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Abstract
Digital microfluidics (DMFs) show great potential in the fields of lab-on-a-chip applications for electro-chemical as well as 
biochemical sensing for decades. Various types of DMF devices have been demonstrated to improve their capabilities such 
as smaller device size for portability, higher reliability, and multi-purpose applications, etc. Among them, the electrowetting 
on dielectric (EWOD) is one of the most widely used mechanisms to manipulate droplets due to its good flexibility. On the 
other hand, the high-voltage application that required for EWOD-type DMF also limits the portability and dimension of the 
whole system. In this review, we discuss the DMFs which are powered by alternative sources other than electrical sources 
and evaluate their potential for future portable biochemical assays. Then, the demonstrations reported with the possibility 
beyond high voltage are discussed starting from lowering voltage requirement for EWODs to the unique methods using 
mechanical, optical, and energy harvesting to power DMF devices. Finally, the practical applications and prospective on the 
integrated multi-functional lab-on-a-chip applications are tackled.
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1  Introduction

Recently, advanced microfluidic devices have attracted 
significant attention for their applications which minimize 
conventional progressive laboratory activities to a chip-level 
system (Mijatovic et al. 2005; Whitesides 2006). The appli-
cation of microfluidic devices not only largely shrink the 
sample size that required for chemical and biological reac-
tions, but also enable remote test without giant laboratory 
equipment (Wainright et al. 2003; Dittrich and Manz 2005). 
The most commonly used microsystem relies on continuous 
microflows passing through channels to carry and transport 
a single droplet (Mcdonald et al. 2000). The reduction of 
sample and reagent size also brings the benefit of lower cost 
and control of hazardous materials (Ng et al. 2002). To be 
used as a point-of-care biochemical system, this platform 
usually requires another immiscible liquid to carry the drop-
lets, which brings many external modules and complicated 

fabrication process (Beebe et al. 2002). In addition, the func-
tion of most of the platforms is confined to a certain type, 
which cannot be used for multi-function usage. Comparing 
to this continuous fluid-based microfluidic channel, digital 
microfluidics (DMFs) emerged as a novel tool to manipulate 
droplets in a discrete, precise, and single-phase way (Gong 
and Kim 2008; Fan et al. 2009; Park et al. 2010a). The 
configuration of DMFs enables concise integration of the 
whole system without tedious pumps and valves which are 
usually required for traditional microfluidic devices (Wang 
and Jones 2015). Also, the DMF system enables droplets 
automation control for multiple steps assays (Hadwen et al. 
2012).

Different DMF actuation mechanisms have been 
reported such as electrowetting on dielectric (EWOD) (Tan 
et al. 2012), mechanical motion (Darhuber et al. 2003), 
surface acoustic wave (SAW) (Beyssen et al. 2006), and 
optical (Chiou et al. 2003) methods. Among them, the 
EWOD-type device is the most widely used due to its 
high flexibility and easy fabrication process (Yafia et al. 
2015b), which can be integrated with multiple functions. 
Figure 1a shows the general open configuration of EWOD 
before and after the change of contact angle (Jain et al. 
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2017c). Briefly, the wetting behavior of the droplet obeys 
Lipmann–Young’s equation:

where V is the voltage applied, �r and �0 are the relative 
dielectric constant and permittivity of free space, d is the 
dielectric thickness, � is the surface tension between solid 
and liquid, �0 and � are the contact angle before and after 
voltage applied. Figure 1b demonstrates four different com-
mon designs of EWOD devices which can be categorized 
into open and closed configurations (Berthier 2013). Each 
of these different types has its own advantages and disad-
vantages. Comparing to open type, the configuration of close 
type devices is more complicated and own high viscous 
resistance, but it can decrease the evaporation rate of tiny 
droplets and control the droplet size more precisely through 
on-chip reservoirs (Islam and Tong 2017). Electrodes are 

(1)cos �(V) = cos �0 +
�r�0

2d�
V
2,

usually fabricated on a substrate through the photolithogra-
phy method, following the process of dielectric and hydro-
phobic layer coating, where spin-coating is commonly used 
(Wang et al. 2016). Some of the studies also exhibit the 
potential of other fabrication methods including additive 
manufacturing (Min et al. 2019), screen printing (Monk-
konen et al. 2016), and inkjet printing (Dixon et al. 2016) for 
future low-cost and mass production purpose. Several types 
of DMF devices fabricated through different methods have 
been shown in Fig. 1c–e. A generally designed 2D array 
of electrodes enables this platform to perform complicated 
parallel operations and to be integrated with different func-
tions (Grissom et al. 2015; Yu et al. 2017).

Despite the success achieved by EWOD-type DMFs, 
these devices also suffered from some certain drawbacks 
including a large voltage control unit required to manipulate 
the droplet, and a limited number of electrodes and wire 
connections (Wang et al. 2017a). The high voltage, which 
is usually hundreds of volts, required to drive droplets also 

Fig. 1   a Mechanism of electrowetting on dielectric (EWOD). (1) 
The droplet exhibits a large contact angle when there is no voltage 
applied. (2) The contact angle decreased after the voltage is applied 
and the droplet looks like “wetted” on the dielectric surface (Jain 
et  al. 2017c). b Different configurations of digital microfluidics 
(DMFs). (1) open DMF with catena. (2) Open type DMF. (3) Close 

DMF with the uniformed ground top plate. (4) Close type DMF with 
double electrodes (Berthier 2013). c An open type DMF whose elec-
trodes are fabricated on glass slides via the additive manufacturing 
process (Min et al. 2019). d A 2D-arranged open type DMF with cat-
ena (Jain et al. 2017b). e Close type DMF with reservoirs and sensing 
areas integrated on the platform (Dixon et al. 2016)
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brings potential safety issues and confines the application 
of this platform. Efforts have been devoted to lowering the 
electrowetting voltage to several volts level. To obtain bet-
ter actuation functionality, high dielectric constant materials 
have been used to decrease the voltage requirement for the 
same contact angle change (Moon et al. 2002). Also, the 
theory of electrode geometry design has been developed to 
eliminate failure movement and further lower the driving 
voltage (Datta et al. 2016; Pooyan and Passandideh-Fard 
2018). On the other hand, a lot of studies explore the pos-
sibility of alternative powering sources other than apply-
ing voltage to drive the droplets (Park et al. 2010b; Zhang 
et al. 2011; Chiou et al. 2013). Although these types of DMF 
devices are less popular than EWOD, their uniqueness still 
needs to be emphasized. This review first focuses on the 
progress that has been reported to lower the voltage require-
ment for EWOD, which contains opportunities of using new 
materials during the fabrication process and explores better 
design of electrode geometry. Then, DMF devices based on 
four different droplet driving mechanisms have been intro-
duced and compared with conventional EWOD. It is worth 
to mention that all these different types of devices not only 
have their own unique advantages and applications, but also 
suffer from certain drawbacks. The goal of this review was 
to evaluate the potential of different types of DMF platforms 
other than EWOD for reliable and energy-efficient lab-on-a-
chips. Then, we summarize the unique applications of these 

DMFs and their perspectives as integrated point-of-care 
devices.

2 � Toward lowering the power for EWOD

2.1 � Using high dielectric constant materials

As shown in Eq. (1), the contact angle change in EWOD 
is governed by (1) the dielectric constant, (2) thickness 
of the dielectric layer, (3) surface tension between differ-
ent phases, and (4) the voltage applied on the electrodes. 
Under the same ambient environment, to achieve the same 
contact angle change with lower voltage, we can either 
increase dielectric constant or decrease the thickness. 
However, the thickness of the dielectric layer cannot be 
too thin because of the breakdown effect when applying 
high voltage (Chang et al. 2010; Rudan 2015; Mibus et al. 
2016). Hence, using high dielectric constant materials 
becomes a better and reliable choice.

Barium strontium titanate (BST) became a good can-
didate as dielectric layer material in the EWOD applica-
tion as early as 2002 (Moon et al. 2002). The extremely 
large dielectric constant (~ 180) enables BST to be fabri-
cated into a very thin layer without damage after applying 
high voltage (Wang et al. 2017b), which further enhances 
the contact angle change of the droplet. A contact angle 
change of 40° only with 15 V has been demonstrated 

Fig. 2   a (1) A coating materials system of barium strontium titanate 
(BST)-based dielectric layer. (2) The proposed BST coating exhibits 
a 60° contact angle change with voltage less than 15 V (Moon et al. 
2002) b (1) A DMF coating which combines BST and Teflon nano-
composite as both dielectric and hydrophobic layers at the same time. 

(2) The fabricated device shows a 40° contact angle difference under 
60 V (Sohail et al. 2016). c (1) Modified alumina as high dielectric 
constant material for DMF application. (2) The droplet performs wet-
ting behavior with only 5 V actuation potential in the air media (Nbe-
layim et al. 2017)
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(Fig.  2a). In their devices, BST is coated through the 
metalorganic chemical vapor deposition (MOCVD) pro-
cess at 700 °C with a final thickness of 700 Å. Although 
BST offers such good dielectric properties, it is really rare 
to be used in the following DMF devices because of the 
expensive and high-temperature fabrication process. Most 
of the substrate and electrode materials will be melted 
under that kind of condition. To address this issue, another 
group created a nanocomposite that combines the crys-
tallized BST nano-powders with Teflon, which shows in 
Fig. 2b (Sohail et al. 2016). The synthesized nanocom-
posite can be coated on metal electrodes through the spin 
coating method. This material works as both a dielectric 
layer and a hydrophobic layer at the same time. The final 
device performs contact angle change of 33° with 40 V. A 
multi-layer dielectric coating method reduces the actuation 
voltage to less than 12.6 V (Samad et al. 2017). Tantalum 
oxide (TaOx) also exhibits good potential as a robust and 
reliable dielectric layer for low-voltage EWOD together 
with the Cytop hydrophobic layer (Li and Cahill 2017; 
Mibus and Zangari 2017). A very thin (20 nm) dielectric 

with only 10 V actuation voltage is achieved by using alu-
minum as electrodes so that they can passivate at coating 
defects (Khodayari et al. 2012). In Fig. 2c, a much lower 
EWOD actuation (less than 5 V) voltage was developed. 
Reversible electrowetting under 3 V is achieved with rough 
pseudo-boehmite alumina structures and Nafion through 
layer-by-layer (LBL) coating (Nbelayim et al. 2017). It 
has been proved that even lower than 1 V EWOD phenom-
enon can be observed, but most of them are not reversible, 
which is not suitable for microfluidic device applications 
(Liu et al. 2015; Lomax et al. 2016; Maglione et al. 2018).

2.2 � Optimization of electrode geometry

The geometry of DMF electrodes, including the height and 
shape of fabricated electrodes, gaps between adjacent elec-
trodes, and surface properties of coated dielectric and hydro-
phobic layers, will influence the movement of the droplet in 
different aspects (Das et al. 2010; Yafia and Najjaran 2013). 
It is known well that the contact angle hysteresis happens 
on a rough surface where the liquid tends to propagate 

Fig. 3   a (1) The Procedure of polishing surface and coating there-
after. (2) The height difference between a polished surface and an 
unpolished surface (Shirinkami et al. 2017). b (1)–(4) Several differ-
ent types of dented structure (Lienemann et al. 2003). c Schematic of 

the crenelated electrodes and position of the droplet (Berthier et  al. 
2007). d (1)–(4) Simulation of different edge parameters regarding 
droplet mobility (Jain et al. 2017a)



Microfluidics and Nanofluidics (2019) 23:127	

1 3

Page 5 of 14  127

through the nano-structured layer (Krupenkin et al. 2004). 
A smoother surface is obtained by using fluoropolymer as 
hydrophobic layer to prevent the droplets from sticking to 
one electrode (Pollack et al. 2000). Surface polishing process 
(Fig. 3a) is also introduced to reduce the height difference 
between electrodes and gaps after coating (Shirinkami et al. 
2017). In EWOD microsystems, the gaps between electrodes 
generate permanent hydrophobic region which will lead to 
failure movement if the droplet is “confined” within the 
electrode (Nahar et al. 2016). To address this issue, several 
types of jagged electrode shapes, including triangle and rec-
tangular (Fig. 3b), have been designed and used in DMFs 
(Lienemann et al. 2003). In Fig. 3c (Berthier et al. 2007), 
the electrowetting force along moving direction acts on the 
droplet in the beginning of motion is described as follows:

where e1 represents the length of contact line on actuated 
electrodes, � is solid–liquid surface tension, �a and �na are 
the contact angle on actuated and non-actuated electrodes. 
For the same device configuration and voltage application, 
droplets will have longer contact line with its next electrode, 
which results in larger EWOD force and better movement. A 
model of criteria for the design of jagged electrodes (Berth-
ier and Peponnet 2007) has also been developed as following 
equation, which should be larger than 1:

where � and n represent dents size and number, e is the width 
of electrodes, � is the gap length, �1 and �2 are contact angle 
with and without voltage actuation.

The impact of dented electrodes shape has also been 
evaluated through both finite element modeling and experi-
mental verification (Jain et al. 2017a), which is shown in 
Fig. 3d. It turns out that zigzag-flat shape will generate a 
larger driving force on the droplet than other designs. Com-
paring to covered DMFs with the ground electrode placed 
on the top plate, the position of the ground electrode in open 
DMF varies in different configurations. An optimization 
in the geometry of the ground electrode position in open 
DMF devices has been studied (Abdelgawad et al. 2009). 
The proposed design showed about three times of driving 
force at the beginning of droplet movement than normal con-
figuration. Electrode shape design can also cooperate with 
the selection and coating of dielectric materials to further 
decrease minimum actuation voltage (Samad et al. 2015).

(2)Fe,start = e1�
(

cos �a − cos �na
)

,

(3)G(�, e, �, n) =
�∕e

�∕e +
[

�2∕�1 − 1
]

∕�n
,

3 � Alternative powering sources

3.1 � Energy harvesting systems

Starting from the beginning of DMF, a high-voltage source 
is the most common and easy way to achieve an ideal droplet 
velocity (Cui et al. 2015; Nahar et al. 2016). However, an 
energy supply equipment and corresponding complicated 
control unit are required. These extra components largely 
hinder the development of DMFs to be compact and battery-
free devices. Studies have been investigated to reduce the 
giant energy supply unit in the DMFs. An EWOD device 
is demonstrated with paint-on liquid–metal electrodes, as 
shown in Fig. 4a, which exhibits electrowetting phenomenon 
under the short-circuiting condition (Eaker et al. 2017). In 
this study, eutectic gallium indium (EGaIn) electrodes were 
directly painted on a poly(methyl methacrylate) (PMMA) 
substrate because of the low melting point of EGaIn. The 
gallium oxide formed on the surface of EGaIn enables tiny 
voltage EWOD of about 100 mV, which can also be offered 
through shorting the electrodes to perform a “potential of 
zero charge” effect. In addition, such a thin passivating oxide 
layer is strong enough to maintain the film shape of liquid 
metal, which can be applied on both non-planar and stretch-
able substrates.

The ability to change mechanical stress into electricity 
makes piezoelectric material a good candidate to work as 
a power source of DMFs. Figure 4b shows a DMF device 
that utilizes the advantages of the piezoelectric phenomenon, 
where the droplet is actuated through a series of piezoelec-
tric panels (Peng et al. 2014). An output voltage larger than 
40 V was obtained, which is adequate to operate droplet by 
EWOD mechanism. Also, successful droplet merge and split 
operations have been demonstrated with being actuated by 
fingers accordingly. The use of piezoelectric material also 
inspires the possibility of collecting and transferring differ-
ent types of energy for the DMF power source. An energy 
harvesting system, which gathers triboelectrification energy 
to power a DMF device, has been developed (Fig. 4c) (Chen 
et al. 2018). EWOD phenomenon can be triggered by sliding 
droplets, which can be obtained from the natural environ-
ment, down through the surface of a Teflon-coated panel. 
Charges will accumulate on the sliding droplet and polar-
ize the Teflon layer, then the corresponding actuation chip 
gains excessive charge to actuate droplets. Similarly, a DMF 
device powered by the triboelectric nanogenerator (TENG) 
was investigated in Fig. 4d (Nie et al. 2018). When manually 
moving a piece of Kapton film over an array of aluminum 
foils, the contact electrification generates negative charges 
on Kapton film. Therefore, same amount of positive charges 
will be generated on the Al foils accordingly. When the Kap-
ton film is overlapped the second film, negative charges on 
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Fig. 4   a EWOD devices without external voltage. (1)–(3) Spread a 
drop of eutectic gallium indium (EGaIn) on a glass substrate to form 
a film on the surface. (4). (5) Configuration of applying the voltage 
through a top electrode and the EGaIn layer (Eaker et  al. 2017). b 
Piezoelectric triggered droplet movement by bending the correspond-
ing piezoelectric elements (Peng et al. 2014). c (1) Energy harvesting 

DMF configuration. (2)–(4) The droplet is actuated while the other 
droplet is sliding down the tilted surface (Chen et  al. 2018). d The 
droplet is actuated through triboelectric potential generated by a piece 
of Kapton film and aluminum foils in the case of (1) two electrodes 
and (2) four electrodes (Nie et al. 2018)

Fig. 5   a Mechanism of electromagnetic pillar array manipulated 
droplet motion. (1)–(2) Droplet behavior with corresponding switch 
status (Yang et al. 2018). b Schematic of droplet transportation lead-
ing by substrate rotation. (1)–(2) The fast tilting of the stage enables 

droplet to move to the next hydrophilic region (Kong et al. 2016). c 
Droplet manipulation with gradient wettability surface. While the 
plane vibrating, the droplet will overcome the hydrophobic barrier 
and move the next position (Qi et al. 2019)
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the film cannot be fully neutralized by the Al foil, hence neg-
ative charges will be generated on the track electrode which 
is connected to the Al foil. Such negative charges can drive 
the positively electrified water in the air. The uniqueness of 
this configuration is that it not only eliminates the require-
ment for power source, but also eliminates the dielectric 
layer since the mechanism is no longer the same as EWOD.

3.2 � Mechanical actuation platform

The manipulation of droplets in the devices mentioned above 
depends on the electrostatic force which acts on the droplets 
more or less (Baird et al. 2007; Young and Mohseni 2008). 
Biomolecules or cells may suffer from potential influences 
under those electric fields, which limits the application of 
DMFs. In such situations, a mechanical actuation method is 
highly preferred.

A magnetic particles embedded stretchable film has 
been reported to be used as droplets manipulation platform 
(Biswas et al. 2016). The surface of such film subjects to 
deform under external magnetic field changes. Droplets 

will move toward lower surface area naturally by gravity. 
Figure 5a shows a similar DMF device which also utilizes 
the flexible surface (Yang et al. 2018). Differently, a supe-
rhydrophobic magnetoelastic film is fabricated as a whole 
substrate and placed on top of an array of electromagnetic 
and polydimethylsiloxane (PDMS) pillars. By turning on 
corresponding switches, the electromagnetic pillars will gen-
erate a magnetic field to deform the local upper film, which 
enables surrounding droplets to move toward this lower area 
naturally.

Apart from the deformable substrate, a tilted rigid plat-
form has been developed to transport droplets, which is 
shown in Fig. 5b (Kong et al. 2016). In this configuration, 
an array of hydrophilic symbols is fabricated on top of a 
superhydrophobic layer. While tilting the plate, droplets will 
move to the next hydrophilic region under the gravity and 
mechanically agitated from the platform. A fast and precise 
droplet moving step is reported with only 100 ms, and mul-
tiple droplets manipulation ability has also demonstrated. 
Another mechanically actuated DMF with both hydrophobic 
and hydrophilic surfaces is reported recently (Fig. 5c) (Qi 

Fig. 6   a Mechanism of surface acoustic wave (SAW) DMF devices. 
(1) A typical system for investigating the SAW phenomenon. (2) 
Schematic of SAW generation through a metallic interdigitated trans-
ducer (IDT) deposited on the piezoelectric substrate (Ding et  al. 

2013; Kondoh 2018). b An integrated DMF device that combines 
EWOD and SAW mechanisms together to perform a droplet splitting 
function (Li et  al. 2012). c A non-contact droplet manipulation unit 
formed by four IDTs based on SAW technology (Zhang et al. 2018)
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et al. 2019). In this device, each moving step contains a gra-
dient changed hydrophobic “pixel” which attracts droplet to 
its hydrophilic end. Under certain frequency of horizontal 
vibration, the droplet can overcome the hydrophobic bar-
rier and move to the next patch’s hydrophilic region. Also, 
the induced vibration is reported to be able to speed up the 
reaction time in the protein concentration measurement 
application.

3.3 � Surface acoustic wave devices

Surface acoustic wave (SAW) has been used in differ-
ent types of devices and sensors for decades (Pohl 2000; 
Gronewold 2007; Lee et al. 2012; Li et al. 2012; Collins 
et al. 2013). The advantages of SAW over other types 
of DMF mechanisms, such as large actuation force, fast 
fluidic actuation, high biocompatibility, and less com-
plicated electrodes geometry, attract notable attention 
in recent years (Yeo and Friend 2009; Trung-Dung and 
Nam-Trung 2010; Ding et al. 2013). Figure 6a shows the 
basic mechanism of the SAW generation on a microfluidic 

device (Ding et al. 2013; Kondoh 2018). An interdigitated 
transducer (IDT) is placed on top of the piezoelectric sub-
strate. When applying a radio frequency (RF) signal to the 
IDT, acoustic waves will be generated along the direction 
normal to electrodes because of the change of charge dis-
tribution within the piezoelectric substrate, which results 
in deformation of the material. Longitudinal wave radia-
tion from the substrate to droplet is the driving force in 
SAW devices. The radiation angle is defined as (Bertoni 
and Tamir 1973):

where �R is radiation angle, or known as Rayleigh angle, VL 
and VW represent the sound velocity of the liquid droplet and 
phase velocity of SAW.

A droplet driving sequence in SAW usually happened 
by the propagation of waves along the IDT’s direction 
and “push” the droplet to move away from IDT’s location. 
However, the mechanism of SAW driven DMFs limits part 

(4)�R = sin
−1 VL

VW

,

Fig. 7   a Mechanism of one type of light-driven DMF. The light 
changes the conductivity of a-Si:H film, resulting in localized electric 
field concentration which drives droplet through electro-mechanical 
force (Pei et al. 2010). b Open type DMF driven by light with catena. 
A deep depletion layer in the silicon while shining light on part of 
the region (Palma and Deegan 2018). c (1) Configuration of pyroelec-

tro-trapping on the superhydrophobic system. (2) Scanning electron 
microscope (SEM) images of photothermal Prussian blue (PB) nano-
cubes (3) The mechanism of light-driven droplets transportation. (4) 
The droplet sliding angle change with turning on laser light. (5) Con-
secutive droplet manipulation by 785 nm laser (Tang and Wang 2018)
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of the droplet operations like droplet splitting. Figure 6b 
shows an integrated system that combines the EWOD elec-
trode with SAW IDTs so that a droplet splitting opera-
tion can be obtained, hence the mixing and ejection (Li 
et al. 2012). The droplet splitting procedure is initiated 
by applying a voltage on two side electrodes. A maxi-
mum “necking” zone will be generated when two droplets 
achieve saturation status, which can be broken by SAW 
targeted at the center electrode. The integration of SAW 
with EWOD not only makes up the shortage of droplet 
manipulation in the SAW system, but also eliminates the 
restricted EWOD design constraints to realize the drop-
let splitting operation. The uniqueness of the propagation 
property of SAW enables a contactless droplet actuation 
by separating the droplet from the substrate. In Fig. 6c, a 
programmable liquid handling device that uses a bio-inert 

liquid carrier on top of IDT array to carry droplet has 
been demonstrated (Zhang et al. 2018). In such systems, a 
thin layer of fluid is applied on the surface of the device. 
The SAW generated by IDTs propagates along one axis, 
which pushes the fluid away from the IDTs while the fluid 
along the perpendicular direction will move toward IDTs 
to compensate for the loss of fluid, which drives the drop-
lets to move closer to IDTs at the same time. In addi-
tion, the generated wave radiation also creates an internal 
flow within the droplet, so the SAW device will perform 
a faster droplet mixing comparing to EWOD-type devices 
(Alghane et al. 2011).

Fig. 8   Applications of DMF devices a (1) Schematic of the steps of 
Rubella virus (RV) immunoglobulin G (IgG) enzyme-linked immu-
nosorbent assay (ELISA) on a DMF platform. (2) RV IgG calibra-
tion curve. (3) Effect of the number of washing on the signal inten-
sity (Dixon et  al. 2016). b (1) Ion-selective sensing mechanism by 
using an ion-selective membrane (ISM). (2) Selectivity study on an 
ISM-integrated DMF platform (Min et al. 2019). c (1) Schematic of a 

vehicle formed by four droplets and a piece of Polyvinylidene fluoride 
(PVDF) electrospinning film. (2)–(4) Sequential images showing the 
moving sequence of vehicle transportation ability (Nie et  al. 2018). 
d A proposed user-friendly interface for a portable DMF platform 
(Alistar and Gaudenz 2017). e A mobile phone-controlled DMF plat-
form with 3D printed case (Yafia et al. 2015a)
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3.4 � Light‑driven DMFs

The manipulation of discrete droplets is one of the most 
unique features of DMFs. In a DMF device, the traditional 
physical “channels” are substituted by an array of 2D 
electrodes. The mechanisms mentioned above all rely on 
a well-designed pattern to guide droplets. However, these 
patterns can also become a barrier for the further develop-
ment of DMF as they limit the moving area of droplets, and 
the whole control system will become complicated with the 
increase of pattern quantities (Zhang and Nguyen 2017). 
Thus, a “channel-free” DMF will bring more possibilities to 
the droplet manipulation and the corresponding applications.

Figure 7a shows the mechanism of a light-driven DMF 
device that removes electrode patterns (Pei et al. 2010). 
Two pieces of ITO glass are placed parallelly and con-
nected through an AC power source. The droplet is sepa-
rated from the bottom plate by a layer of a-Si:H, which has 
high resistivity while no light is illuminated. When a light 
pattern appears, a-Si:H in the corresponding area becomes 
conductive. This phenomenon allows external voltage to 
“pass-through” the oxide and Teflon layers and attracts the 
droplet to move toward the illuminated region. In recent 
studies, an open type light-driven DMF, or the photo-elec-
trowetting (PEW) device, which consists of a substrate made 
from n-type silicon has been reported (Fig. 7b) (Palma and 
Deegan 2018). A potential difference is pre-applied to drop-
let and semiconductor, and the generated depletion layer in 
silicon enables the creation of mobile electron–hole pair 
under light illumination. Thus, a droplet moving speed of 
13 mm/s has been achieved by shining light on part of the 
droplet. Another loss-free type of light-driven DMF, which 
is shown in Fig. 7c, has been introduced to address the 

issue that the partial-wetting surfaces in the previous stud-
ies may result in sample cross-contaminations (Tang and 
Wang 2018). The droplet is placed on top of the superhydro-
phobic plate, which allows it to move freely. The top plate 
is formed by Prussian blue (PB) nano-cubes and lithium 
niobite (LN) coated glass wafer. Under the irradiation of 
near-infrared (NIR), PB nanocubes generate local heat pho-
tothermally. In response to the transferred heat from PB, a 
non-uniform electric field will be pyroelectrically created 
by the LN wafer, which attracts the droplets nearby to the 
radiation spot. Continuous droplet motion can be realized 
by moving the NIR source around and the electrode-less 
transportation speed of 1 mm/s has been achieved on such 
pyroelectro-trapping on superhydrophobic surface (PETOS) 
platform. The droplet evaporation rate has been evaluated 
under the condition with and without NIR. It turns out that 
the temperature of the irradiated droplet remains constant 
and the evaporation rate under laser illumination will be 
slightly faster than natural evaporation. The evaporation will 
not be a critical issue during fast droplet manipulation in 
such systems.

4 � Applications

After the invention of DMFs, the precise manipulation 
of discrete droplets enables the system to be used for dif-
ferent applications including clinical (Kirby et al. 2014), 
biology (Wang et  al. 2017a), electrochemical sensing 
(Ruecha et al. 2017), enzyme assays (Fan et al. 2011), etc. 
For the sensing ability, viscosity, volume, and concen-
tration determining functions can be integrated on DMF 
chip easily (Li et al. 2014; Tröls et al. 2016). Through 

Fig. 9   Schematics of opportuni-
ties of DMFs that are powered 
by alternative sources other 
than electrical sources such 
as mechanical, optical, and 
energy harvesting to power 
DMF devices to become future 
portable biochemical assays as 
an integrated multi-functional 
lab-on-a-chip application
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integrating with multiple reservoirs, a complicated enzy-
matic detection process can be possible with just a sin-
gle chip. In Fig. 8a, a heterogeneous Rubella virus (RV) 
immunoglobulin G (IgG) enzyme-linked immunosorbent 
assay (ELISA) has been performed with an inkjet-printed 
DMF device where multiple steps of incubating, wash-
ing, and detection can be achieved under precise control 
of droplet size and location (Dixon et al. 2016). Differ-
ent types of electrochemical sensors can be integrated 
on DMF chip easily, which broadens the applications of 
DMFs to a wide range. Figure 8b demonstrates a DMF 
platform which has ion-selective sensing capability for the 
application of a portable soil analyzing equipment (Min 
et al. 2019). Different from the well-developed chemi-
cal and biological applications, a mechanical application 
of the digital microfluidic device has been introduced 
recently (Nie et al. 2018). As shown in Fig. 8c, a tiny 
vehicle was demonstrated with four droplets as “wheels” 
and a piece of PVDF film as a “body”. A maximum load 
capacity of 500 mg has been achieved, which investigates 
the field of potential applications of DMF such as drug 
delivery and liquid robotics. Other applications, such as 
magnetic-particle-based immunoassays (Choi et al. 2013), 
gas diffusion control (Ribet et al. 2018), and on-chip heat-
ing (Nampoothiri et al. 2018), have been reported, and 
the huge potential of DMFs as multi-functional platforms 
have been disclosed.

Although the DMF is claimed to be a promising remote 
and portable test platform, most of the developed devices 
still require complicated equipment to assists the detec-
tion procedure. Efforts have also been devoted to the 
design of low energy cost and portable integrated sys-
tems. Figure 8d shows a highly compact DMF device, 
which can be powered and controlled through a lap-
top, tablet, or smartphone (Alistar and Gaudenz 2017). 
Another example of DMF device with smartphone appli-
cation is shown in Fig. 8e (Yafia et al. 2015a). The easy 
operation property and user-friendly interface lower the 
barrier of device handling and contribute to the realiza-
tion of at-home testing.

5 � Conclusion and perspectives

This paper considers the unique efforts that have focused 
to lower the actuation voltage in EWOD-type DMFs 
and examines the existing alternative mechanisms that 
have been applied to microfluidic systems. We discussed 
the material systems used to achieve ultra-low-voltage 
EWOD devices and a series of efforts on the optimiza-
tion of device geometry. These studies aim to generate 
energy-efficient DMF platforms that cater to the lab-on-a-
chip concept summarized in Fig. 9. Then, we introduced Ta
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and evaluated several DMFs powered by energy sources 
other than directly applying voltage. The advantage and 
limitation of each actuation mechanism were discussed 
individually and a table has been generated to list all the 
important points of these different types of technologies 
(Table 1). Although these droplet actuation methods are 
not that popular or investigated much compared to EWOD-
based DMF, the potential and capability of them to work 
as reliable multi-functional lab-on-a-chip systems have 
been shown by different studies during past decades.

Despite the advantages owned by different types of 
DMFs, several aspects need to be improved in future work. 
Although the extremely low actuation voltage for EWOD-
type DMFs has been demonstrated, those materials and elec-
trodes’ geometry is not widely used because of the complex-
ity of fabrication steps and cost. A durable and low-cost 
material system is required to enhance the performance as 
well as lower the energy consumption of DMFs. Currently, 
the size of the entire platform is another issue for almost 
all types of DMF platforms. Even though the dimension of 
fabricated electrodes can be tens of micrometers, the control 
unit is still quite large, which limits the portability of the 
device. The energy harvesting method has the potential to 
shrink the size of the system, or it is possible to power the 
device through battery and mobile power after reversible 
ultra-low-voltage EWOD is achieved. The biological appli-
cations with DMFs are still quite rare, which results from 
cross-contamination along droplets’ moving paths on the 
surface of devices. Efforts have been devoted to develop-
ing durable self-cleaning surfaces on DMF devices through 
nano-structured super-hydrophobic surfaces, disposable 
polymer films or silicone oil additives. However, none of 
these methods offer a good balance considering the low 
cross-contamination, detection convenience, durability, and 
compatibility with DMF devices.

With all the challenges mentioned above, DMFs are still 
in improving phase under the cooperation with new droplet 
actuation methods, materials development, and fabrication 
technologies. DMF devices will have even broader appli-
cations to serve as a portable, multi-functional platform 
in the future.
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