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Abstract
Current circulating tumor cells (CTC) detection methods have to compromise between sensitivity and throughput. High-
throughput imaging cytometer based on serial time-encoded amplified microscopy (STEAM) facilitates CTC detection at 
single-cell sensitivity from abundant cells. However, this method lacks the information to spot heterogeneity of cells with 
high morphological similarity. Researches on cell biophysical properties suggest cell mechanotyping can be an indicator of 
phenotypic heterogeneity to improve classification ability of STEAM cytometer. Here, we present a high-throughput label-
free acoustofluidic imaging cytometer for single-cell mechanotyping based on STEAM and acoustofluidic technology. The 
generated acoustic resonance field translocates cells to different transversal exit positions under continuous flow according to 
their intrinsic biophysical properties. Such displacements are recorded with images simultaneously using STEAM cytometry 
at approximately 2000 cells/s. We experimentally verified that our method accounting for both cell images and acoustic dis-
placements can improve mechanotyping accuracy by 12% upon image-based phenotyping method. This new acoustofluidic 
imaging cytometer facilitates high-accuracy and high-throughput imaging cytometry for single-cell CTC mechanotyping.
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1  Introduction

High sensitivity and fidelity detection of circulating tumor 
cells (CTC) is regarded a promising approach for the study of 
cancer disease, as non-invasive biopsy can be used as cancer 
diagnosis and prognosis biomarkers. Current gold standard 
of CTC liquid biopsy is immunoaffinity-based methods such 
as immunomagnetic affinity-based CTC capturing (Hoshino 
et al. 2011). But these methods suffer from low sensitivity 

due to insufficient binding and variance of cell surface bio-
markers (Ghazani et al. 2013). Serial time-encoded ampli-
fied microscopy (STEAM) (Goda et al. 2009) is a continuous 
ultrafast imaging technology enabled by optical time-stretch 
(Goda and Jalali 2013) which achieves unprecedented imag-
ing speed of millions of frames per second. It images, counts 
and phenotypes flowing cells with unprecedented speed at 
single-cell sensitivity and high-throughput, which appears 
to be a proper solution to highly sensitive detection of rare 
CTCs (Goda et al. 2012). Hence, researchers have explored 
extensively to further improve the performance of STEAM 
cytometer to meet clinical demands, such as improved image 
processing algorithm (Nitta et al. 2018; Chen et al. 2016; 
Zhao et al. 2018), higher resolution (Wu et al. 2017), lower 
system cost (Dong et al. 2018; Yan et al. 2018) and more 
diverse samples (Kobayashi et al. 2017; Jiang et al. 2017; 
Lei et al. 2016).

Nevertheless, STEAM cytometer which carries out cell 
phenotyping only based on two-dimensional cell images 
has limited utility in CTC applications. Characterization of 
tumor heterogeneity among CTCs at the single cell level 
is useful to study tumorigenesis, reduce drug resistance, 
and improve cancer therapies. So phenotyping ability is of 
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great clinical and biological importance to single-cell CTC 
analysis. However, detection of CTC among blood cells 
using only two-dimensional images obtained by conven-
tional STEAM cytometer suffers from high false positive 
rate when classifying various types of cancer cells with high 
morphological similarity, and unable to distinguish the ori-
gin and nature of CTC. Additional cell feature which can 
reflect phenotypic heterogeneity of cells is needed. While 
conventional cell phenotyping methods based on surface 
biomarkers are low-throughput and likely to affect cell via-
bility (Hong and Zu 2013), cell biophysical property-based 
mechanotyping has proven to be an alternative approach for 
cancer cell classification, and has demonstrated its capac-
ity in differentiating different cancer cell lines with various 
metastatic potential (Wirtz et al. 2011; Wang et al. 2019). 
Therefore, cell biophysical properties may be combined with 
STEAM imaging cytometer to improve cell mechanotyping 
ability, which provides multimodal identification of tumor 
cells to achieve high sensitivity and high-throughput for 
CTC detection.

The motivation behind this work is to provide a solution to 
apply the biophysical properties of cells to high-throughput 
STEAM imaging cytometer to improve its mechanotyping 
ability. Microfluidic technology has been extensively utilized 
to quantify cell deformability according to various output sig-
nals such as cell deformation, impedance changes, and cell 
transit time through constricting microchannels. Deng et al. 
(2017) presented a cell mechanotyping system characterizing 
large populations of single-cell deformability, where cell posi-
tion was controlled in microchannels using inertial microfluid-
ics and cell deformation was quantified. However, since these 
methods rely on the cell deformation caused by physical con-
tact between cells and constricting geometries, they are prone 
to throughput limitation in general due to flow rate constrains. 
Moreover, cells may be damaged by direct contact with con-
stricting microchannels. Another type of microfluidic meth-
ods to obtain biophysical properties relies on cell deformation 
generated by the flow. Otto et al. (2015) designed a narrow 
channel microstructure and Gossett et al. (2012) presented a 
cross-channel microdevice applying colliding fluids to cells, 
both to measure cell deformation at the cross-junction using 
a high-speed CCD camera and image processing module to 
image and analyze cell shape change. Recently, microfluidic 
acoustophoresis techniques have been utilized in non-contact 
cell and particle manipulation, separation, and concentra-
tion (Guo et al. 2016; Jakobsson et al. 2014a, b; Jakobsson 
et al. 2014a, b; Ku et al. 2018). Some studies have reported 
the application of bulk acoustic wave resonators to measure 
biophysical properties (Skowronek et al. 2015). The trajec-
tories of cells moving in the applied acoustic resonant field 
were analyzed to obtain their compressibility parameter using 
reference cell densities in the literature (Hartono et al. 2011). 
Barnkob et al. (2010) used microbeads to calibrate the acoustic 

resonance field to extract density and compressibility param-
eters of particles and cells simultaneously. Moreover, Wang 
et al. (2019) incorporated flow focusing to control the entrance 
position of cells in the microchannel, and used cell sizes and 
their exit positions to improve cell mechanotyping accuracy, 
lower the setup cost and increase system throughput upon pre-
vious methods. This acoustofluidic technique is a non-contact, 
label-free, high-throughput method of cell mechanotyping 
which quantifies cell biophysical properties.

In this paper, a high-throughput label-free acoustofluidic 
imaging cytometer for single-cell mechanotyping based 
on STEAM is presented and demonstrated. We fabricated 
an acoustofluidic microchip and experimentally investi-
gated its utility in acquiring biophysical features in ultra-
fast time stretch imaging. Using the developed system we 
have achieved ultrafast imaging at 50 million line frames per 
second, which is translated to 2000 cells per second under 
current experimental conditions. The acquired images have 
a field of view of 268 μm and resolution of 1.6 μm. Superior 
performance of the developed acoustofluidic imaging cytom-
eter in cell mechanotyping as compared to conventional 
image-only STEAM cell mechanotyping method has been 
demonstrated. This acoustofluidic imaging cytometer tech-
nique has facilitated high-throughput time stretch imaging 
with additional biophysical feature to achieve more efficient 
and accurate cell detection, counting and mechanotyping.

2 � Materials and methods

2.1 � Principles and design of the acoustofluidic 
cytometer

In this work, a continuous-flow acoustofluidic chip is 
constructed, as shown in Fig. 1, to acquire cell biophysi-
cal properties. On this chip, the cells could be introduced 
into the acoustic field at a constant position and then move 
in the transversal direction (Y-direction as in Fig. 1) in 
response to the acoustophoretic force, and have their exit 
positions recorded and analyzed. This method integrates a 
highly robust and accurate single-cell biophysical feature 
to STEAM mechanotyping at high throughput by recording 
cell exit positions. In this method cell exit positions and cell 
acoustic contrast factors are evaluated without the need for 
calculating the precise values of cell compressibilities and 
densities. The main force causing cell transversal displace-
ment in an acoustic resonance field is primary acoustic radi-
ation force. Its expression is as follows (Laurell et al. 2007):

where Eac is the equivalent resonant wave acoustic field 
intensity, R is the radius of the cell, � is the wavelength of 
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the acoustic resonant wave, and F is the acoustic contrast 
factor given by the following equation:

where �p and �o are the densities of the cell and medium, 
respectively, and �p and �o are the compressibilities of the 
cell and medium, respectively. Besides, the cells are also 
subject to buoyant and gravitational forces as well as viscous 
drag force when moving in the microchannels.

Figure 1 illustrates the microfluidic chip design and 
working principle. This microfluidic chip shown in Fig. 1 
is fabricated in glass/silicon. A photoresist layer (AZ4620, 
thickness: 12 μm) is patterned on a silicon substrate to form 
the etch mask. The microchannel is then etched in silicon 
by deep reactive ion etching to a depth of 40 μm. The fabri-
cated silicon microchip is then anodically bonded to a glass 
substrate with inlet/ outlet holes pre-drilled. The fluidic 
connection is provided by flat-bottom ferrules and Tygon 
tubing. The main microchannel width of the fabricated 
microfluidic chip is 375 μm and the side channel width is 
75 μm. The flow rates in each channel are set to: center 
main inlet 800 μl/h and side inlet 200 μl/h. This chip has a 
piezoelectric transducer attached to its bottom to form an 

(2)F =

5�p − 2�o

2�p + �o
−

�p

�o
,

acoustic resonance field inside the main microchannel to 
generate acoustophoretic forces on cells passing through. 
This piezoelectric ceramic plate is stimulated with an ampli-
fied sinusoidal wave at 1.980 MHz frequency generated by 
an arbitrary waveform generator and a 50 dB power ampli-
fier. The arbitrary waveform generator generates sinusoi-
dal waves to form the acoustic resonance field in the main 
channel. This structure of the microfluidic chip is generated 
from the microfluidic chip published by Wang et al. (2019). 
Several optimizations are made to adapt to the high flow rate 
and the setup of STEAM imaging system.

When cells enter the main channel, they are subjected to 
primary acoustic radiation force which moves them towards 
the channel center which is the transversal first harmonics 
pressure node when applied with the first order resonant fre-
quency corresponding to the main channel width. Also, cells 
are subjected to size-dependent viscous drag force in the 
opposite direction of motion at the same time. The Y-direc-
tion positions of the cells as they exit the acoustic resonance 
field can be adjusted within the range between the main 
channel sidewall and the channel center by changing acous-
tic resonant wave field intensity, so that the cells with higher 
acoustic contrast factors move closer to channel center pres-
sure node, while the cells with lower contrast factors remain 
near the channel sidewall. Since cells with different acoustic 
contrast factors are subjected to different acoustophoretic 
forces, the difference in Y-direction exit positions can be cor-
related to their difference in biophysical properties caused 
by the variation in size, density or compressibility, which 
adds to the cellular features obtained by STEAM. Finally, 
their displacements in the transversal Y-direction towards 
the channel center are scanned and recorded by STEAM 
scanning line spot as well as cell images for mechanotyping.

2.2 � Imaging system design and setup

In our ultra-fast imaging system based on STEAM (Fig. 2), 
a broadband pulsed laser is employed as the light source 
with a pulse repetition rate of 50 MHz. After propagating 
through a section of dispersion compensating fiber, the opti-
cal pulses are dispersed in the time domain, which leads to 
the mapping between time domain and wavelength domain. 
Then, the optical pulse is cast into free space from a colli-
mator. A combination of 1/2 and 1/4 wave plates is used to 
adjust the polarization state. The laser beam is then spatially 
dispersed by a diffraction grating. The two cylindrical lenses 
reduce the beam’s diameter to fit the size of objective lens 
(NA = 0.65). When the dispersed laser beam is focused onto 
the above-mentioned acoustofluidic chip, a laterally distrib-
uted focused scanning line spot is formed on the focal plane. 
Along this line spot, different wavelengths are located at 
different positions, indicating that the wavelength-to-space 
mapping is established. Target cells flow through and are 

Fig. 1   Piezoelectric transducer attached to the bottom of the chip 
applies an acoustic resonance field in the main channel. Red spheres 
represent cells having a smaller acoustic contrast factor compared 
to the cells indicated as green spheres. When cells pass through the 
microchannel with acoustic resonance field, cells with different bio-
physical properties, such as size, density and compressibility, are sub-
jected to different acoustophoretic forces and result in different exit 
positions. The scanning line spot records the exit positions of cells
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illuminated by this one-dimensional scanning beam so that 
the intensity information of pulses forms a two-dimensional 
image containing cell images and transversal exit positions. 
Finally, the light beam travels back through the diffraction 
grating to a photodiode so that spatial information is encoded 
into time-domain waveform and received in sequence.

The parameters of optical components are optimized to 
meet the imaging requirements of the acoustofluidic chip. 
Since the width of the main microchannel is 375 μm, the 
imaging field of the scanning line spot should be more than 
200 μm. The incident angle, diffraction angle of the dif-
fraction grating and cylindrical lenses’ scaling factor are 
adjusted according to the following equations:

where FOV is the imaging field of the line spot, f  (4 mm) is 
the focal length of objective lens, n is the cylindrical lenses’ 
scaling factor, �band (10 nm) is the bandwidth of laser source, 
�center (1558 nm) is the central wavelength of laser source, 
d (1/1200 mm) is the grating constant, �z (7 mm) is the 
diameter of collimator, �r (6 mm) is the diameter of objec-
tive lens, and � and � are the incident angle and diffraction 
angle of diffraction grating. Finally the component param-
eters are determined as follows: the incident angle 77.9°, 
the diffraction angle 63.4°, the scaling factor 2.5, and the 
imaging field 268 μm.

2.3 � Sample culture and treatments

The presented acoustofluidic imaging cytometer was tested 
with four samples: BT474 cells, CACO2 cells, polysty-
rene beads of 10 μm diameter and polystyrene beads of 
3 μm diameter. Both of the two cell lines were cultured in 

(3)
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Dulbecco’s modified eagle medium (DMEM), with 10% 
fetal bovine serum and 1% penicillin and streptomycin. The 
cell lines were incubated in a 5% CO2 incubator at 37 °C. 
When the cell culture reached about 80% confluency, cells 
were washed with phosphate-buffered saline and treated 
with trypsin–EDTA for 3 min. Fresh medium was added to 
the cell culture mixture and the cells were gently pipetted 
from the bottom of the petri dish and centrifuged. The final 
single-cell suspension was prepared at the concentration of 
107 cells/ml for use.

To calibrate the acoustic resonance field, 10 μm polysty-
rene beads with known density and compressibility were first 
introduced into the microchannel and used to calculate the 
equivalent acoustic resonance field intensity. Following this 
calibration, all these samples were tested for mechanotyping.

2.4 � Automated cellular parameter extraction 
and classification algorithm

To obtain cellular parameters from raw data obtained by this 
acoustofluidic imaging system, we first extract cell images 
and their transversal exit positions. A threshold segmenta-
tion method binarizes the original image to separate cells 
from the background initially, because the obtained image 
has a uniform gray value within background area and a large 
contrast between background and cells. Then, we use clos-
ing operation and opening operation on the binary images 
obtained. Opening and closing operations are morphological 
image operations, where opening operation consists of an 
image erosion followed by an image dilation, and closing 
operation consists of a dilation followed by an erosion. They 
are applied to smooth edges, reduce noise, and eliminate the 
isolated background areas surrounded by cell areas. Next, 
we mark all the connected cell regions individually. For tiny 
inclusion removal, a threshold of the number of pixels under 
each area in the image is set according to the approximate 
sizes of cells flowing in our system. Then, we record the 

Fig. 2   Ultrafast imaging system 
setup. MLL, mode-locked laser; 
DCF, dispersion compensating 
fiber; EDFA, erbium-doped 
fiber amplifier; PD, photo-
detector; PC, personal computer



Microfluidics and Nanofluidics (2020) 24:88	

1 3

Page 5 of 8  88

positions of all the cell regions left and extract grayscale cell 
images and their Y-direction positions (transversal displace-
ment feature) accordingly.

As transversal displacement features of cells are 
extracted, it is time to extract the features representing cell 
morphological characteristics. According to the cell posi-
tions obtained above, we can cut out the cells in each image. 
Next, to avoid the impact of error image samples such as 
bubble images on our classification result, density based spa-
tial clustering of applications with noise (DBSCAN) algo-
rithm is used to remove outlier samples from acquired cell 
images (Ester et al. 1996). Then, principal component analy-
sis (PCA) algorithm is employed to extract image features 
(image PCA features) to fit classification models instead of 
the cell images (Jolliffe 2002). The main idea of PCA is to 
reduce dimensionality of images having numerous interre-
lated variables while keeping the maximum possible varia-
tions within sample set. From the high-dimensional vector 
representation of the images, PCA finds a low-dimensional 
subspace whose basis vectors correspond to the maximum 
variance direction in the original image space. All images 
are projected onto the new subspace to find a set of weights 
that describes the contribution of each vector. The weights 
form the feature vector for the cell image.

Finally, extreme gradient boosting (XGBoost) algorithm 
(Chen and Guestrin 2016), which is a widely-used high-
speed accurate classification algorithm, is used for cell 
mechanotyping based on transversal displacement features 
and image PCA features obtained above.

3 � Results

3.1 � Transversal displacement detection and image 
acquisition

Using the STEAM based acoustofluidic imaging cytom-
eter, we imaged, analyzed and mechanotyped BT474 cells, 
CACO2 cells, polystyrene beads of 10 μm diameter and 
polystyrene beads of 3 μm diameter while using the 10 μm 
polystyrene beads for calibration. The laser signal containing 
samples’ exit positions and images were recorded with an 
oscilloscope and then analyzed using a MATLAB program. 
The flow rate tested was 1000 μl/h, making the throughput 
in the range of 2000 cells/s.

The viability of cells in the experiment would not be 
affected. The power of the objective lens focal spot we set is 
11 dBm. As the flow speed of cells is about 1.85 × 10–2 m/s, 
a cell with a radius of 20 μm flowing through the acoustic 
chip would absorb up to 7.96 × 10–7 J of energy. Referring 
to the 50% lethal dose of MCF-7 cells provided by Garsha 
(2003), the lethal energy of exposure is approximately 108 

times the exposure energy in our experiment. Therefore, the 
cell viability is not affected by the STEAM imaging system.

Exit position detection and image acquisition of cells 
are shown in Figs. 3 and 4. Each sample image consists of 
approximately 6,000,000 pixels (approximately 80 pixels in 
the lateral direction and approximately 75,000 pixels in the 
flow direction). This excessively large number of pixels in the 
flow direction indicates our microscope’s ability to acquire 
images of cells that flow at a much higher speed. The maxi-
mum possible throughput is found to be about 1.5 × 106 cells/s 

Fig. 3   Transversal displacement histogram of four sample groups 
(N = 500 for each group)

Fig. 4   Images of four sample groups. a 3  μm polystyrene beads; 
b 10  μm polystyrene beads; c BT474 cells; d CACO2 cells. Scale 
bar = 10 μm
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theoretically (about 750 times higher throughput than 2000 
cells/s we achieved in this experiment), assuming that the 
microfluidic device can endure such a high normal pressure 
in its microchannel and the sinusoidal wave amplifier has large 
enough output power.

3.2 � Image‑based mechanotyping

The image-based information provided by our time-stretch 
microscope of BT474 cells, CACO2 cells, 10 μm polystyrene 
beads and 3 μm polystyrene beads are shown in Fig. 4, respec-
tively. In Fig. 4, it can be seen that the sizes and morphology 
of 3 μm polystyrene beads and 10 μm polystyrene beads have 
great difference from other sample groups, while the images 
of the two groups of cell samples are very similar. To further 
classify these four groups of samples, 50% cell images are 
picked randomly from all sample groups as training set to fit 
classification model and the 50% left as test set. Image PCA 
features of training sets are extracted as described above and 
XGBoost models are trained accordingly. Finally, the PCA 
features of test sets are calculated and grouped by the XGBoost 
models, respectively.

An overall mechanotyping accuracy of 91.6%, as shown 
in Table 1, is achieved. However, the mechanotyping ability 
between the two groups of cell samples deteriorates a lot with 
a correctly classified rate of 84.3% as their images have high 
similarity. To improve the detection specificity, additional cell 
biophysical parameters are needed for multi-dimensional char-
acterization of cell samples.

3.3 � Combined mechanotyping of acoustofluidic 
events and images

When no acoustophoretic force was applied, all samples 
showed similar exit positions as expected. Transversal dis-
placement feature of each sample shown in Fig. 3 is obtained 
by their exit positions with acoustic resonance field on minis 
average exit positions of each sample group with acoustic reso-
nance field off. This transversal displacement feature can be 
fused with the image PCA feature to reduce the classification 
error rate. Therefore, another XGBoost model is fit and pre-
dicted by the same samples we have just grouped. The only 
difference is that the image PCA features are combined with 
transversal displacement features this time.

The results in Fig. 5 are based on the sample size vs. trans-
versal displacement, which can help to easily visualize differ-
ences in their biophysical properties, and thus can be used for 

cell mechanotyping. The sample sizes are calculated using a 
MATLAB program to analyze their images. As can be seen 
in Fig. 5, BT474 cells and CACO2 cells have similar size dis-
tributions, while CACO2 shows longer travelling distance in 
the transversal direction, which can be interpreted as CACO2 
experiencing a stronger acoustic radiation force, an indicator 
of a higher acoustic contrast factor. As for the two groups of 
bead samples, they have the same acoustic contrast factors. 
However the smaller 3 μm beads showed less transversal dis-
placement than larger 10 μm beads, due to their size difference 
and resulted acoustic radiation force and viscous drag force. 
Their accelerations generated by acoustic radiation force are 
equal, while viscous drag force accelerations working against 
acoustic radiation force are more significant for smaller beads. 
Therefore, 3 μm beads result in less transversal displacements 
than 10 μm beads.

To calculate the acoustic contrast factor of a cell accord-
ing to its transversal displacement, cell size and equivalent 
acoustic resonance field intensity is needed. Cell size can 
be extracted from its image. The acoustic resonance field 
intensity is calibrated by the transversal displacements of 
10 μm polystyrene beads with known density and compress-
ibility (the acoustic contrast factor of polystyrene beads is 
0.472). Each bead help calculate a field intensity. The final 
field intensity used to determine the acoustic contrast factors 
of other samples is the average of all imaged 10 μm beads. 

Table 1   Sample classification 
result of image-based 
mechanotyping

10 mm beads 3 mm beads BT474 cells CACO2 cells Grand total

Test sample number 500 500 500 500 2000
Correctly classified count 492 497 414 429 1832 (91.6%)
Incorrectly classified count 8 3 86 71 168 (8.4%)

Fig. 5   Scatter plot of the sample sizes (diameter) and transversal dis-
placements of four sample groups
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Therefore, based on the displacement results in Fig. 5, the 
acoustic contrast factors of these samples are calculated and 
shown in Fig. 6, after taking into account all forces the cells 
are subjected to (i.e., acoustophoretic force, viscous drag 
force, gravitational force, and buoyancy force). As shown in 
Eq. (2), the acoustic contrast factor reflecting the cell bio-
physical properties is determined by cell density and com-
pressibility. From Fig. 6, it can be clearly seen that CACO2 
group has higher acoustic contrast factor than BT474 group, 
and 3 μm polystyrene beads have similar acoustic contrast 
factors to 10 μm beads due to their same material. The 
order of the acoustic contrast factors of these samples is: 
3 μm polystyrene beads (0.499) ≈ 10 μm polystyrene beads 
(0.472) > CACO2 (0.185) > BT474 (0.122). It is also shown 
in the figure that acoustic contrast factors are independent of 
sample sizes. This biophysical property makes the discrimi-
nation between the two cell sample sets more significant. In 
other words, the displacements contain a biophysical feature 
not included in pure cell imaging, which could help dis-
criminate cells from an additional perspective.

By combining the image PCA features and transversal 
displacement features, we can classify the groups of BT474 
cells and CACO2 cells with higher accuracy. As indicated 

in Table 2, the error rate of the image-only-based mechano-
typing method is about 15.7%, while the combined mecha-
notyping of acoustic transversal displacements and images 
method as low as 3.2% (calculated from 32 error events over 
the total population of 1000). In other words, STEAM-based 
cell classification is less erroneous by a factor of 5 using the 
two feature dimensions simultaneously, which validates the 
effectiveness of our combined mechanotyping of acousto-
fluidic events and images. Some other methods were also 
translocating cells to separate them (Yamada et al. 2004; 
Geislinger and Franke 2013). However, their displacement 
differences were caused by cell sizes purely. Without cell 
biophysical properties not included in cell images, the dis-
placement feature would not improve the classification capa-
bility of STEAM.

4 � Conclusion

In conclusion, we present a high-throughput label-free acou-
stofluidic imaging cytometer for single-cell CTC mechano-
typing based on STEAM and acoustofluidic technology. 
The acoustophoretic force is utilized to translocate cells to 
different transversal exit positions under continuous flow 
according to their intrinsic biophysical properties. Such 
movement can be analyzed to reflect differences of vari-
ous cells to improve the cell mechanotyping capability of 
STEAM. We experimentally verify that the presented system 
which accounts for both the cell images and cell acoustic 
transversal displacements can improve cell mechanotyping 
accuracy significantly upon previous image-based STEAM 
method. The throughput of the presented method can be fur-
ther increased by applying higher flow rate and higher actua-
tion power. The label-free, non-contact and high processing 
speed characteristics of our cytometer ensures its potential 
to provide real-time mechanotyping and further CTC sort-
ing applications. We expect that the developed system can 
be used in a variety of applications, such as phenotyping of 
cancer cells with different metastatic potential.
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Fig. 6   Scatter plot of the sample sizes (diameter) and sample acoustic 
contrast factors of four sample groups
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