-013-1241-6
https://doi.org/10.1007/s10404-013-1241-6
https://doi.org/10.1039/C5LC01159K
https://doi.org/10.1039/C5LC01159K

	Impact of inertia and channel angles on flow distribution in microfluidic junctions
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Fabrication of microfluidic devices
	2.2 Measurements of the dye’s concentration
	2.3 Flow control
	2.4 Numerical simulations

	3 Results and discussion
	3.1 Experimental and numerical evidence of the effect of inertia
	3.1.1 Experiments
	3.1.2 Experimental results and numerical simulations of rectangular devices

	3.2 Mathematical analysis
	3.2.1 Description of the pressure losses in hydraulics

	3.3 Numerical investigations of separate junctions
	3.3.1 Flow through a splitting junction
	3.3.2 Flow through a merging junction

	3.4 Optimization of the rectangular device

	4 Conclusions
	Acknowledgements 
	References




