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Abstract
The dynamics of an initially spherical elastic particle in pressure-driven flow of Newtonian and viscoelastic fluids in a square-
cross-section microfluidic channel is studied in 3D by the finite element method. Two viscoelastic constitutive equations are 
considered, i.e., the Oldroyd-B and Giesekus models. The dependence of particle deformation and cross-stream migration 
on geometric confinement, particle deformability, and fluid rheology is investigated. If its initial position is not on the center 
line of the channel, the bead attains an asymmetric shape and migrates transversally to the stream direction. In an inertialess 
Newtonian liquid, the migration is always directed towards the channel center line and its velocity depends on geometric 
confinement and particle deformability, whereas, in a viscoelastic liquid, the migration direction and velocity depend on the 
complex interplay among geometric confinement, particle deformability, fluid elasticity, shear-thinning, and secondary flows.
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1  Introduction

Many operations of interest in fields such as material pro-
cessing and biological diagnostics require the capability of 
controlling the trajectories of particles suspended in flowing 
liquid carriers. In the last two decades, microfluidics has 
turned out to be suitable for this purpose (see, e.g., White-
sides 2006). In particular, the the so-called ‘3D-focusing’, 
namely, the generation of a single row of particles, can be 
important in many applications, such as counting, detec-
tion (Toner and Irimia 2005), and separation (Villone et al. 
2017). Numerous microfluidic techniques for particle focus-
ing are reported in the literature (as a reference, the reviews 
by Bhagat et al. 2008 and Xuan et al. 2010 can be seen). 
In the recent years, the normal stresses arising in viscoe-
lastic suspending media have been exploited to induce the 
lateral motion of rigid particles in the absence of inertia and 

externally-imposed forces, such as acoustic, electrical, or 
magnetic fields. Experimental and numerical studies have 
demonstrated that viscoelasticity-induced inertialess focus-
ing is an effective method for particle alignment in micro-
channels with a variety of geometries (see, for example, the 
very recent review by Stoecklein and Di Carlo 2018 and the 
references therein). While the literature on lateral migration 
of rigid particles in microfluidics is vast, the study of the 
behavior of suspensions of deformable particles is more an 
open issue, whose comprehension would be of interest for 
applications involving, for example, biological cells (Gal-
aev and Mattiasson 2007b). Recently, Villone et al. (2016) 
studied through direct numerical simulations the deforma-
tion and cross-streamline migration of an initially spherical 
elastic bead in microfluidic pipe flow of Newtonian and vis-
coelastic fluids, showing that, unlike rigid particles, elastic 
particles migrate orthogonally to the flow direction even in 
inertialess flows of Newtonian fluids, as it happens also to 
red blood cells (see the review by Geislinger and Franke 
2014 and the references therein), vesicles, and capsules 
(see the review by Barthès-Biesel 2016 and the references 
therein). In a Newtonian liquid, cross-streamline migration 
is always directed towards the channel axis, in agreement to 
what Tam and Hyman (1973) had derived by a perturbative 
analysis for a Hookean elastic particle, whereas the scenario 
qualitatively changes if a viscoelastic suspending medium 
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is considered. In this case, the direction of lateral migration 
can be twofold, with the particle going towards the chan-
nel center or wall depending on its initial radial position. 
The parameters have competing effects on the phenomenon, 
because increasing particle deformability or geometrical 
confinement promotes migration towards the axis, while 
increasing liquid elasticity and, above all, shear-thinning 
can promote migration towards the wall.

In this paper, we study by means of three-dimensional 
Arbitrary Lagrangian Eulerian (ALE) Finite Element 
Method (FEM) numerical simulations the dynamics of an 
initially spherical elastic particle suspended in Newtonian 
and viscoelastic liquids subjected to inertialess pressure-
driven flow in a square-cross-section microfluidic channel. 
Two viscoelastic constitutive equations are considered, i.e., 
the constant-viscosity Oldroyd-B model and the shear-
thinning Giesekus model. Due to the applied flow, the bead 
deforms and migrates orthogonally to the flow direction of 
the suspending medium. The effects of the geometrical and 
physical parameters on deformation and migration of the 
soft particle are investigated. In the case of dilute systems 
at negligible inertia (like the one considered here), our ALE 
FEM combines accuracy and computational efficiency in 
calculating the velocity, pressure and stress fields in both 
the deformable solid and the liquid phase and in tracking 
the interface between them. Its use in the solution of prob-
lems dealing with suspensions carrying deformable inclu-
sions is consolidated in the literature (see, e.g., Gao and Hu 
2009; Villone et al. 2014a, b, 2016, 2017). Other techniques 
that have been employed in the literature to simulate the 
flow behavior of suspensions of deformable solid particles 
include the FEM with level set (see, e.g., Liu and Walking-
ton 2001), the Immersed Boundary (IB) FEM (Saadat et al. 
2018), the IB Finite Volume Method (FVM) (Mendez et al. 
2014), and the Finite Difference Method (FDM) with level 
set (Rosti et al. 2018; Rosti and Brandt 2018). Studies on 
problems somehow analogous to the one investigated here, 
yet involving elastic capsules at non-negligible inertia, can 
be instead found in Kilimnik et al. (2011) and Raffiee et al. 
(2017a, b).

2 � Mathematical model

In Fig. 1, a schematic drawing of the system is displayed: 
a square-cross-section channel of length L and height H is 
considered. A Cartesian system of coordinates is set with the 
origin at the center of the channel, the x-axis parallel to the 
channel length, and the y- and z-axes parallel to the channel 
cross-section. A single, non-Brownian, neutrally buoyant, ini-
tially spherical elastic particle is suspended in a fluid subjected 
to pressure-driven flow in the positive x-direction. The particle 
has an initial diameter Dp and we define the confinement ratio 

� as the ratio between the particle diameter and channel height, 
i.e., � = Dp∕H . We assume that both the solid and the liquid 
are incompressible and that inertia can be neglected. Typical 
flow conditions in microfluidic devices indeed justify the latter 
assumption (Squires and Quake 2005), whereas considering 
a single particle makes our results applicable to the case of 
dilute suspensions.

Given the aforementioned assumptions, the mass and 
momentum balance for both the particle and the suspend-
ing matrix read

where u is the velocity vector and T is the stress tensor, 
which, in turn, can be expressed as T = −pI + � , with p the 
pressure, I the identity tensor, and � the deviatoric contribu-
tion to the stress tensor. For a Newtonian fluid, the constitu-
tive equation for � is

with � the viscosity and D = (∇u + ∇uT)∕2 the symmetric 
part of the velocity gradient tensor ∇u . For a viscoelastic 
liquid, instead, we write

with �s the ‘solvent’ viscosity and � the viscoelastic contribu-
tion to the deviatoric part of the stress tensor. The Giesekus 
constitutive equation for � reads

(1)� ⋅ u = 0,

(2)� ⋅ T = 0,

(3)� = 2�D,

(4)� = 2�sD + � ,

Fig. 1   Geometry of an initially spherical elastic particle suspended in 
a fluid under pressure-driven flow in a square-cross-section channel
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with � the relaxation time, �m the ‘polymer’ viscosity, � the 
so-called ‘mobility parameter’, and the symbol ∇ denoting 
the upper-convected time derivative (for more details, see 
Larson 1988). Notice that the overall zero-shear viscosity 
of a Giesekus liquid is �0 = �s + �m . The attributes ‘solvent’ 
and ‘polymer’ denoting the two contributions to the viscos-
ity of a Giesekus fluid come from its typical use in mod-
eling the rheological behavior of polymeric solutions. The 
Giesekus model predicts shear-thinning, namely, a decrease 
of the viscosity at increasing shear rate, and the mobility 
parameter � modulates such effect: the larger � , the more 
shear-thinning the fluid. On the other hand, when � goes 
to zero, the fluid has a constant viscosity and the Giesekus 
constitutive equation degenerates into the Oldroyd-B model 
(Larson 1988)

For what concerns the solid particle, we model its elastic 
constitutive behavior by the neo-Hookean model. In its 
velocity-based formulation, it reads

In this paper, we choose to model viscoelastic suspending 
liquids by the Giesekus and Oldroyd-B constitutive equa-
tions because these models can suitably describe the behav-
ior of many polymeric solutions of interest in microfluidics 
(see, for example, Leshansky et al. 2007; Yang et al. 2011; 
D’Avino et al. 2012; Del Giudice et al. 2013; Seo et al. 
2014), while the neo-Hookean constitutive equation chosen 
for the solid can adequately describe the behavior of many 
microgel beads and biological particles, e.g., white blood 
cells, when they do not undergo ‘extreme’ deformations (see 
Gao et al. 2011, 2012).

The model equations for the system shown in Fig. 1 are 
solved with the following boundary conditions:

Equation (8) is the no-slip and no-penetration condition for 
the liquid velocity on the channel wall ��w . Equations (9) 
and (10) express the periodicity of velocity and traction in 
the matrix fluid along the flow direction between the chan-
nel inlet ��in and the outlet ��out , with �p the pressure 
drop between ��in and ��out (to be computed) and m the 
outwardly directed unit vector normal to the boundary. At 

(5)�
▽

� + � +
��

�m
�
2 = 2�mD,

(6)�
▽

� + � = 2�mD.

(7)▽

� = 2GD.

(8)u|��w
= 0,

(9)u|��in
= u|��out

,

(10)−(� ⋅m)|��in
= (� ⋅m)|��out

− �pm|��out
.

the channel inlet, the flow rate Q of the suspending liquid 
is imposed as

while the boundary conditions on the particle - liquid inter-
face ��p are

i.e, the no-slip and no-penetration condition between the 
fluid (f) and the particle (p), and

i.e., the continuity of traction across the fluid-particle inter-
face, where n is a unit vector normal to the particle inter-
face and directed towards the suspending fluid. The flow 
rate in Eq. (11) is implemented through a constraint whose 
Lagrange multiplier is the pressure difference �p , which is 
itself computed within the solution procedure (see Bogaerds 
et al. 2004).

Since both the particle and the suspending medium are 
inertialess, no initial condition for the velocity is needed, 
whereas an initial condition for the extra-stress tensor is nec-
essary. We assume that the particle (and the matrix, when 
viscoelastic) is initially stress-free, thus

The mathematical model of the system is made dimension-
less by choosing the channel height H as the characteristic 
length, the average velocity of the fluid ū = Q∕H2 as the 
characteristic velocity, the ratio of the characteristic length 
and the characteristic velocity H∕ū as the characteristic time, 
𝜂ū∕H (or 𝜂0ū∕H ) as the characteristic stress in the matrix, 
and the shear modulus of the elastic material G as the char-
acteristic stress in the particle. All the variables appearing 
in the following are dimensionless. With the aforementioned 
choices, the elastic capillary number Cae = 𝜂ū∕(HG) (or 
Cae = 𝜂0ū∕(HG) ) will appear in Eq. (13). Cae is the ratio 
of the matrix viscous stress to the particle elastic stress. In 
case a viscoelastic matrix is considered, the Deborah num-
ber De = 𝜆ū∕H will also appear in the momentum balance 
equation and the viscoelastic constitutive equation, which is 
the ratio between the relaxation time of the viscoelastic fluid 
and the characteristic time of the flow.

3 � Numerical technique

An ALE FEM-based numerical code implementing well-
known stabilization techniques, i.e., SUPG, DEVSS, and 
log-conformation, is used to solve the equations presented 
in Sect. 2. To track the fluid-particle interface, a FEM with 

(11)−∫
��in

u ⋅m dS = Q,

(12)u|f = u|p,

(13)(� ⋅ n)|f = (� ⋅ n)|p,

(14)�|t=0 = 0.
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second-order time discretization is defined on it, where the 
normal component of the mesh velocity equals the normal 
component of the physical velocity, whereas the tangential 
velocity of the nodes is such that the distribution of the ele-
ments on the interface is kept uniform. This approach lets 
the mesh get rid of any ‘tank-treading’ motion of the elastic 
material, so largely reducing the distortion of the ALE vol-
ume mesh. To stabilize the interface, the SUPG method is 
used. A detailed description of the numerical method, and, 
in particular, of the approach used to treat the interface, with 
several validation cases, is given in Villone et al. (2014b).

The fluid domain �f and the solid domain �p are discre-
tized by a mesh of quadratic tetrahedra. The fluid-particle 
interface mesh aligns with element faces (quadratic trian-
gles), which are the same on both the matrix and the par-
ticle side (conforming geometry). In our formulation, we 
use an ALE grid that rigidly moves along the flow direction 
with the particle x-velocity, namely, the x-component of the 
velocity computed in the center of volume of the particle. 
In this way, the only motion allowed is in the yz-plane, i.e., 
particle lateral migration. Adoption of a co-moving grid 
drastically reduces the mesh distortion.

Convergence tests have been performed, thus mesh reso-
lution and time-step for the numerical solution of the prob-
lem depicted in Sect. 2 have been chosen so as to ensure 
invariance of the results upon further refinements. For the 
simulations presented in this paper, meshes with a number 
of tetrahedra in the order of 2.5 − 3.5 × 104 and time-steps in 
the order of 10−3 − 10−4 × ū∕H have been found to be ade-
quate. The mesh elements on the surface of the particle are 
approximately twice finer than the ones on the boundaries 
of the channel. A detailed description of the convergence 
procedures for problems analogous to that of interest here 
is given in Villone et al. (2014b). Finally, since periodicity 
is imposed in the flow direction, in all the simulations it has 
been verified that the x-dimension of the domain L is suffi-
ciently large so that the particle does not feel the influence of 
its periodic images along the flow direction. With a channel 
long 10 times the particle diameter, this condition is verified 
for all the cases presented in the following. As an example, 
we display in Fig. 2 the convergence test on the y-coordinate 
of the particle center of volume yp for the migration of a par-
ticle in a Newtonian fluid starting from (zp, yp) = (0.1, 0.1) 
on the diagonal of the channel cross-section at � = 0.3 and 
Cae = 0.1 (the dynamics of zp being the same due to symme-
try). In this case, a number of elements on the equator of the 
sphere # = 30, a time-step 𝛥t = 0.002 × ū∕H , and a channel 
length L = 10Dp ensure mesh-, time-step-, and domain-size-
independency of the results.

A validation of the numerical method used in this paper 
for the simulation of the behavior of elastic particles in chan-
nel flow is given in Figs. 2 and 3 in Villone et al. (2016) 

through comparison with theoretical predictions from 
Murata (1981).

The simulations have been run on blades with two hexa-
core processors Intel Xeon E5649@2.53GHz and 48 Gb of 
RAM, with a computational time ranging from 2–3 days for 
a Newtonian suspending liquid to 2–3 months for viscoe-
lastic matrices.

4 � Results

An initially spherical neo-Hookean elastic particle is sus-
pended in a fluid subjected to Poiseuille flow, i.e., pressure-
driven flow, in a square-cross-section microfluidic channel. 
When the particle initial position is out of the center line 
of the channel, the bead migrates transversally to the sus-
pending fluid streamlines. Due to the channel geometry, 
the particle is confined in both the y- and the z-direction, 
thus the hydrodynamic interactions with the side walls in 
both these directions contribute to its lateral motion. The 
simulations are performed by considering the whole chan-
nel as the computational domain, but we can limit the par-
ticle initial yz-positions considered in the simulations to a 
half-quadrant of the channel cross-section, the trajectories 
of particles starting in the rest of the channel cross-section 
being reproducible by symmetry.

4.1 � Migration of a neo‑Hookean particle 
in a Newtonian liquid

The behavior of a neo-Hookean particle in a Newtonian fluid 
is first investigated. In Fig. 3, the projections of particle tra-
jectories on the upper-right quadrant of the channel cross-
section are shown for a low confinement ( � = 0.1 , top row) 

Fig. 2   Convergence test on the y-coordinate of the particle center of 
volume yp for the migration of a particle in a Newtonian fluid starting 
from (zp, yp) = (0.1, 0.1) at � = 0.3 and Cae = 0.1
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and a medium confinement ( � = 0.3 , bottom row). For each, 
three orders of magnitude of the elastic capillary number are 
considered, i.e., Cae = 0.001 (left column), 0.01 (central col-
umn), and 0.1 (right column). In Fig. 3 and in the diagrams 
below reporting analogous information for other fluids, the 
black circles represent the particle initial positions consid-
ered in the simulations, whereas information on migration 
time, thus on migration velocity, is given through the open 
symbols on the trajectories. In particular, the open circles 
in panels (a)–(e) mark a time of 5, whereas the squares in 
panel (f) mark a time of 1. Therefore, Fig. 3 can be regarded 
as a phase portrait.

It emerges from Fig. 3 that a neo-Hookean particle sus-
pended in a Newtonian fluid migrates towards the center line 
of the channel from whatever initial position. In other words, 
the center of the channel cross-section is the only attractor 
for particle dynamics. Such result agrees with what is known 
for elastic particles in inertialess pressure-driven flow in a 
cylindrical pipe (see Villone et al. 2016). As expected, when 

the starting position is on the diagonal of the channel cross-
section, the particle trajectory stays on the diagonal due to 
symmetry. Neither changing the confinement ratio � nor the 
elastic capillary number Cae has a qualitative effect on the 
direction of particle migration. From the quantitative point 
of view, given an initial position, both increasing � and Cae 
speeds up the migration, as it is apparent by comparing the 
spacings of the time markers on the trajectories. In addi-
tion, it can be observed that, given � and Cae , the migration 
is faster when the particle is closer to the channel wall. All 
these effects can be explained by considering that, in an iner-
tialess Newtonian fluid, the driving force for the migration 
of an elastic particle is linked to its shear-induced deforma-
tion (see Villone et al. 2014a, 2016). Both increasing � and 
Cae enhances such deformation, thus speeding up particle 
migration. Given � and Cae , the migration velocity spatially 
varies within the cross-section of the channel, namely, the 
yz-plane. This is due to the fact that the shear stress making 
the particle deform (and consequently migrate) depends on 

Fig. 3   yz-projections of particle trajectories in a Newtonian fluid for 
different particle initial positions. For symmetry, only the the upper-
right quadrant of the channel cross-section is reported. Top row: 
� = 0.1 , Cae = 0.001 (a), 0.01 (b), 0.1 (c). Bottom row: � = 0.3 , 
Cae = 0.001 (d), 0.01 (e), 0.1 (f). The black dashed lines delimit the 

region accessible to the center of volume of the particle (considered 
as a sphere). The gray dashed line is the cross-section diagonal. The 
black circles identify the particle starting positions. In (a)–(e), empty 
circles are reported on the trajectories every 5 time units; in (f), 
empty squares are reported on the trajectories every time unit
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the fluid shear rate and, in square-channel Poiseuille flow, 
the shear rate is maximum at the wall and goes to zero at 
the center line.

In Fig. 4, we show a temporal sequence of 3D views 
of the shape of a particle starting from a position 
(zp, yp) = (0.28, 0.28) , i.e., on the channel cross-section 
diagonal in the region with high shear rate, at � = 0.3 and 
Cae = 0.1 . It can be observed that the characteristic times of 
deformation and migration are very different: the particle 
reaches its maximum deformation very fast (within about 0.6 
time units), but almost no cross-stream migration occurs in 

such time (translation in the flow direction is subtracted in 
Fig. 4), then, as migration goes on, the shape of the particle 
evolves through a quasi-static process (indeed, at t = 10 , an 
appreciable migration has occurred with respect to t = 0.6 , 
but the shape of the particle has changed very little).

In Fig. 5, we show the 3D views of the shape of a par-
ticle starting from a position (zp, yp) = (0.15, 0.28) , i.e., in 
the region with high shear rate, at � = 0.3 and Cae = 0.001 
(a), 0.01(b), 0.1(c). In all cases, the snapshot is taken at 
a short time after particle release such that its deforma-
tion has reached the maximum (but almost no migration 
has occurred). Moving along the panels in Fig. 5, namely, 
increasing Cae , the particle deformed shape goes from one 
hardly distinguishable from a sphere to an almost spheroidal 
one and, finally, to a slipper-like one, thus confirming that 
higher migration velocities arise from larger deformations.

Finally, it is worth mentioning that, in Fig. 3a, no appreci-
able lateral migration is observed over the simulated time. 
Since in such plot � is equal to 0.1 and Cae to 0.001, it can 
be inferred that, at such low values of the confinement ratio 
and the elastic capillary number, the particle practically does 
not deform at all. Hence, it behaves like a rigid bead, for 
which it is known that no cross-stream migration occurs in 
an inertialess Newtonian fluid due to the time-reversibility 
of Stokes equations.

The simulation results show that a ‘master surface’ 
exists for both the components vpy and vpz of the particle 
migration velocity. In other words, there are two universal 
functions vpy(yp, zp) and vpz(yp, zp) (parametric in � and Cae ) 
that yield the particle migration velocity depending on its 
position in the channel cross-section. We report in Fig. 6 
the inverse of the magnitude of the migration velocity 

Fig. 4   3D views of the 
deformed shapes attained by a 
neo-Hookean particle starting 
from (zp, yp) = (0.28, 0.28) in a 
Newtonian fluid at � = 0.3 and 
Cae = 0.1 . Yellow: t = 0 , red: 
t = 0.1 , green: t = 0.2 , blue: 
t = 0.3 , orange: t = 0.4 , violet: 
t = 0.5 , cyan: t = 0.6 , purple: 
t = 10. a xy-view from the posi-
tive z-axis. b xy-view from the 
negative z-axis

Fig. 5   3D views of the deformed shape of a neo-Hookean particle 
starting from (zp, yp) = (0.15, 0.28) in a Newtonian fluid at � = 0.3 
and Cae = 0.001 (a), 0.01 (b), 0.1 (c)
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−
√

v2
py
+ v2

pz
 as a function of particle ‘pseudo-radial’ posi-

tion on the diagonal of the channel cross-section �
y2
p
+ z2

p
∕
√
2 . (The negative sign of the migration velocity 

accounts for the direction of lateral migration.) It can be 
observed that, along the diagonal, the magnitude of the 
migration velocity decreases going from the cross-section 
corner to the center line, where it must be zero due to sym-
metry. From the quantitative point of view, at any fixed 
position, the magnitude of the migration velocity increases 
with both � and Cae , as already discussed above in com-
menting Fig. 3. Given � and Cae , the time needed by a 
particle starting at a certain position on the diagonal to 
reach the center line of the channel can be readily derived 
f r o m  t h e  t i m e  i n t e g r a t i o n  o f �
v2
py
+ v2

pz
(
�

y2
p
+ z2

p
∕
√
2) = d∕dt(

�
y2
p
+ z2

p
∕
√
2) . Then, 

from the knowledge of the profile of the particle x-velocity 
in the channel cross-section vpx(yp, zp) , the longitudinal 
distance covered by the particle in such time can be esti-
mated. Therefore, a design equation can be written for a 
square-cross-section microfluidic device aimed at focusing 
elastic particles in a Newtonian fluid. By defining the 
focusing length Lfocus as the device length needed by a 
particle whose center of volume initially lies on the cross-
section diagonal at 90% of the available distance from the 
center to reach a position at 1% of the available distance, 
the following project equation, parametric in � and Cae , 
arises:

(15)Lfocus ≃
0.29

�3Cae
.

It is then apparent from Eq. (15) that the 3D focusing of 
elastic particles in a Newtonian fluid is easy for medium 
confinement and non-vanishing elastic capillary number. 
For example, given a device with H = 100 μm , a focusing 
length of approximately 1 cm would be needed at � = 0.3 
and Cae = 0.1 , which would become ten times larger, i.e., of 
10 cm, thus still feasible, at Cae = 0.01 . On the other hand, 
at � = 0.1 and Cae = 0.001 , a focusing length of about 29 m 
would be necessary, which is unfeasible.

4.2 � Migration of a neo‑Hookean particle 
in a viscoelastic liquid

In this Section, the dynamics of a neo-Hookean particle sus-
pended in a viscoelastic liquid is examined. Since we want to 
investigate independently the effects of particle deformabil-
ity and fluid elasticity on cross-stream migration, we imag-
ine to fix the geometry of the system and the fluid flow rate 
Q, and to tune the elastic capillary number Cae by changing 
G and the Deborah number De by changing �.

4.2.1 � Oldroyd‑B liquid

Let us start our analysis from the case of the constant-vis-
cosity Oldroyd-B liquid defined by Eq. (6). We choose the 
‘viscosity ratio’ of the fluid �s∕�0 equal to 0.09.

In Fig. 7, the projections of particle trajectories on the 
upper-right quadrant of the channel cross-section are shown 
for a low and a medium confinement ( � = 0.1 and 0.3), a low 
and a high value of the Deborah number ( De = 0.1 and 5.0), 
and three orders of magnitude of the elastic capillary number 
( Cae = 0.001 , 0.01, and 0.1). (For each panel, the values of 
the parameters are written in the legend and the caption.)

First of all, it can be observed that, unlike in a Newto-
nian liquid, in an Oldroyd-B liquid a particle with � = 0.1 
and Cae = 0.001 appreciably migrates in the time-window 
considered (see Fig. 7a). Even if at � = 0.1 and Cae = 0.001 
the particle practically does not deform, thus no deforma-
tion-induced migration occurs, the phenomenon can be 
ascribed to the appearance of the migration force due to 
the elasticity of the suspending medium, as reported in 
Villone et al. (2013), Del Giudice et al. (2013) for rigid 
particles. It is also apparent from Fig. 7 that in an Old-
royd-B fluid there are some parameter combinations for 
which the particle migrates towards the channel center 
line or the corner of the channel cross-section depend-
ing on its initial position. Indeed, for � = 0.1 , De = 0.1 , 
and Cae = 0.001 and 0.01 (see Figs. 7a, b, respectively), a 
bead starting on the diagonal of the channel cross-section 
at (zp, yp) = (0.35, 0.35) migrates towards the upper-right 
corner. (It is worth remarking that the fact that the trajec-
tory does not lie exactly on the diagonal is due to slight 
numerical errors, for example caused by slight asymmetry 

Fig. 6   Effect of the confinement ratio � and of the elastic capillary 
number Cae on the inverse magnitude of the migration velocity 
−
√

v2
py
+ v2

pz
 of a neo-Hookean particle lying on the diagonal of the 

square cross-section of a microfluidic channel filled with a Newtonian 
fluid under pressure-driven flow
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of the mesh with respect to the diagonal, since there is 
no physical reason for the particle to detach from such 
symmetry line.) Hence, a separatrix exists that divides the 
channel cross-section in two zones, with the particle being 
attracted towards the center line if its initial position is 
between the center line and the separatrix and towards the 

corner if its initial position is between the separatrix and 
the walls. In this sense, the separatrix can be regarded as 
a locus of unstable equilibrium positions from which no 
lateral motion occurs and we can identify five stable equi-
librium points, i.e., the channel center line and the four 
corners of the channel cross-section. Bi-stability had been 

Fig. 7   yz-projections of particle trajectories in an Oldroyd-B fluid 
with �s∕�0 = 0.09 for different particle initial positions. For symme-
try, only the the upper-right quadrant of the channel cross-section is 
reported. Top row: � = 0.1 , De = 0.1 , Cae = 0.001 (a), 0.01 (b), 0.1 
(c). Central row: � = 0.3 , De = 0.1 , Cae = 0.001 (d), 0.01 (e), 0.1 (f). 
Bottom row: � = 0.3 , De = 5.0 , Cae = 0.001 (g), 0.01 (h), 0.1 (i). 

The black dashed lines delimit the region accessible to the center of 
volume of the particle (considered as a sphere). The gray dashed line 
is the cross-section diagonal. The black circles identify the particle 
starting positions. In (a)–(e), empty circles are reported on the trajec-
tories every 5 time units; in (f)–(i), empty squares are reported on the 
trajectories every time unit
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already found by Villone et al. (2016) for neo-Hookean 
particles in viscoelastic fluids under Poiseuille flow in 
cylindrical pipes.

Changing the geometrical and physical parameters has 
both qualitative and quantitative effects on particle migra-
tion. Given � = 0.1 and De = 0.1 , increasing Cae to 0.1 
(Fig. 7c) makes the corner-attracted migration disappear 
and also speeds us the migration dynamics. This is con-
sistent with the fact that increasing Cae enhances particle 
deformation, and the more deformed the particle the faster it 
migrates towardss the center line. Coherently, by comparing 
the first two rows in Fig. 7, it emerges that, at De = 0.1 and 
for each Cae , the migration towards the center is acceler-
ated when going from � = 0.1 to 0.3, since also increasing 
the geometrical confinement enhances bead deformation. In 
the bottom row of Fig. 7, De is increased to 5.0 at � = 0.3 . 
By comparing the time markers on the trajectories at high 
De and low Cae = 0.001 in Fig. 7g with the ones at low De 
(and same � and Cae ) in Fig. 7d, it is apparent that, when 
the particle is very little deformable, a higher fluid elasticity 
speeds up its migration, as it enhances the migration force 
connected to the normal stresses in the suspending medium 
(as reported for rigid particles in Villone et al. 2013; Del 
Giudice et al. 2013, 2017). However, a greater fluid elasticity 
in turn hinders particle deformation (see Villone et al. 2016), 
thus, at high Cae , there is a twofold effect: on one hand, the 
contribution to the migration force due to fluid elasticity is 
promoted; on the other hand, the contribution that would 
come from particle deformation due to high Cae is sup-
pressed. For this reason, by comparing the second and the 
third row in Fig. 7, it can be observed that, given � , increas-
ing De from 0.1 to 5.0 accelerates migration at Cae = 0.001 , 
but it slows it down at Cae = 0.01 and 0.1.

Finally, a feature of the migration dynamics at high De 
that is interesting to remark is that, at � = 0.3 , De = 5.0 , and 
Cae = 0.001 , 0.01, when starting from (zp, yp) = (0.35, 0.35) , 
the particle displaces towards the channel cross-section cor-
ner at short times, than the migration direction inverts and its 
long-term tendency is towards the center line (see the blue 
lines in Fig. 7g, h) This behavior can be due to the build-up 
of viscoelastic stresses in the suspending liquid.

4.2.2 � Giesekus liquid

Let us now investigate the case of a neo-Hookean particle 
suspended in a Giesekus liquid. As in Sect. 4.2.1, we set 
�s∕�0 to 0.09. One constitutive difference between an Old-
royd-B and a Giesekus fluid is that the latter exhibits shear-
thinning. Here, the shear-thinning parameter � appearing in 
Eq. (5) is chosen equal to 0.2. In addition, differently from 
Oldroyd-B constitutive equation, Giesekus model predicts 
a non-zero second normal stress difference, which, for the 
channel geometry considered in this work, yields non-zero 

components of the fluid velocity orthogonally to the flow 
direction, known as ‘secondary flows’. In Fig. 8, the second-
ary flows for a Giesekus fluid without particles are plotted 
by grey arrows on the background pf each panel. Given �s∕�0 
and � , the pattern of the secondary flows is a function of the 
geometry of the channel cross-section, whereas their inten-
sity is a function of the Deborah number. For visualization 
reasons, the arrows in Fig. 8 are not to scale, as the ones in 
the third row should have been 504 times longer than those 
in the first two rows (Yue et al. 2008).

In Fig. 8, the projections of particle trajectories on the 
upper-right quadrant of the channel cross-section are shown 
for � = 0.1 , 0.3, De = 0.1 , 5.0, and Cae = 0.001 , 0.01, and 
0.1. (For each panel, the values of the parameters are writ-
ten in the legend and the caption.) Like in the Oldroyd-B 
medium, fluid-elasticity-induced cross-stream migration 
is found for little confined and little deformable particles 
(see panel a). Analogously to the Oldroyd-B case, for 
� = 0.1 , De = 0.1 , and Cae = 0.001 , 0.01 (Fig.  7a, b), a 
bead starting on the diagonal of the channel cross-section 
at (zp, yp) = (0.35, 0.35) migrates towards the upper-right 
corner, thus bi-stability exists even for the Giesekus liquid. 
Increasing Cae to 0.1 (Fig. 7c) makes the corner-attracted 
migration disappear and speeds us the migration dynam-
ics due to the increased weight of the contribution of the 
deformability-induced migration towards the center. In addi-
tion, it can be observed that more deformable particles ‘feel’ 
less the effect of the secondary flows, as their trajectories go 
‘straighter’ towards the attractor, whereas the trajectories of 
less deformable particles are more influenced by the in-plane 
components of the fluid velocity (see, e.g., the orange, blue 
and purple curves in Fig. 7a). If De is kept to 0.1, thus the 
secondary flows are the same as above, and the confinement 
is increased from 0.1 to 0.3, the corresponding increase in 
bead deformation suppresses the migration towards the cor-
ner of the channel cross-section and hinders the effects of 
the secondary flows on particle trajectories. Of course, the 
greater Cae the faster the migration (see the central row in 
Fig. 7). In the bottom row of Fig. 8, De is increased to 5.0 
at � = 0.3 . In this case, particle migration is slower than 
at De = 0.1 for every Cae . Several factors have to be taken 
into account here, namely: (i) the contribution to particle 
migration force due to fluid elasticity is increased (for rigid 
particles, this scales proportionally to De2 , as reported in 
Villone et al. (2013)), (ii) the flow-disturbance caused to the 
particle by the secondary flows is much more increased (as 
reported above, the intensity of the secondary flows scale 
proportionally to De4 ), (iii) the contribution to particle 
migration towards the center due to shear-induced deforma-
tion is hindered by both fluid elasticity and shear-thinning, 
which lowers the fluid viscosity, thus the shear stress making 
the particle deform, in the region of the channel at high shear 
rate, i.e., near the wall. In addition, it can be observed that 
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migration towards the cross-section corner is always present 
in a Giesekus fluid at De = 5.0 , rather the attraction basin of 
such equilibrium position is quite large at low Cae . This is 

indeed consistent with the results reported in Villone et al. 
(2013) for rigid particles.

Some further comments on the trajectories shown and 
discussed above. When particle migration is directed 

(a) (b) (c)

(g) (h) (i)

(d) (e) (f)

Fig. 8   yz-projections of particle trajectories in a Giesekus fluid with 
�s∕�0 = 0.09 and � = 0.2 for different particle initial positions. For 
symmetry, only the upper-right quadrant of the channel cross-section 
is reported. Top row: � = 0.1 , De = 0.1 , Cae = 0.001 (a), 0.01 (b), 
0.1 (c). Central row: � = 0.3 , De = 0.1 , Cae = 0.001 (d), 0.01 (e), 0.1 
(f). Bottom row: � = 0.3 , De = 5.0 , Cae = 0.001 (g), 0.01 (h), 0.1 (i). 
The black dashed lines delimit the region accessible to the center of 
volume of the particle (considered as a sphere). The gray dashed line 

is the cross-section diagonal. The black circles identify the particle 
starting positions. In (a)–(b), empty triangles are reported on the tra-
jectories every 5 time units; in (c)–(e) and (g)–(i), empty circles are 
reported on the trajectories every 5 time units; in (f), empty squares 
are reported on the trajectories every time unit. The (not-to-scale) 
grey arrows represent the secondary flows of a Giesekus fluid without 
particles
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towards the channel center line, such equilibrium position 
is asymptotic, thus, strictly speaking, it will be only reached 
by the particle after an infinite time. In addition, the closer 
the particle to the axis, the lower the migration velocity, so 
an unaffordable computational time would be needed to see 
the particle get much closer to the channel center line than 
shown. On the other hand, given that the employed numeri-
cal technique considers two different material domains and 
a sharp interface between them, it is impossible to simulate 
migration until the particle touches the walls of the channel, 
because the mesh in the fluid domain would crash. Hence, 
the simulations are carried out until computationally fea-
sible, which, in some cases, corresponds to a situation in 
which the particle has actually almost reached the wall (see, 
for example, the trajectories in Fig. 8a).

To visualize simultaneously particle deformation and 
the perturbation the bead provides to the fluid stress field, 
we display in Fig. 9 the distribution of the trace of the con-
formation tensor c = ��∕�p + I in the cross-section of the 
channel passing through the center of volume of a particle 
migrating in a Giesekus fluid at � = 0.3 and starting posi-
tion (zp, yp) = (0.15, 0.28) . Two De-values are considered, 
i.e., 0.1 and 5.0, and, for each, Cae = 0.001 , 0.01, 0.1. For 
each parameter-set, a snapshot is reported at a time value 
for which the deformation initial dynamics is over and 
quasi-steady migration is ongoing. First, it can be observed 
that, given Cae , increasing fluid elasticity, i.e., De, hinders 
particle deformation, thus the deformation-induced con-
tribution to its migration. At the same time, the trace of 
the conformation tensor tr(c) is a measure of fluid elastic 
energy (Larson 1988) and it can be seen that such energy 
has a minimum at the channel center line and the four 

Fig. 9   Maps of the trace of the conformation tensor tr(c) in the 
cross-section of the channel passing through the center of volume of 
a particle migrating in a Giesekus fluid at � = 0.3 and starting posi-

tion (zp, yp) = (0.15, 0.28) . The fluid has �s∕�0 = 0.09 and � = 0.2 . 
Top row: De = 0.1 , Cae = 0.001 (a), 0.01 (b), 0.1 (c). Bottom row: 
De = 5.0 , Cae = 0.001 (d), 0.01 (e), 0.1 (f)
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corners of the cross-section. For rigid particles, Villone 
et al. (2013) have conjectured that the migration tends to 
follow the steepest gradient of tr(c) towardss a minimum. 
Here, depending on the cases, this phenomenon combines 
or competes with deformation-induced migration, which 
is always towards the center line of the channel.

5 � Conclusions

In this paper, the cross-streamline migration of an initially 
spherical neo-Hookean elastic particle suspended in iner-
tialess pressure-driven flow of Newtonian and viscoelas-
tic fluids in a square-cross-section microfluidic channel 
is studied by means of three-dimensional finite element 
numerical simulations. Two viscoelastic constitutive equa-
tions are considered, namely, the Oldroyd-B and Giesekus 
models. The first one predicts a constant viscosity and 
no second normal stress difference, whereas the second 
one predicts shear-thinning and a non-zero second normal 
stress difference, giving rise to secondary flows orthogonal 
to the main flow direction.

When suspended in a Newtonian fluid, the parti-
cle migrates transversally to the flow direction towards 
the center line of the channel. The migration velocity 
depends on particle geometrical confinement and on the 
ratio between shear stress and particle deformability. In 
dimensionless terms, these effects are measured by the 
confinement ratio � and the elastic capillary number Cae . 
In this paper, a low and a medium value of the confine-
ment ratio ( � = 0.1 , 0.3) and three orders of magnitude of 
the elastic capillary number ( Cae = 0.001 , 0.01, 0.1) are 
considered. When both the confinement and the capillary 
number are little, the bead practically behaves like a rigid 
particle. Hence, given the absence of inertia, it almost does 
not migrate. Both increasing � and Cae enhance particle 
deformation, thus deformation-driven particle migration 
towards the center. A design equation for a square-cross-
section microfluidic device aimed at focusing elastic par-
ticles on its center line is proposed on the basis of the 
numerical results.

When the particle is suspended in a viscoelastic 
medium, also fluid elasticity comes into play and affects 
particle migration. In dimensionless terms, the weight of 
fluid elasticity with respect to the flow characteristic time 
is measured by the Deborah number De. In this paper, a 
low and a high value of such parameter are considered 
( De = 0.1 , 5.0). In general terms, � - and Cae-increases 
always promote faster migration towards the center, while 
the effect of fluid elasticity is complex.

In an Oldroyd-B liquid, for low confinement and par-
ticle deformability (i.e., at low � and Cae ), increasing De 
speeds up lateral migration (as it was already known for 

rigid particles, see, e.g., Villone et al. 2013), but it has the 
opposite effect at high � and Cae , since it hinders parti-
cle deformation, thus suppressing the deformation-driven 
contribution to migration. In addition, for certain combi-
nations of the parameter values, cross-stream migration 
can be also directed towards the corners of the channel 
cross-section depending on particle initial position.

In a Giesekus liquid, shear-thinning and secondary flows 
give rise to even more complex behaviors, especially at 
high De (the intensity of secondary flows is proportional to 
De4 ). In this case, the secondary flows can strongly influ-
ence particle trajectories, thus making lateral migration 
much slower. Moreover, the presence of shear-thinning can 
enhance migration towards the walls of the channel cross-
section, thus hindering flow-focusing.
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