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Abstract
Helical swimming robots with a capable propulsion system at low-Reynolds numbers have been proposed for many applica-
tions. Although linear propulsion characteristics of swimming robots with a single helical flagellum have been extensively 
studied, the characteristics of maneuverability have not been completely investigated yet. This study presents a new method 
for the maneuverability of the helical swimming robot with a single helical flagellum. This mechanism is based on the change 
in the angle between the helical and body axes. This study shows that a change in the aforementioned angle can enable the 
swimming robot to have turning maneuvers in clockwise or counterclockwise directions. Moreover, the swimming robot 
will move in a straight line if the helical and body axes are parallel. To investigate this new method and predict the robot’s 
behavior at various inclination angles, a hydrodynamics model is used. To validate the hydrodynamics model, an experi-
mental prototype of a macro-size swimming robot with specific inclination angles is fabricated. The results indicate that 
the helical swimming robot swims on circular trajectories through specific inclination angles between the helical flagellum 
and the body axis. Moreover, the radius of curvature decreases by increasing the inclination angle. Results of the validated 
hydrodynamics model indicate that the turning velocity has approximately a constant value at different inclination angles 
depending on the rotational frequency and geometrical parameters of the swimming robot. Finally, the effects of geometrical 
parameters of the body and the helical flagellum on the radius of curvature and turning velocity are investigated through the 
proposed hydrodynamics model. The verified results indicate that the hydrodynamics model provides a viable alternative 
model to predict the behavior of a helical swimming robot at various inclination angles within a range of design variables. 
This new method can be introduced as a mechanism for maneuverability of the helical swimming robots with a single helical 
flagellum and will be able to control the parameters in this type of swimmers for the implementation of predefined missions.
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Abbreviations
dbody  Cylindrical body diameter (mm)
Lbody  Cylindrical body length (mm)
2b  Helical tail diameter (mm)
2hhelix  Helical wave amplitude (mm)
Ltail  Helical tail’s length (mm)
Ltotal  Overall length of swimmer robot (body 

length + helical tail) (mm)
β  Pitch angle (°)

α  Inclination angle (°)
λ  Helical wave length (mm)
n  Number of wavelengths (−)
W  Total weight (g)
Dmotor  DC-motor diameter (mm)
Lmotor  DC-motor length (mm)
Vmotor  Voltage of motor (V)
volbattery  Volume of battery  (m3)
Vbattery  Voltage of battery (V)
ρ  Density of test fluid (Kg/m3)
v  Kinematic viscosity (cSt)
f  Spinal propulsive frequency (Hz)
G  The center of mass G =

(
xg, yg, zg

)
 (mm)

B  The center of buoyancy B =
(
xB, yB, zB

)
(mm)

�⃗Fhelix  Propulsive force in x-direction
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��⃗Mhelix  Torque resulting from fluid reaction on the 
helical tail

�⃗Fbody,
��⃗Mbody  Viscous drag and torque acting on the body

�⃗Fe,
��⃗Me  External forces and torques that affect the 

swimmer
df n, df t  Hydrodynamic forces acting on a cylindrical 

element of local length
�n, �t  Local drag coefficient for motion normal 

and tangential to local length
�n, �t  Components of local normal and tangential 

to local length (mm/s)
Gbody  The resistive matrix for the body
Ghelix  The resistive matrix for the helical flagella
�  Angular velocity of the swimmer robot in 

inertial coordinates Ω =
(
�̇�, �̇�, Ψ̇

)
 (rad/s)

R  Radius of curvature (mm)
U  Planer velocity of swimmer robot ( mm∕s)

v  Velocity of the swimmer robot in body-fixed 
coordinates v =

(
vx, vy, vz

)
 ( mm∕s)

V  Velocity of the swimmer robot in inertial 
coordinates V =

(
Vx,Vy,Vz

)
 ( mm∕s)

Ω  Angular velocity of the swimmer robot in 
body-fixed coordinates � =

(
�x,�y,�z

)
(rad∕s)

1 Introduction

Swimming robots are effective devices for various medi-
cal and industrial applications with predefined missions 
based on their micro- or macro-scale dimensions, since 
their motion is inspired by mechanisms of locomotion in 
microorganisms. Medical applications, such as delivering 
targeted drug, destroying blood clots in arteries, and imag-
ing damaged areas, are some examples to which micro-
sized swimming robots can be applied (Edd et al. 2003; 
Nelson et al. 2010; Feng and Cho 2014). As an industrial 
application, macro-scale swimmers can inspect and image 
the pipes that carry highly viscous fluids. Therefore, in 
view of different applications considered for such swim-
ming robots, it is essential to investigate their maneuver-
ability, controllability, and movability in different direc-
tions. In this respect, in low-Reynolds number conditions, 
microorganisms with helical flagellums are considered 
efficient swimmers with regard to their propulsion forces 
(Purcell 1997). Inspired by this fact, researchers have 
attempted to carry out extensive research studies on these 
swimmers and, then, design and fabricate them for several 
applications. In the studies with internal actuation, the lin-
ear propulsion characteristic (the straight locomotion as in 
movement in a straight line) of helical swimming robots 
with a single flagellum was analyzed experimentally in 

an unbound fluid condition (Behkam and Sitti 2006; Xu 
et al. 2015) or inside circular channels (Tabak and Yesily-
urt 2013; Temel and Yesilyurt 2013).

Brennen and Winet (1977), Johnson and Brokaw (1979), 
Pak and Lauga (2014), and Elgeti et al. (2015) presented 
a review of propulsion parameters of microorganisms with 
theoretical models. In addition, Keller and Rubinow (1976) 
investigated the geometrical properties and swimming tra-
jectories for swimming robots using the aforesaid hydrody-
namic models.

For more than 50 years, hydrodynamics modeling of 
prokaryote microorganisms with helical tails has received 
much attention. In this regard, Gray and Hancock in 1955 
put forward well-known theories of the resistive force theory 
(RFT) and slender body theory (SBT). Subsequently, Light-
hill and Lighthill (1975) improved the SBT theory by con-
sidering the flow around the helical tail and the body–fluid 
interaction.

Other studies (e.g., studies of Nourmohammadi et al. 
2016; Chen et al. 2010) on maneuvering of the helical swim-
mer considered multiple flagella actuated by several motors 
and introduced more rotating tails with various angular 
velocities generated by three-dimensional maneuverability. 
One of the major disadvantages of using several flagella is 
an increase in the size of the body and the degradation of 
motors.

In this paper, a new method is used that enables a sin-
gle helical robot to have clockwise or counterclockwise 
maneuvers.

To the best of the authors’ knowledge, there are no theo-
retical and experimental studies which have investigated and 
used this method, which can perform reorientation maneu-
vers on a single helical swimming robot with an internal 
actuation during swimming.

This study intends to clarify that the helical swimming 
robot can maneuver in a clockwise or counterclockwise 
direction through an inclination angle between body axis 
and helical flagellum. In addition, this study will show how 
this angle could affect the rotational velocity and trajectory. 
This paper is organized as follows. In Sect. 2, geometric and 
kinematic models of the swimmer and related equations of 
motion are presented; then, a hydrodynamics model based on 
RFT method is used to predict trajectories of the swimmer at 
various simulated inclination angles. In Sect. 3, an experi-
mental prototype of a macro-scale swimming robot with 
specific inclination angles is fabricated to verify the hydro-
dynamics model. Then, experimental data are compared to 
the results of the proposed model. In Sect. 4, the behavior 
of the swimming robot at different inclination angles is pre-
dicted using the proposed hydrodynamics model. Moreover, 
the relationship of the inclination angles with the radius of 
curvature and rotational and angular velocities is illustrated. 
Finally, the effects of geometrical parameters of the body 
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and helical flagellum on the maneuverability characteristics 
are investigated.

2  Hydrodynamics modeling 
of a single‑flagellum swimming robot

2.1  Definition

In this study, a swimming robot is designed and fabricated, 
which is inspired by the structure of prokaryote microorgan-
ism with a monotrichous flagellation. This robot is com-
posed of two main sections: an elliptical body and a helical 
flagellum, whose geometry can be observed in Fig. 1. In this 
figure, 

(
Dbody

)
 is the diameter, and ( Lbody) is the length of 

an elliptical body, which is connected to a helical flagellum 
by coupling. ( 2hhelix) , ( �) , ( 2b), and(� ) are the helical wave 
amplitude, the helix pitch angle, the diameter of helix cross 
section, and wavelength, respectively, with the wavelength 
number (n). The swimmer is propelled forward as the helical 
flagellum spins at angular velocity of� in a counterclockwise 
direction around its main axis.

The inertial coordinate frame is denoted by (X, Y , Z) and 
the body-fixed coordinate frame by 

(
ex, ey, ez

)
 , which are 

attached to the mass center of the swimmer’s body. To inves-
tigate the proposed method, the angle between the axis of 
the helical flagellum and the swimmer’s body axis ( ex ) is 
defined as the inclination angle (�) , which is in the range of 
{0 ≤ 𝛼 < 90} (Fig. 2).

In this paper, it is assumed that the helical propulsion 
system is composed of a single helical flagellum and an 
internal actuation system. When the axis of the heli-
cal flagellum is aligned with its body axis, the center of 
mass CG =

(
xg, yg, zg

)
 is parallel to the center of buoyancy 

B =
(
xB, yB, zB

)
 . When the axis of a helical flagellum is 

inclined towards its body axis, the variation of the mass 
center becomes small enough to ignore. Therefore, the trans-
lation and orientation of the swimming robot can be defined 
according to the center of mass position 

(
CG =

(
xg, yg, zg

))
 . 

A helical swimming robot swims with linear velocity of 
v =

(
vx, vy, vz

)
 and angular velocity of � =

(
�x,�y,�z

)
 , 

caused by the rotation of the helical flagellum in the body-
fixed coordinate (Fig. 3).

2.2  Dynamics modeling

The governing equations of motion are used to investigate 
the forces and torques exerted on the body of the swimming 
robot when the inclination angle is considered. To simplify 
the calculations and eliminate wall effects, a proper dis-
tance between the swimmer and tank walls is considered 
during swimming. Other assumptions considered in these 
computations include the slenderness of the helical flagel-
lum ( b ≪ Ltail ) and the ellipsoidal shape of the body of the 
swimming robot, which are different from the physical robot 
used in the experimentations. Figure 4 shows the directions 
of the torques and forces generated by the inclination angle 
between the helical flagellum and body axis.

When the helical flagellum axis is aligned with the swim-
mer’s body axis, the thrust force generated by the helical 
flagellum is in parallel with the body axis, and the swimmer 
moves in a straight path. However, when the axis of the heli-
cal flagellum is not collinear with the symmetry axis of the 
body, the inclination angle is implemented, and the swimmer 
rotates in a specific direction, which will be discussed later. 

Fig. 1  Geometric parameters of the helical swimming robot in the 
body reference frame

Fig. 2  Schematic illustration of the angle� as the angle between 
the helical flagellum and the body axis in the analytical range of 
{0 ≤ 𝛼 < 90}

Fig. 3  Schematic model of the helical swimmer robot with its selec-
tive frames
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Due to the inclination angle between the helical flagellum 
and the body axis, two components of thrust force are pro-
duced in ex and ey directions. Therefore, components of the 
thrust force produce a torque on the body whose rotation 
axis is perpendicular to the axis of the helical swimmer’s tra-
jectory. Considering the condition of low-Reynolds numbers 
and lack of acceleration, the governing equations of motion 
can be defined by considering the inclination angle in the 
force free–torque free manner as follows:

In the above equations, �⃗FThrust = (FThrust
x

,FThrust
y

, 0) and 
��⃗Mhelix = (Mhelix

x
,Mhelix

y
, 0) consist of the overall viscous 

forces and torques acting along the helical flagellum on xy 
plane; ����⃗PG =

(
PGx, PGy, PGz

)
 is the distance from the posi-

tions of acting forces and torques to the mass center of the 
helical swimming robot.

�⃗Fbody =
(
F
body
x ,F

body
y , 0

)
 a n d 

��⃗Mbody =
(
M

body
x ,M

body
y ,M

body
z

)
 denote the viscous drag and 

torque acting on the swimmer’s body, respectively. ���⃗Fe and 
����⃗Me are the external forces and torques that affect the swim-
mer in different directions, which are equal to zero, since the 
swimming robot is a free swimmer. To calculate the distribu-
tion of forces and torques on the moving helix, according to 
the resistive force theory, it can be assumed that the hydro-
dynamic forces acting on the slender helix moving through 
the fluid per a small filament of length ds are locally propor-
tional to relative velocity V (Gray and Hancock 1955). These 
drag forces are considered as a tangential force component 
and a normal force component, respectively.

(1)�⃗FThrust −
�⃗Fbody =

�⃗Fe,

(2)�⃗FThrust ×
�����⃗PG + ��⃗Mhelix −

��⃗Mbody =
��⃗Me.

(3)dfn = −�nvnds, dft = −�tvtds,

where ξn and ξt are the corresponding viscous drag coeffi-
cients; vn and vt are considered as the normal and tangential 
velocity components on an infinitesimally small filament of 
length ds (Gray and Hancock 1955; Chawng and Wu 1971):

In the above equation, dFhelix
x

 and dFhelix
y

 denote the tan-
gential and normal viscous forces along the helical flagellum 
axis, respectively. The components of tangential and normal 
forces along the helical flagellum axis are derived, and the 
thrust force and required torque on a flagellum can be writ-
ten, as shown in Eq. (5):

A very important property of the linearity of the Stokes 
flow is the linear relationship among body’s velocity v, 
angular velocity � , external force F, and external torque 
M; these are in a linear relationship with each other and can 
be represented by a matrix equation of the following matrix 
format (Purcell 1997):

where [G]denotes the viscous resistance matrix with the 
hydrodynamic parameters of the helical flagellum and body, 
represented by H∈�

ij
 and B∈�

ij
 , respectively. For superscript 

∈ � , ∈denotes the force or torque, and � represents the veloc-
ity or angular velocity achieved by an acting force or a 
torque; i indicates the direction corresponding to ∈, and j 
indicates the direction corresponding to �.

The above-mentioned principles and hydrodynamics 
model for the helical swimmer were used. According to the 
physical locomotion of the maneuverable swimming robot, 
the resistance matrix of the elliptical body can be written 
as follows:

Moreover, this matrix of the helical flagellum is as 
follows:

(4)
[
dFhelix

x

dFhelix
y

]
=

[
cos(�) − sin(�)
sin(�) cos(�)

][
dfn
dft

]
.

(5)�⃗Fhelix =

n𝜆

∫
0

����⃗dFhelix,
��⃗Mhelix =

n𝜆

∫
0

�����⃗dMhelix.

(6)
[
F

M

]
= [G]5×5

[
v

Ω

]

5×1

,

(7)

⎡⎢⎢⎢⎢⎢⎣

F
body
x

F
body
y

M
body
x

M
body
y

M
body
z

⎤⎥⎥⎥⎥⎥⎦

=

Gbody

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎡⎢⎢⎢⎢⎢⎣

BFU
xx

0 0 0 0

0 BFU
yy

0 0 0

0 0 BMΩ
xx

0 0

0 0 0 BMΩ
yy

0

0 0 0 0 BMΩ
zz

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

vx
vy
Ωx

Ωy

Ωz

⎤⎥⎥⎥⎥⎥⎦

.

Fig. 4  Schematic model of swimmer robot and the direction of 
the forward and angular velocities depend on the inclination angle 
between the helical flagellum and body axis
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Since the swimming robot is a free swimmer, the solution 
for forward velocity V and angular velocity � can be found 
by substituting the values of the hydrodynamic matrices of 
the body and helical flagellum, calculated in “Appendix A”, 
in Eqs. (10–14). The results of the hydrodynamics model are 
extracted, as found in Eqs. (10–14):

According to the calculated kinematic variables, all of 
these variables include the functions of the geometrical 
parameters of the helical flagellum and swimmer body, incli-
nation angle (�) , spinning frequency, and the distance from 
the position of acting forces to the center of mass 

(
PGx

)
 . 

Parameter 
(
PGx

)
 is dependent on the distribution of the mass 

in the body and helical flagellum and the position of acting 
forces.

(8)

⎡⎢⎢⎢⎢⎢⎣

FThrust
x

FThrust
y

Mhelix
x

Mhelix
y

Mhelix
z

⎤⎥⎥⎥⎥⎥⎦

=

Ghelix

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎡⎢⎢⎢⎢⎢⎣

HFU
xx

0 HFΩ
xx

0 0

0 HFU
yy

0 HFΩ
yy

0

HMU
xx

0 HMΩ
xx

0 0

0 HMU
yy

0 HMΩ
yy

0

0 HFU
zy

0 HMΩ
zy

HMΩ
zz

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

vx
vy
Ωx − � ⋅ cos �
Ωy − � ⋅ sin �
Ωz

⎤⎥⎥⎥⎥⎥⎦

,

(9)

�
Ghelix

�
5×5

⎡
⎢⎢⎢⎢⎢⎣

vx
vy

Ωx − � ⋅ cos �
Ωy − � ⋅ sin �

Ωz

⎤
⎥⎥⎥⎥⎥⎦5×1

+
�
Gbody

�
5×5

⎡
⎢⎢⎢⎢⎢⎣

vx
vy
Ωx

Ωy

Ωz

⎤
⎥⎥⎥⎥⎥⎦5×1

=

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦5×1

.

(10)vx =
HFΩ

xx
(� ⋅ cos � − Ωx)

HFU
xx

+ BFU
xx

,

(11)vy =
HFΩ

yy
(� ⋅ sin � − Ωy)

HFU
yy

+ BFU
yy

,

(12)

Ωx = � ⋅ cos � ⋅

((HMU
xx

HFΩ
xx

) − HMΩ
xx

(HFU
xx

+ BFU
xx

))

((HMU
xx

HFΩ
xx

) − (HFU
xx

+ BFU
xx

)(HMΩ
xx

+ BMΩ
xx

))
,

(13)

Ωy = � ⋅ sin � ⋅

((HMU
yy

HFΩ
yy

) − HMΩ
yy

(HFU
yy

+ BFU
yy

))

((HMU
yy

HFΩ
yy

) − (HFU
yy

+ BFU
yy

)(HMΩ
yy

+ BMΩ
yy

))
,

(14)

Ωz =
PGx

BMΩ
zz

{
HFU

yy
vy −

� ⋅ sin �
K

}

K =
HMU

yy

(HFU
yy

+ BFU
yy

)BMΩ
yy

−
HMΩ

yy

HFΩ
yy

BMΩ
yy

−
1

HFΩ
yy

.

According to Eqs. (10–14), when the helical flagellum 
axis is aligned with the body axis 

(
� = 00

)
 , only vx and �x 

will remain, and the rest of the kinematic terms, including 
�z , will be zero. In this case, the robot swims using forward 
velocity vx and angular velocity �x in a straight path along 
axis ex.

Equations (10–14) are defined based on body coordinates. 
By defining (X, Y, Z) as inertia coordinates, the transforma-
tion of body coordinates to inertia coordinates can be done 
through Eq. (15):

where RTrans is defined as follows:

Using the kinematic variables in inertia coordinates, the 
control parameters for future closed-loop control can be 
investigated. The swimmer’s turning velocity can be com-
puted by velocity components vxandvy ; further to that, using 
the angular velocity of the swimmer at axisz , the radius of 
curvature of the circular trajectory for the in-plane motion 
will be given as follows:

3  Experimental test and model verifications

3.1  Experimental setup

In this study, an experimental prototype of a macro-scale 
swimmer robot inspired by the structure of prokaryote 
microorganism (the polar monotrichous bacterium: Vibrio) 
is used to validate the hydrodynamics model presented in 
Sect. 2.

This swimmer robot is composed of two main sections 
(body and helical flagellum), which are connected via a 
coupling. A view of this swimmer robot can be observed 
in Fig. 5.

Reynolds number can be expressed as a function of the 
relative object velocity with respect to the fluid velocity, U, 
the characteristic linear dimension Ltotal [in this paper, this 
characteristic is defined as overall length of swimmer robot 
(body length + helical tail)], the fluid density ρ, and the fluid 
dynamic viscosity µ as follows:

(15)
⎡⎢⎢⎣

Vx

Vy

Vz

⎤⎥⎥⎦
= R�R�R�

⎡⎢⎢⎣

vx
vy
vz

⎤⎥⎥⎦
,

(16)R� = 1,R� = 1,R� =

⎡⎢⎢⎣

cos� − sin� 0

sin� cos� 0

0 0 1

⎤⎥⎥⎦
.

(17)R =
U
||Ωz

||
, U = (V2

x
+ V2

y
)1∕2.
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To preserve the less-than-one Reynolds number condi-
tions, the Buckingham PI theorem is employed and the 
liquid with high viscosity and the specific helical tail 
length were used. The fluid used in this experiment was 
silicone oil, with the kinematic viscosity of 10−3

(
m2

s

)
 and 

density of 971
(
kg∕m3

)
 . The swimmer robot consists of two 

half bodies. There is enough space in each of these two 
casings for installing the needed equipment such as bat-
tery, motor, and connecting cables. Moreover, this design 
allows the equipment to be easily taken out when neces-
sary (Fig. 6).

The propulsion system that drives this swimmer robot 
is composed of a rigid helical flagellum and dedicated 
DC motor. The motor actuates the helical flagellum and 
generates a thrust force by rotating in the counterclock-
wise direction along the body’s major axis that enables 
the swimmer to move forward. The test was performed in 
a rectangular tank made of Plexiglas with dimensions of 
300mm × 300mm × 700mm . The geometrical specifica-
tions of the swimmer and test equipment have been listed 
in Table 1.

(18)Re =
�UL

�
.

3.2  Investigation of the effects of inclination angles 
on the swimming robot’s behavior

A helical swimming robot is designed, which has an inclina-
tion angle between the helical flagellum axis and its body 
axis. To determine and follow the swimmer’s trajectory, a 
free channel was calibrated, and two Cannon cameras with 
the ability of capturing 100 frames per second were used. 
The distance between the swimmer and container walls at 
both ends is large enough to ignore the effects of the wall. 
Using the calibration method, the position of the swimmer 
at different times for each inclination angle was extracted. 
To investigate the effect of different inclination angles on the 
swimmer trajectory, the helical swimmer was characterized 
with three inclination angles. In the first test, for inclination 
angle of 10°, the swimming robot travels on a circular tra-
jectory with a rough radius of 54.3 mm. The rotation of the 
swimmer at this inclination angle can be observed in Fig. 7.

To investigate the effect of increasing the inclination 
angle on the radius of swimmer’s trajectory, the inclination 
angle between the helical flagellum and body axis increased. 
The experimental results demonstrate that the increase of the 
inclination angle reduces the radius of the circular trajectory, 
such that the radii of the trajectory decrease to 36.6 and 
23.5 mm, respectively, at inclination angles of 15° and 25°. 
All the parameter values obtained for different inclination 
angles are listed in Table 2.

The experimental test shows how the swimmer with the 
inclination axis between the helical flagellum and body axis 
can swim on circular trajectories during swimming.

Fig. 5  a Microorganism with prokaryote propulsion (the polar 
monotrichous bacterium: Vibrio) (McCarter et al. 1988). b Fabricated 
biomimetic helical swimmer

Fig. 6  a Two section of the swimmer body. b Submerged robot in the 
silicon oil tank

Table 1  Specification of the helical swimmer robot and the experi-
mental setup

Parameters Definition Value Unit

dbody Cylindrical body diameter 28 mm
Lbody Cylindrical body length 42 mm
2b Helical flagellum diameter 1 mm
2hhelix Helical wave amplitude 11 mm
Lflagellum Helical flagellum’s length 32.5 mm
λ Helical wave length 13 mm
� Pitch angle 69.4 °
W Total weight 28 g
� Density of test fluid 971 kg/m3

� Kinematic viscosity 0.001
Dmotor Motor diameter 6 mm
Lmotor Motor length 18 mm
Vmotor Motor voltage 3 V
volbattery Battery volume 3.6*18*24 mm3

Vbattery Battery voltage 3.7 V
– CCD-Camera Specs 640-by-480 Pix-

els@100 fps
–
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3.3  Model verifications

Using the hydrodynamics modeling and the specifications 
of the fabricated swimming robot in Table 1, the behav-
ior of the swimming robot is simulated at three different 
inclination angles � = 10◦, 15◦, 25◦ . In this analysis, it is 
assumed that the helical tail rotates at the rotational fre-
quency of 3 Hz, and there are no fitting parameters used in 
the simulated radius of curvature. In addition, as mentioned 
earlier, parameter 

(
PGx

)
 depends on the distribution of the 

mass in the body and helical flagellum and the position of 
acting forces.

According to Eq. (19), by inclining the propulsion system 
at different inclination angles, the location of the mass center 
is almost less than 0.53 mm. Therefore, the center of the mass 
does not change significantly; by considering the fixed distri-
bution of the mass in the body and the constant position for 
the acting forces and torques (Point P), it can be concluded that 
parameter 

(
PGx

)
 is constant:

where PGx denotes the distance from the positions of acting 
forces and torques to the mass center, LAP is the distance 
between the acting position and the end of body (here, 
LAP = 3 mm), and LOG is the distance between the mass 
center and geometrical center of body ( LOG = LCG).

(19)
PGx =

L

2
− LOG − LAP

= 21 − (0.53 + 0.183 cos �) − 3

= 17.47 − 0.183 cos �,

In Fig. 8, the results of experiment and simulation of the 
helical swimming robot at the three inclination angles are 
compared with each other. The hydrodynamics model pre-
dicts that the swimming robot’s trajectory decreases by 
increasing the inclination angle in agreement with our 
experimental results. The smallest radius of curvature 
belongs to the inclination angle � = 25◦ . The largest error 
for the radius of curvature can be seen at � = 10◦ , where 
the most dominant parameter on this error is the wall effect. 
The differences between radius of curvature in the experi-
ment and the simulation results for all tests can be defined 
as follows: Rexp

Rsim

= Dif. Accordingly, it can be concluded 

that, by increasing the inclination angle, the variation of 
this difference ( Dif) value is small enough to ignore.

Fig. 7  The traveled trajectory for the helical swimmer robot with inclination angle α  = 10 , viewed from above the surface

Table 2  Experimental 
parameters obtained for 
different inclination angles

Deflection angle 
(°)

R radius 
of turning 
(mm)

10 54.3
15 36.6
25 23.5

Fig. 8  Comparison of the results of experiment and simulation for the 
helical swimming robot at the three inclination angles, viewed from 
above the surface in the constant geometrical parameters
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There are some differences in the results, for which 
the source of the errors can be discussed. Some of the 
assumptions used in this article caused the deviation 
between the results of the simulation and experiment. For 
instance, it is assumed that the walls are far enough, so 
that they will not significantly affect the behavior of the 
swimmer’s motion; this assumption is probably effective 
in the experiment. Another assumption is to ignore all 
interactions between the swimmer’s body and the heli-
cal tail. Another factor that contributes to the differences 
between the theory and experiment is the uncertainty in 
the experimental data and the uncertainty associated with 
the measurement equipment and the user.

4  Results of simulations

4.1  Simulations of traveled trajectories at different 
inclination angles

One of the important results of the hydrodynamics model 
is prediction of the trajectory that can be traveled by the 
swimming robot at different inclination angles. Depend-
ing on the various inclination angles from 0 ≤ 𝛼 < 90 , 
the swimming robot swims on different trajectories. The 
traveled trajectories corresponding to each angle are simu-
lated and depicted in Fig. 9. In all of these trajectories, the 
direction of rotation is counterclockwise because of posi-
tive angular velocity �z on axis ez , and the largest radius of 
curvature occurs at angle � = 0◦ . At this angle, the swim-
ming robot swims in a straight path. According to Fig. 9, 
the radius of curvature decreases by increasing inclination 
angle; however, in the range of 60 ≤ � ≤ 80 , the varia-
tion of the radius of curvature is approximately constant, 
and the swimming robot rotates at the radius of curvature 
close to the body length ( R ≤ Lbody) . In this range of the 
inclination angle, only the position of the center of rota-
tion changes, and the swimming robot rotates around its 
body. This behavior results from the linear relationship 
between the trajectory motion of the swimming robot and 
the inclination angle, as can be seen in Eqs. (10–14).

Furthermore, by switching (� → −�) , the direction 
of angular velocity ( �z → −�z) may change, causing 
the swimming robot to rotate in the clockwise direc-
tion. According to Fig. 10, at the inclination angle of 
α = 0°, the swimming robot travels on a straight line with 
a constant forward velocity. When the inclination angle 
is larger than zero (α ≠ 0°), the swimming robot travels a 
whole circle with a specific radius of curvature.

4.2  Investigation of the effects of different 
inclination angles on radius of curvature 
and angular velocity

In this section, the effect of different inclination angles in 
the range of 0 < 𝛼 < 90 on the radius of curvature and the 
angular velocity is investigated using the verified hydro-
dynamics model [according to Sect.  (3.3)]. Figure 11a 
shows the variation of the radius of curvature at different 
inclination angles.

Fig. 9  Simulated trajectories for the helical swimmer robot with dif-
ferent inclination angle, viewed from above the surface

Fig. 10  Schematic simulated trajectories for the helical swim-
mer robot in the inclination angle (α = 0° and α = 10°) and (α = 45°) 
viewed from above the surface
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According to this figure, the radius of curvature decreases 
by increasing the inclination angle, and the highest variation 
belongs to the range of 0 < 𝛼 ≤ 30 . However, in the range 
of 60 ≤ � ≤ 80 , the variation of the radius of curvature is 
approximately constant, and the swimming robot rotates by 
the constant radius of curvature ( R ≤ Lbody).

The results of the angular velocity in Z-direction or 
Yawing motion can be seen in Fig. 11b. The hydrodynamic 
parameters include a function of the rotational frequency of 
the helical flagellum, the geometrical parameters of body 
and tail, the distance between the positions of acting forces 

and torques from the center of mass of the helical swimming 
robot ( PGx ), and the inclination angles. By considering the 
constant values of all parameters (the rotational frequency, 
the distance from the position of acting forces and torques 
to the center of mass ( PGx ), and the geometrical parameters 
for body and tail), when the inclination angle increases in the 
range of 0 ≤ 𝛼 < 90 , the angular velocity and turning torque 
will increase in Z-direction.

Consequently, the variations of the radius of the curvature 
and the angular velocity in the range of 30 < 𝛼 < 90 are 
small enough to ignore, whereas the most effective range for 
variations in radius of curvature and the angular velocity is 
in the range of 0 < 𝛼 ≤ 30.

Figure 11c shows the variation of turning velocity at dif-
ferent inclination angles. According to this figure, the vari-
ation of turning velocity is  in the range of 
5.45 ≤ U

(
mm

s

) ≤ 5.55 . Since the variation is very small, it 

can be concluded that the turning velocity has approximately 
constant values at different inclination angles, and it is a 
function of the rotational frequency and the geometrical 
parameters of the body and helical flagellum. Hence, it can 
be assumed that the swimming robot swims with a constant 
turning velocity at different inclination angles, considering 
the constant specification of the body and tail geometrical 
parameters at a constant rotational frequency.

4.3  Investigation of the effects of geometrical 
parameters on radius of curvature and turning 
velocity

According to Fig. 12, the effects of the geometrical param-
eters of the swimmer’s body, such as diameter 

(
dbody

)
 and 

length ( Lbody) , are examined. In this research, it is consid-
ered that the distribution of the mass in the body is fixed; 

Fig. 11  a Variation of radius of curvature, b variation of angular 
velocity, and c turning velocity in different inclination angles

Fig. 12  Dependence of radius of curvature on the geometrical param-
eters of the swimmer body (dbody , L)
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therefore, the variation of the mass center is small enough 
that can be ignored. In addition, the position of acting force 
and torques (Point P) is fixed.

When the swimming robot has a thin body, it travels in a 
circle path with small radius of curvature while increasing 
the inclination angle. By increasing the diameter of the 
swimming body, the radius of curvature becomes larger than 
the thin shape, and the robot swims less quickly. Indeed, as 
the diameter of body increases, the drag force increases; 
then, the radius of the curvature increases, and the turning 
velocity of swimming robot decreases. Figure 13a–c show 
the effects of the normalized geometrical parameters of the 
helical flagellum, such as the wave amplitude

(
hhelix

L

)
 , the 

radius of helix cross section ( b
L
) , and the number of wave-

length (n ), on the radius of curvature and the turning veloc-
ity. In these figures, the dependence of the radius of curva-
ture (R) on the three parameters is found to be decreasing as (
hhelix

L

)
 , ( b

L
) , and (n ) increase. The variations of the turning 

velocity in different geometrical parameters of the swimmer 
body and helical flagellum are listed in Table 3. The turning 
velocity decreases with 

(
dbody

Lbody

)
 and increases with increasing 

(
hhelix

L

)
 and(n ). According to this table, the variation of ( b

L
) is 

small enough to ignore in the simulation.

5  Conclusions

Many researchers have argued that helical propulsion is 
an appropriate and practical method for swimming in low-
Reynolds number conditions. Although the linear propulsion 
characteristics of the helical swimmers have been studied 
extensively, the maneuverability characteristics of the swim-
ming robot actuated by an internal actuation have not yet 
been elaborated clearly.

In this paper, a new method for maneuverability of the 
helical swimming robots with a single helical flagellum was 
introduced. A new method used here involves considering the 
inclination angle between the helical and body axes, so that 
the swimming robots can perform clockwise or counterclock-
wise turning maneuvers and move in a straight line. To inves-
tigate this new method and predict the swimmer’s behavior 
at different inclination angles, the hydrodynamics model was 
presented based on the resistive force theory (RFT). Then, 
the swimmer’s trajectories and hydrodynamic parameters, 
including its linear and angular velocities, at different incli-
nation angles were extracted. Furthermore, an experimen-
tal prototype of a macro-size swimming robot with specific 
inclination angles was fabricated and tested to validate the 
presented hydrodynamics model. A comparison of obtained 
results indicated the good agreement between the theoretical 

and experimental results. The swimmer’s behavior at different 
inclination angles was predicted using the validated hydro-
dynamics model. The results confirmed that the inclination 
angle caused the swimming robot to travel in the circular path; 
in addition, by increasing the inclination angle, the radius of 
curvature decreased. The highest variation was found in the 
range of 0 < 𝛼 ≤ 30 ; however, in the range of 60 ≤ � ≤ 80 , 

Fig. 13  Dependence of radius of curvature on the geometrical param-
eters of the helical flagellum
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the variation of the radius of curvature was approximately con-
stant, and the swimming robot rotated at a constant radius of 
curvature ( R ≤ Lbody) . This maneuverability behavior resulted 
from the torque magnitude at different inclination angles, lead-
ing the swimming robot to undergo yaw motion; this torque 
increased by increasing inclination angle.

Finally, the hydrodynamics model illustrated that the turn-
ing velocity only depended on the rotational frequency and the 
geometrical parameters of the swimming robot; accordingly, by 
considering the constant values of the geometrical parameters, 
the turning velocity has constant value at different inclination 
angles. Using the extracted hydrodynamics model, the effect 
of geometrical parameters of body and helical flagellum was 
investigated on the radius of curvature and turning velocity. The 
results indicated that the radius of curvature increased and the 
turning velocity decreased due to the drag force exerted on the 
bluff body. In addition, by increasing the length and amplitude 
of the helical flagellum, the swimming robot traveled in circular 
paths with a smaller radius of curvature.

Therefore, for the swimming robot with a longer tail and a 
small-sized body, the turning velocity increased and the radius 
of curvature decreased.

The compared results indicated that this hydrodynamics 
model provided a viable alternative model for predicting the 
behavior of the helical swimming robot at various inclination 
angles in a range of design variables discussed here. In future 
works, a new mechanism with the ability to generate the incli-
nation angle will be presented. In doing so, we will be able to 
control the parameters of this type of swimmers to accomplish 
predefined missions.

Appendix A

Hydrodynamics parameters

In this appendix, we present the value of the hydrodynamics 
parameters of the helical flagellum and body, which are rep-
resented by H��

ij
 andB��

ij
 , respectively:
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