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Abstract
Secondary flows are ubiquitous in channel flows, where small velocity components perpendicular to the main velocity appear 
due to the complexity of the channel geometry and/or that of the flow itself such as from inertial or non-Newtonian effects. 
We investigate here the inertialess secondary flow of viscoelastic fluids in curved microchannels of rectangular cross-section 
and constant but alternating curvature: the so-called “serpentine channel” geometry. Numerical calculations (Poole et al. J 
Non-Newton Fluid Mech 201:10–16, 2013) have shown that in this geometry, in the absence of elastic instabilities, a steady 
secondary flow develops that takes the shape of two counter-rotating vortices in the plane of the channel cross-section. 
We present the first experimental visualization evidence and characterisation of these steady secondary flows, using the 
complementary techniques of quantitative microparticle image velocimetry in the centreplane of the channel, and confocal 
visualisation of dye-stream transport in the cross-sectional plane. We show that the measured streamlines and the relative 
velocity magnitude of the secondary flows are in qualitative agreement with the numerical results. In addition to our tech-
niques being broadly applicable to the characterisation of three-dimensional flow structures in microchannels, our results 
are important for understanding the onset of instability in serpentine viscoelastic flows.
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1 Introduction

Three-dimensional velocity fields are widespread in channel 
and pipe flows, where the geometry of the duct can combine 
with the properties of the base primary flow (i.e. the flow 
in the streamwise direction) to trigger a weak current with 
velocity components perpendicular to the streamwise direc-
tion. Therefore, the ability to measure, and understand, the 
velocity field in all three directions of such flows is of gen-
eral importance. In microfluidic flows, however, the flow-
field in the streamwise direction is often the only component 
characterised, because of optical access limitations and due 
to the fact that the absolute value of the other velocity com-
ponents are typically very small (Tabeling 2005). Despite 
their small magnitude, such secondary flows are often ulti-
mately responsible for enhanced mixing (above that due to 
diffusion alone) of mass and heat which is a frequent aim of 
various microfluidic devices (Lee et al. 2011; Mitchell 2001; 
Stroock et al. 2002; Amini et al. 2013; Hardt et al. 2005; 
Kockmann et al. 2003). Secondary flows also have important 
implications in particle focussing (Del Giudice et al. 2015; 
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Di Carlo et al. 2007) where they may either be exploited or 
act as a hindrance.

Secondary flows in microfluidic systems may be driven 
by the complexity of the channel geometry only: for the 
creeping flow of a Newtonian fluid, Lauga et al. (2004) have 
shown that a secondary flow must develop if the channel 
has both varying cross-section and streamwise curvature. 
Changes in the streamwise curvature of channels with con-
stant cross-section have also been shown to give rise to a 
secondary flow around the bend (Guglielmini et al. 2011; 
Sznitman et al. 2012). More complex geometries have been 
designed to obtain chaotic micromixers, in which secondary 
flows are triggered and expose volumes of fluid to a repeated 
sequence of rotational and extensional local flows (Ottino 
1989; Stroock et al. 2002; Amini et al. 2013).

Complexity in the equations of fluid motion is another 
driving mechanism for secondary flows: although usually 
not dominant at the microscale, inertia can play a role in 
microfluidic systems (Di Carlo 2009; Amini et al. 2014). 
Combined with the flow geometry, it drives secondary flows 
such as the well-known “Dean” vortices (Dean 1927, 1928) 
observed in curved channels and pipes, or the steady vortical 
structure of the “engulfment” regime in T-junction mixers 
(Kockmann et al. 2003; Fani et al. 2013). In the absence of 
inertia, viscoelasticity is another source of fluid dynamic 
complexity: viscoelastic analogues of the Dean vortices 
are formed, in the creeping-flow regime, by the coupling 
of the first normal-stress difference with streamline curva-
ture (Robertson and Muller 1996; Fan et al. 2001; Poole 
et al. 2013; Bohr et al. 2018). Note that second-normal stress 
differences in viscoelastic fluids may also drive an inertia-
less secondary motion in ducts of non-axisymmetric cross-
section, but this flow is typically much weaker (Gervang 
and Larsen 1991; Debbaut et al. 1997; Xue et al. 1995). We 
emphasise that in listing those potential sources of second-
ary flow we are not attempting to be exhaustive, but sim-
ply to illustrate that they may occur under many different 
scenarios.

We focus here on the viscoelastic secondary flow driven 
by streamline curvature. This steady secondary flow is 
always present in the steady flow of viscoelastic fluids 
in curved geometries, and pertains at all flow rates until 
a critical flow rate is reached at which the flow becomes 
time-dependent due to a well-known purely elastic insta-
bility (Groisman and Steinberg 2000; Arratia et al. 2006; 
Afik and Steinberg 2017; Souliès et al. 2017). Characterising 
this secondary flow is thus essential to the knowledge of the 
three-dimensional base flow from which the elastic insta-
bility develops: its structure may interact with the onset of 
the instability, as hypothesised to explain the partially unac-
counted for stabilisation of shear-thinning viscoelastic flow 
in curved microchannels (Casanellas et al. 2016). It is also 
important for mixing and particle focusing applications that 

rely on viscoelastic fluids (Groisman and Steinberg 2000; 
Del Giudice et al. 2015).

Evidence for such secondary flows is readily observable 
in simple visualisation experiments. By way of example, in 
Fig. 1 we show a classical experiment for the visualisation 
of mixing efficiency in a serpentine microchannel (Grois-
man and Steinberg 2000): two streams of the same fluid, 
one of them dyed with fluorescein, are co-injected into the 
serpentine micromixer. When a Newtonian fluid is injected, 
mixing is achieved by diffusion alone, which broadens the 
interface. With increasing flow rate, the residence time 
decreases, and so does the width of the interface. When a 

Polymer solution Newtonian solvent 

(a) (b)

(c) (d)

(e) (f)

flow

Fig. 1  Visualisation of mixing in a serpentine microchannel (the 
channel edges are highlighted in white): two streams of fluid are co-
injected in a Y-junction, one of them being fluorescently labelled. 
Data for a viscoelastic polymer solution are displayed on the right-
hand side, while data for the Newtonian solvent (a mixture of water 
and glycerol at 75–25 wt%) are shown on the left-hand side.  (The 
small fluorescein molecule diffuses almost freely in the polymer net-
work and thus probes a local viscosity that is lower than the shear 
viscosity of the polymer solution as measured with a rheometer. The 
same behaviour has been quantified in solutions of (hydroxypropyl) 
cellulose  (Mustafa et  al. 1993), dextran  (Furukawa et  al. 1991) and 
polyethylene glycol  (Holyst et al. 2009). For this reason, we use the 
solvent of the polymer solution as a Newtonian reference fluid. The 
slightly lower diffusion in the polymeric solution shows that the con-
tribution from the polymer to the local viscosity, albeit small, is not 
entirely negligible). The flow rate increases from 2 μl/min (top row) 
to 6 μl/min (middle row) and 12 μl/min (bottom row). At low flow 
rates (a, b) the interface between the two streams is broadened in both 
cases by the strong diffusion of the dye. At larger flow rates (c and 
d), the interface sharpens all along the channel due to the decreas-
ing residence time. Further increase of the flow rate (e and f) leads to 
further sharpening of the interface for the Newtonian flow (e), but an 
additional spatially varying “blur” develops in the viscoelastic flow 
(f) (blue triangular arrow). (Color figure online)
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viscoelastic fluid is used, the evolution of the width of the 
interface with increasing flow rate is very different. At small 
flow rates a very broad interface is again observed, which 
initially sharpens when the flow rate is increased. When the 
flow rate is further increased, however, the interface locally 
widens again. This effect cannot be attributed to diffusion, 
which becomes less important with increasing flow rate 
(thus decreasing residence times). In addition, an asymme-
try can be observed with the interface being significantly 
wider towards the end of each loop and a sharpening of the 
interface at the beginning of each new loop. This observation 
can only be explained with an underlying three dimensional 
flow structure that reverses direction in between consecutive 
loops. Previous numerical simulations (Poole et al. 2013) 
have shown the occurrence of a steady secondary flow in this 
serpentine channel geometry for dilute viscoelastic liquids. 
One of the aims of this work is to demonstrate and quantify 
the occurrence of this secondary flow experimentally by 
direct measurement. More generally, we show how different 
experimental methods can be used to determine quantitative 
information of generic secondary flows in micro-devices.

Being typically very weak (on the order of a few per-
cent of the bulk primary velocity), secondary flows are hard 
to resolve even in macro-sized classical fluid mechanics 
experiments (Gervang and Larsen 1991). Thus it is not sur-
prising that such flows have been little characterised at the 
microscale. A number of recent experimental approaches 
may alleviate this issue, in particular the holographic micro-
particle tracking velocimetry ( μPTV) technique (Salipante 
et al. 2017), confocal microparticle image velocimetry (con-
focal μPIV) (Li et al. 2016) or using standard particle image 
velocimetry in conjunction with a channel design and mate-
rial that allow for microscope observation in several perpen-
dicular planes (Burshtein et al. 2017).

Here, we will characterise experimentally the three-
dimensional structure of the flow with supporting numeri-
cal simulations that match the geometrical conditions. Our 
aim is to use a complementarity of μPIV , confocal micros-
copy and insight gleaned from simulation to quantify the 
secondary flow and confirm its vortical structure and sense 
of rotation. Our techniques are very generic and thus broadly 
applicable to the characterisation of three-dimensional flow 
structures in microchannels.

2  Experimental and numerical methods

2.1  Working fluids and rheological characterisation

Model viscoelastic fluids were prepared by dissolving poly-
ethylene oxide (PEO, from Sigma Aldrich) with a molecular 
weight of MW = 4 × 106 g/mol in a water/glycerol (75–25% 
in weight) solution. The PEO was supplied from the same 

batch as used in Casanellas et al. (2016). The solvent vis-
cosity at T = 21 ◦ C is �s = 2.1 mPa s (data not shown). The 
polymer concentration was fixed to c = 500 ppm (w/w). 
The total viscosity of the resulting solution at T = 21 ◦ C is 
� = 3.8 mPa s giving a solvent-to-total viscosity ratio � = 
0.55. The overlap concentration for this polymer in water 
is c∗ ≃ 550 ppm (Casanellas et al. 2016). Although this 
solution is close to the semi-dilute limit, we confirmed that 
shear-thinning effects, of both the shear viscosity and the 
first normal-stress difference, are essentially negligible [see 
e.g. Casanellas et al. (2016)].

2.2  Microfluidic geometry

We tested the polymer solution in serpentine microchan-
nels consisting of nine half loops. A sketch of the channel is 
shown in Fig. 2. We note that, in this channel geometry, the 
absolute value of the curvature is constant along the channel 
but the sign of the curvature changes from positive to nega-
tive between consecutive half-loops. This change of sign is 
not required for the development of the viscoelastic second-
ary flow, but is a feature of our two-dimensional geometry 
which conveniently allows for the study of several consecu-
tive loops at a constant radius of curvature. Numerical sim-
ulations of the creeping flow of Newtonian fluids in bent 
microchannels show that this change in curvature is expected 
to trigger a local secondary flow where subsequent half-
loops reconnect, but this flow quickly decays in the regions 
of constant curvature (Guglielmini et al. 2011), where our 
velocity measurements were made. Most of our results were 
obtained on a channel of nearly square cross-section, with a 
width W = 110 ± 3 μ m, height H = 99 ± 1 μ m and an inner 
radius of curvature (measured at the inner wall of the chan-
nel) Ri = 40 ± 1 μ m. Additional channels of comparable 
cross-sectional dimensions but larger radii of curvature were 
used for comparison.

The microchannels were fabricated in polydimethyl-
siloxane (PDMS), using standard soft-lithography 

Fig. 2  Schematic of the microfluidic geometry used: a top view and 
b cross-sectional view displaying the choice of axes. x is the primary 
flow velocity direction, y is the wall-normal direction (where the 
origin is taken at the inner edge of each loop), and z is the spanwise 
(vertical) direction. Therefore, the x, y, z coordinate system we con-
sider is not fixed in space but advected with the flow. The location of 
the dyed stream used for confocal visualisation is also indicated
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microfabrication methods (Tabeling 2005), and mounted 
on a glass coverslip. The fluid was injected into the channel 
via two inlets using two glass syringes (Hamilton, 500 μ l 
each) that were connected to a high-precision syringe pump 
(Nemesys, from Cetoni GmbH). The experimental proto-
col consisted of stepped ramps of increasing flow rate from 
2 μl/min up to a maximum of 20 μl/min, with a flow rate 
step of 2 μl/min. The resolution of the applied flow rate 
was controlled at a precision of ± 0.2 μl/min, as confirmed 
independently using a flow sensor (Flow unit S, from Fluig-
ent, at low flow rates and SLI-0430 Liquid flow meter, from 
Sensirion for Q ≥ 6 μl/min). The step duration was set to 
120 s, and the measurements performed over the last 60 s, 
which we confirm was long enough to ensure flow steadiness 
and the decay of any initial transient regime. Experiments 
were continued at progressively increasing flow rate until the 
onset of the purely-elastic instability where the flow became 
time-dependent. For the Ri = 40 μ m channel this occurred 
at 14 μl/min which we define as Qinsta.

At the onset of flow instability the Reynolds number 
( Re = �UW∕� , where � is the fluid density and U the mean 
velocity) is small in all experiments, being at most 0.6. 
Therefore, in our microfluidic flow experiments inertial 
effects can be disregarded.

2.3  Micro‑particle image velocimetry

Quantitative two-dimensional measurements of the flow 
field were made in the xy-centreplane ( z = 0 plane) of the 
serpentine device (Fig. 2) using a μPIV system (TSI Inc., 
MN) (Meinhart et al. 2000; Wereley and Meinhart 2005). 
For this purpose, no fluorescent dye was used but the 
test fluid was seeded with 0.02 wt% fluorescent particles 
(Fluoro-Max, red fluorescent microspheres, Thermo Sci-
entific) of diameter dp = 0.52 μ m with peak excitation and 
emission wavelengths of 542 nm and 612 nm, respectively. 
The microfluidic device was mounted on the stage of an 
inverted microscope (Nikon Eclipse Ti), equipped with a 
20× magnification lens (Nikon, NA = 0.45 ). With this com-
bination of particle size and objective lens, the measurement 
depth over which particles contribute to the determination 
of the velocity field was �zm ≈ 13 μm (Meinhart et al. 2000), 
which is approximately 13% of the channel depth.

The μPIV system was equipped with a 1280 × 800 
pixel high speed CMOS camera (Phantom MIRO, Vision 
Research), which operated in frame-straddling mode and 
was synchronised with a dual-pulsed Nd:YLF laser light 
source with a wavelength of 527 nm (Terra PIV, Continuum 
Inc., CA). The laser illuminated the fluid with pulses of 
duration 𝛿t < 10 ns, thus exciting the fluorescent particles, 
which emitted at a longer wavelength. Reflected laser light 
was filtered out by a G-2A epifluorescent filter so that only 
the light emitted by the fluorescent particles was detected 

by the CMOS imaging sensor array. Images were captured 
in pairs (one image for each laser pulse), where the time 
between pulses �t was set such that the average particle dis-
placement between the two images in each pair was around 
4 pixels. Insight 4G software (TSI Inc.) was used to cross-
correlate image pairs using a standard μPIV algorithm and 
recursive Nyquist criterion. The final interrogation area of 
16 × 16 pixels provided velocity vector spaced on a square 
grid of 6.4 × 6.4 μ m in x and y. The velocity vector fields 
were ensemble-averaged over 50 image pairs.

2.4  Confocal microscopy

Vertical images of the cross-section of the channel (in yz 
planes) were obtained by confocal microscopy imaging 
using dyed stream visualisation (as illustrated in the xy plane 
in Fig. 1). z-stacks of two-dimensional images of size 1024×
1024 pixels in xy planes were acquired at a rate of 6 fps 
using a laser line-scanning confocal fluorescence micro-
scope (LSM 5 Live, Zeiss), with a 40× water immersion 
objective lens (1.20 NA). The voxel size was 0.16 × 0.16 × 
0.45 μ m in the x − y − z directions.

2.5  Viscoelastic constitutive equation, numerical 
method and structure of predicted secondary 
flow

The three-dimensional numerical simulations assume 
isothermal flow of an incompressible viscoelastic fluid 
described by the upper-convected Maxwell (UCM) 
model (Oldroyd 1950) in a channel of matched dimensions 
to those used in the experiments. The equations that need to 
be solved are those of mass conservation,

and the momentum balance,

assuming creeping-flow conditions (i.e. the inertial terms are 
exactly zero), where u is the velocity vector with Cartesian 
components ( ux , uy , uz ), and p is the pressure. For the UCM 
model the evolution equation for the polymeric extra-stress 
tensor, � , is

where � (1) represents the upper-convected derivative of � , � 
the constant polymeric contribution to the viscosity of the 
fluid and λ the relaxation time.

Although the UCM model exhibits an unbounded 
steady-state extensional viscosity above a critical strain 
rate (1/2� ), in shear-dominated serpentine channel geom-
etries such model deficiencies are unimportant and it is 
arguably the simplest differential constitutive equation 

(1)∇ ⋅ � = 0,

(2)−∇p + ∇ ⋅ � = �,

(3)� + 𝜆� (1) = 𝜂�̇,
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which can capture many aspects of highly-elastic flows. 
Many more complex models [e.g. the FENE-P, Giesekus 
and Phan–Thien–Tanner models, see e.g. Bird et  al. 
(1987)], simplify to the UCM model in certain parameter 
limits and thus its generality makes it an ideal candidate 
for fundamental studies of viscoelastic fluid flow behav-
iour. The governing equations were solved using a finite-
volume numerical method, based on the logarithm trans-
formation of the conformation tensor. Additional details 
about the numerical method can be found in Afonso et al. 
(2009, 2011) and in other previous studies [e.g. Alves et al. 
(2003a, b)]. For low Deborah numbers De = �U∕Ri (with 
� the relaxation time of the fluid, U the mean velocity 
and Ri the inner radius of curvature), the numerical solu-
tion converges to a steady solution, which was assumed to 
occur when the L1 norm of the residuals of all variables 
reached a tolerance of 10−6 . Beyond a critical Deborah 
number, a time-dependent purely-elastic instability occurs. 
The numerical results in the current paper are restricted 
to Deborah numbers below the occurrence of this purely-
elastic instability, thus the flow remains steady in all 
simulations.

The structure and strength of viscoelastic secondary flows 
in a serpentine geometry have been investigated in detail 
by Poole et al. (2013). The main results of this study are 
recalled below, and lay the foundations for the simulations 
that we carry out here, which are focused on the geometry of 
the experimental system we used. The projected streamlines 
in the yz plane of the computed secondary flow are shown 
in Fig. 3a. The flow takes the shape of a pair of counter-
rotating vortices in the cross-sectional plane of the channel. 
It is driven by the hoop stress, which drives the fluid towards 
the inner side of the bend close to the top and bottom walls 
(where the shear rate and thus the first normal stress differ-
ence are larger, as illustrated in Fig. 3b). The fluid is then 
carried back towards the outer edge of the bend at the centre-
plane ( z = 0 ). Although the driving mechanism is different, 
the resulting qualitative features of this elasticity-driven sec-
ondary flow are thus similar to the inertia-driven Dean vor-
tices (Dean 1928). The strength of the viscoelastic second-
ary flow increases with the elastic contribution to the flow 
(increasing De) and the curvature of the channel. Poole et al. 
(2013) have shown that far below the threshold for the onset 
of the purely elastic instabilities, the magnitude of the sec-
ondary flow, as quantified by the maximum spanwise veloc-
ity uz,max , scales linearly with De (see Fig. 3c). The structure 
of the flow has been shown to remain identical for aspect 
ratios W / H varying from 1 up to 4; accordingly, the scaling 
for uz,max with De is not modified by the aspect ratio of the 
channel. The scaling of the secondary flow strength with the 
solvent viscosity contribution has also been assessed (Poole 
et al. 2013), and can be expressed as an effective Deborah 
number Deeff = (1 − �)De . In the UCM model, Deeff = De.

The precise experimental determination of the relaxa-
tion time of the fluid is difficult for dilute polymer solu-
tions so that the determination of De for our experimental 
data is challenging. However, we can use the onset of the 
purely elastic instability as a reference point to match 
the Deborah numbers in our numerical and experimental 
data. For a given serpentine geometry, the flow becomes 
unstable beyond a critical flow speed, usually expressed 
in terms of a critical Weissenberg number to quantify 
the importance of the elastic contribution to the flow: 
Wiinsta(Ri) = �Uinsta∕W  (with Wi = De × Ri∕W  the Weis-
senberg number) (Zilz et al. 2012). For a given channel 
geometry Wi∕Wiinsta = De∕Deinsta = Q∕Qinsta . Therefore, to 
enable quantitative comparison between experimental and 
numerical results, all the results for the channel geometry 
described above will be presented in terms of the reduced 
quantity De∗ = De∕Deinsta = Q∕Qinsta , with Deinsta ≈ 1.24 
from the numerical results for the experimental geom-
etry we used ( Ri∕W = 0.36 ). De∗ is independent of � and, 
therefore, the solvent viscosity does not need to be taken 
into account in the present numerical simulations.
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Fig. 3  a Numerically predicted structure of the secondary flow: 
two counter-rotating vortices develop in the cross-sectional plane 
of the channel. b Contour plot of the first normal stress differ-
ence ( N

1
∕(�U∕W) ), in the cross-section of the channel ( De = 0.5 , 

W∕H = W∕R = 1 ): the strong positive and asymmetric normal stress 
difference at the top and bottom wall drives the secondary flow. c 
Numerically calculated scaling of the strength of the secondary flow: 
the maximum spanwise velocity scales linearly with De over a wide 
range of aspect ratio and radius of curvature parameters [adapted 
from Poole et al. (2013)]
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3  Results

3.1  Flow measurement in the plane of the channel 
using μPIV

In this section, we show that classical μPIV measurements in 
the xy centreplane provide significant evidence of the exist-
ence of a secondary flow. In this symmetry plane, uz = 0 so 
that the velocity field is fully characterised by the 2D PIV. 
In Fig. 4 we show streamlines constructed from the meas-
ured velocity field along the first half loop (i.e. from A0 to 
A2 as shown in Fig. 2). The blue dashed line highlights the 
Newtonian result which can be seen to travel in approximate 
concentric semicircles around the bend. The red lines indi-
cate the streamlines of the polymeric solution, which, at low 
Deborah number, can be seen to match the Newtonian ones 
very closely. In contrast, with increasing De∗ (increasing 
flow rate) there is a marked deviation of the streamlines for 
the viscoelastic fluid away from the inner bend towards the 
outer, in good agreement with the sense of the secondary 
flow predicted by the numerical simulations (Poole et al. 
2013) and as discussed above and shown in Fig. 3. These 
streamline patterns thus provide our first piece of qualitative 

experimental evidence for the existence of an elastic second-
ary flow.

To support these qualitative streamline observations in 
a more quantitative sense, in Fig. 5 we plot the velocity 
components around location A1. The primary and wall-
normal components of both the experimentally determined 
(symbols) and the numerically computed (full lines) veloc-
ity fields have been averaged over an angular sector of 10◦ 

Fig. 4  Red lines: experimental flow streamlines in the channel cen-
treplane, for increasing values of flow elasticity. For comparison, 
the streamlines for a Newtonian solution of the same viscosity are 
shown with a blue dashed line: a clear deviation of the streamlines 
towards the outer edge of the bend occurs in viscoelastic flow as De∗ 
is increased. (Color figure online)
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Fig. 5  Experimental (bullets) and numerical (full lines) velocity plots 
at location A1 (see Fig. 2) for the primary (a) and wall-normal veloc-
ity (b), for increasing values of De∗ (black bullet Newtonian fluid, 
green bullet 0.43, orange bullet 0.71, red bullet 0.86 and black full 
line 0, purple full line 0.11, blue full line 0.22, green full line 0.44, 
orange full line 0.67, red full line 0.89). For easier comparison, only 
select De∗ values are shown in b. The zero y location is taken at the 
inner edge of the bend, with the geometry being that described in 
Sect. 2.2: R

i
∕W = 0.36 . The peak streamwise velocity shifts with De, 

as is more visible in the inset of a. The scale bar in the top right cor-
ner indicates the magnitude of the error on the experimental data. c 
Scaling for the maximum wall-normal velocity with De∗ . (Color fig-
ure online)
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upstream and downstream of A1. y describes as usual the 
wall-normal direction, and x the primary velocity direction: 
the primary velocity component is ux and the transverse (or 
wall normal) component is uy . The data are plotted such 
that the zero y location corresponds to the inner edge at 
location A1. In Fig. 5a we plot the streamwise velocity com-
ponent. First, we notice the good agreement between the 
Newtonian flow experiments and the Newtonian simulation 
(black line and black symbols) where a slight asymmetry in 
the profile towards the inner wall is noticeable [as has been 
observed and discussed previously (Zilz et al. 2012)]. Sec-
ond, the effect of elasticity on this main velocity component 
is rather subtle but, as is most easily seen via inspection of 
the numerical profiles around the maximum of ux (see inset 
of Fig. 5a), it is clear that elasticity acts to reduce this asym-
metry by shifting the peak velocity back towards the centre 
of the channel. We then turn to the wall-normal velocity 
component, shown in Fig.5b. For the Newtonian case this 
is essentially zero (within ± 1% of the bulk velocity)—in 
agreement with theoretical predictions for an inertialess 
duct of constant cross-sectional area and constant curva-
ture (Lauga et al. 2004). However, with the polymer solu-
tion, increasingly large wall-normal velocities (i.e. from the 
inner wall towards the outer) can be discerned as the flow 
rate (or De∗ ) is increased. At the highest De∗ for both simula-
tion and experiment these velocities reach ≈ 0.15U at their 
peak. It can be observed that, much as is the case for the 
primary velocity component, these transverse velocity pro-
files are also asymmetric with a peak closer to the inner wall. 
We believe that this is a consequence of the shear rate being 
larger close to the inner wall. As the streamwise normal 
stress—which, in combination with streamline curvature, 
is the driving force for the secondary flow—increases with 
the shear rate, the higher shear rate at the inner wall leads to 
a concomitant asymmetry in the distribution of the second-
ary flow. Significant noise is visible on the experimental 
data, which is due to the difficulty of resolving accurately a 
velocity component much smaller than the average velocity. 
The systematic small discrepancies between the numerically 
computed profiles and the experimental data may be caused 
by the uncertainty on Qinsta (known with a precision of ±1 μ
l/min).

We quantify in Fig. 5c the increase in the magnitude of 
the secondary flow with the Deborah number De∗ . The max-
imum of the numerically computed transverse velocity uy 
scales linearly with De∗ over the range of parameters consid-
ered, as expected far from the instability onset (Poole et al. 
2013). The trend in the experimental data is more difficult to 
resolve because of the noise level, which is particularly high 
compared to the expected velocities at the lower flow rates 
investigated. Qualitative agreement is nonetheless observed, 
with comparable magnitude for the secondary flow in both 
cases.

3.2  Cross‑sectional visualisation of the flow using 
confocal microscopy

Except at the highest flow rates (or De∗ ), the magnitude of 
the secondary flow velocities is very small, and thus difficult 
to resolve with PIV techniques. However, if the effect of 
these small velocities can be integrated over a large distance 
any effect should be magnified. One method to achieve this 
integrated effect is through the use of confocal microscopy 
in combination with dyed stream visualisation, which we 
now turn our attention to. For those experiments, the fluid 
supplied through one of the inlets is dyed with fluorescein. 
The location of the dyed stream is identified in Fig. 2. At the 
Y-junction, the two streams each occupy half of the channel 
width, separated by a straight centred interface in the plane 
of the channel cross-section. This interface is broadened by 
diffusion as the fluid travels downstream, and deformed in 
the region of the loops as the vortices of secondary flows 
transport fluid in the plane of the cross-section. Following 
the evolution of this interface by taking slices in the yz plane 
is thus a means of visualising the fluid transport that has 
occurred in the cross-sectional plane between consecutive 
slices. This evolution is shown in Fig. 6 for three channels 
with different inner radii of curvature, at the six locations 
identified in Fig. 2. The interface between the two streams 
of fluid is quite broad, due to molecular diffusion of the 
dye, but also due to the convolution of the image with a 
finite-sized point spread function, enhanced by the strong 
illumination conditions. Therefore, only the qualitative evo-
lution of the interface can be obtained, by fitting the light 
intensity at each z position to a diffusion-type profile. The 
inflection point of this profile provides an estimate of the 
location of the interface, which is marked by the bright lines 
in Fig. 6. This diffusion profile is wider towards the top and 
bottom, suggesting that Taylor dispersion is active in our 
system (Ismagilov et al. 2000). Coupled with the weaker 
light intensity close to the walls, this effect is responsible 
for a loss of resolution at the top and bottom walls, causing 
the slight bending of the interface observed in the straight 
channel (location S).

The top row in Fig. 6 shows the evolution of the interface 
in the channel we used for the μPIV measurements, at the 
largest De∗ we investigated (0.86). This evolution is in good 
qualitative agreement with the numerically uncovered nature 
of the secondary flow as illustrated in Fig. 3a: between loca-
tion S and A0, the fluid has travelled a quarter loop with the 
dyed stream at the inner edge of the bend. The convex shape 
of the interface at A0 indicates that the dye has been trans-
ported towards the outer edge in the centreplane, and that 
un-dyed fluid has been carried towards the inner edge at the 
top and bottom walls. This is consistent with the transport 
expected from the numerically computed vortex structure. 
From A0 to A1, transport along a quarter loop of reversed 
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curvature leads to the recovery of a straight interface, which 
is bent to a concave shape after further transport in the same 
half loop to location A2. The channel then reverses curva-
ture again, and a convex interface is observed after transport 
over half a loop (location A4). The images at A0, A2 and 
A4 are taken at the connection between consecutive half-
loops, were the channel reverses curvature. An additional 
secondary flow is expected to be triggered from this sudden 
change in curvature even in a Newtonian fluid (Guglielmini 
et al. 2011). However, the displacement of the interface is 
not sensitive to the local velocity field, but rather to the inte-
gration of the streamlines over the distance travelled in the 
channel. Therefore, we expect that this is the reason we do 
not seem to observe the signature of this secondary flow in 
the cross-sectional profiles measured.

We will now use confocal visualisation to probe the 
influence of the radius of curvature of the channel Ri on 
the secondary flow, to gather further experimental proof 
of the flow scaling with De. As the relative magnitude of 
the secondary flow decreases for larger Ri , direct velocity 
measurements are difficult for those geometries. However, 
the integration over long distances makes the secondary 
flow visible in confocal experiments. The second and 
third rows in Fig. 6 show the evolution of the dyed and 
un-dyed streams interface in two channels of larger radii 
of curvature: Ri = 135 μ m (middle row) and Ri = 420 μ m 
(bottom row), but similar cross-section as the previous 

channel. Qinsta depends non-linearly on Ri , therefore, for 
those two larger channels we do not work in terms of quan-
tities scaled on the critical values, such as De∗ . We keep 
the flow rate constant, so that the ratio of the Deborah 
numbers for both experiments is inversely proportional 
to that of the channel radii: De1∕De2 = Ri,2∕Ri,1 . Confo-
cal imaging of the cross-section shows clear evidence of 
the cross-sectional vortices, with marked deflections of 
the interface. The interface profiles obtained with the two 
larger channels have similar curvature, which provides 
semi-quantitative experimental evidence for the scaling 
of uy with De: the displacement of the interface between, 
for instance, S and A0, is proportional to uy × �t , where 
�t is the time required for the base flow to travel from S 
to A0. �t ∼ Ri∕U ∼ Ri∕Q because the channels have the 
same cross-section. Therefore, the lateral displacement of 
the interface scales as uy × Ri∕Q . As this displacement is 
similar for the two channels, and Q is identical, uy scales 
as 1∕Ri , which is consistent with the linear scaling of uy 
with De as measured numerically.

Finally, we also note that in all cases, the shape of the 
interface is almost unchanged after transport over an even 
number of consecutive half-loop (see A0 compared with 
A4). We thus confirm experimentally for Deborah numbers 
below one, memory effects are small in our system, as 
predicted numerically (Poole et al. 2013).

A4

S A0 A1 A2 A3

S A0 A1 A2 A3

A4

S A0 A1 A2 A3 A4

Ri = 40 µm

Ri = 135 µm

Ri = 420 µm

Fig. 6  Top row: evolution of the cross-sectional view down the chan-
nel for the polymeric solution at De∗ = 0.86 (Q = 12 µl/min)  in the 
channel used for the μPIV experiments: the white line highlights the 
position of the interface, as obtained by fitting the horizontal diffu-
sion profile of the dye. Middle and bottom rows: effect of the radius 
of curvature of the channel. Q = 14  μl/min, R

i
= 135  μ m (middle 

row) and R
i
= 420 μ m (bottom row). Although the relative magnitude 

of the secondary flow is weaker than in the smaller channel, the larger 
Q and the integration over a longer distance make the vortical struc-
ture clear. The similarity of the interface evolution for both radii sup-
ports the scaling of the secondary flow with De 
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4  Conclusions and outlook

The use of two complementary techniques, μPIV in the 
centreplane of the microfluidic device and confocal 
microscopy to image the cross-section of the device, has 
allowed us to perform one of the first experimental char-
acterisations of steady, viscoelastic secondary flows in 
curved microchannels. The vortical structure of this flow 
in the cross-sectional plane, first unveiled by numerical 
calculations, was confirmed. Qualitative agreement is 
found in the flow profiles for the secondary transverse 
velocity. Those results improve our comprehension of vis-
coelastic flows in complex channel geometries, by validat-
ing the three-dimensional flow driven by the hoop stress 
in regions of constant curvature. A full understanding of 
the flow pattern in the serpentine channel, though, remains 
beyond the scope of our work: in the regions where the 
curvature is not constant (as is typically the case between 
consecutive half-loops), additional vortices may appear, 
which we do not discuss here. Their contribution to the 
flow dynamics in the serpentine microchannel may be 
important, though, via their interaction with the viscoe-
lastic Dean flow we have characterised, and their position 
at a potentially critical location for the propagation of the 
elastic instability in the channel.
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