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Abstract
This paper addresses the effects of the slip boundary condition on dynamics and pull-in instability of carbon nanotubes 
(CNTs) containing internal fluid flow. Both the clamped–clamped and the cantilever boundary conditions are considered. 
The structure of CNTs is modelled using the size-dependent strain gradient theory (SGT) of continuum mechanics. It is 
shown that the Knudsen number (Kn) has a significant effect on the static and dynamic CNT response due to pull-in voltage 
loading and the existence of the instability region.

1  Introduction

CNTs attract much attention nowadays due to their superior 
mechanical, thermal and electrical properties and also their 
numerous applications (Iijima 1991; Yamamoto et al. 2012; 
Umeda et al. 2012; Xu et al. 2012; Che et al. 1998; Evans 
et al. 1996). A remarkable number of studies in this field 
have been conducted, especially concerning the fluid–struc-
ture interaction. For instance, Yoon et al. (2005) studied free 
vibration and instability of CNTs with internal fluid. Wang 
et al. (2008) investigated buckling instability considering 
the effect of the Van der Waals force, and Zhang and Fang 
(Zhen and Fang 2010) presented the thermal and nonlocal 
effects on vibration for both CNT and the conveyed fluid. 
The aspect ratio, the viscosity effect and elastic medium 
parameters, as well as the nonlocal effect, were considered 
by Chang and Lee (2009). Kaviani and Mirdamadi (2013) 
studied the wave propagation phenomena in CNTs with 
internal fluid, using the strain/inertia gradient theory and 
considering the slip boundary condition and Knudsen num-
ber in the solid–fluid interaction. Furthermore, in Kaviani 
and Mirdamadi (2012), they presented the effect of Kn and 
the slip boundary condition coupling on the viscosity of the 
nanofluid which passes through a CNT.

Generally, we can distinguish the following regimes of 
flow (Kaviani and Mirdamadi 2012; Mirramezani and; Mir-
damadi 2012; Kucaba-Piętal 2004): (1) 0 < Kn < 10− 2 for the 
continuum flow regime; (2) 10− 2<Kn < 10− 1for the slip flow 
regime; (3) 10− 1 < Kn < 10 for the transition flow regime; 
and (4) Kn > 10 for the free molecular flow regime. In this 
paper, we consider the interval 0 < Kn < 10− 1. It contains 
both the continuum and the slip flow regimes. From the 
point of view of modelling, the commonly known govern-
ing equations for the conventional fluid–structure interaction 
problems result from the assumption of no-slip boundary 
conditions. However, if we consider the influence of Kn 
on the CNT behaviour, this condition is no longer valid. 
Therefore, we have to use the conventional Navier–Stokes 
equations satisfying the slip boundary conditions on the tube 
walls and then find out an average velocity correction factor 
that relates the average velocity of the no-slip and the slip 
boundary conditions to each other.

The effects of the slip and no-slip boundary conditions, 
and Kn can be found in the literature. Kaviani et al. (Kavi-
ani and Mirdamadi 2012) studied the effects of Kn and the 
slip boundary condition for a nanoflow passing through a 
nanotube. Mirramezani et al. (Mirramezani and Mirdamadi 
2012a, b) studied vibrational behaviour of CNTs considering 
small-size effects for both the slip boundary condition on 
fluid flow and the solid structure using the Euler–Bernoulli 
plug flow theory. Wave propagation of CNTs conveying 
fluid was studied by Kaviani et al. (Kaviani and Mirdamadi 
2013) in which the slip boundary condition was considered 
based on the gradient theory of continuum mechanics. Mir-
ramezani et al. (2013) proposed a new model for 1D coupled 
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vibrations of CNTs conveying fluid in which they took into 
account the slip boundary condition using Kn and the size-
dependent continuum theories.

Research in nanotechnology is often multidisciplinary. 
For instance, the study of micro/nanoelectromechanical 
systems (MEMS and NEMS) is an important research area 
which includes the concepts of basic sciences as well as 
mechanical and electrical engineering. The most effective 
and applicable technique to actuate NEMS is the electro-
static actuation method (Fakhrabadi et al. 2013). Dequesnes 
et al. (2002, 2004) investigated the deflection and the static 
pull-in of CNTs under electrostatic actuation considering 
the Van der Waals force. Rasekh and Khadem (Rasekh et al. 
2010) studied the static and dynamic behaviour of CNTs 
under the electrostatic and Van der Waals force. Ouakad 
and Younis (2010) studied the nonlinear dynamics of CNTs 
with the clamped–clamped and the cantilever boundary 
conditions under DC and AC electrical excitations. Haj-
nayeb et al. (Hajnayeb and Khadem 2012) presented forced 
vibration of a double-wall CNT under the axial force and 
AC–DC complex electrostatic actuations. Fakhrabadi et al. 
(2013) investigated the influence of the fluid flow on static 
and dynamic behaviour of electrostatically actuated CNTs 
with cantilever and doubly clamped boundary conditions, 
using SGT. More recently, some researchers have studied the 
vibration and instability of nano- and micro-tubes conveying 
fluid (Ghazavi and Molki 2018; Guo et al. 2018; Zhang et al. 
2017, 2016; Wang et al. 2016).

The main purpose of this paper is to study the effects 
of the slip and no-slip boundary conditions on the pull-in 
instability and dynamics of the clamped–clamped and the 
cantilever CNTs conveying fluid, utilizing the SGT, to con-
sider the small-scale effect of the nano-structure. The value 
of Kn is in the interval 0 < Kn < 10− 1 ,which includes the slip 
boundary conditions on the CNT wall. We show the effect of 
the fluid velocity on the static and dynamic pull-in instability 
in the presence of different values of Kn. Finally, we study 
the effects of the slip and no-slip boundary conditions on the 
flutter (dynamic instability) and the buckling (static instabil-
ity) of the CNTs under the electrostatic force.

2 � System description and mathematical 
formulation

We consider a fluid conveying CNT (Fig. 1). The CNT is 
clamped over a metal plate with an initial gap (G0). A potential 
difference (V) is applied to the CNT (the positive electrode) 
and the metal plate (the negative electrode). Thus, the CNT is 
subjected to an electrostatic distributed load. Generally, the 
value of this electrostatic force is associated with the deflec-
tions of the CNT. The deflection corresponds to the applied 
voltage as long as the elastic force of the CNT can balance the 

attractive force resulting from the applied voltage. However, at 
some point the tip of the cantilevered CNT or the centre of the 
doubly clamped CNT suddenly drops on the metal plate. This 
phenomenon is called pull-in instability and the corresponding 
voltage is called the pull-in voltage.

Since the classical elasticity theory often fails to predict the 
mechanical behaviour of the micro/nanostructures precisely, 
some researchers have tried to develop non-classical elasticity 
theories to enhance the accuracy and capability of numerical 
modelling techniques to predict of desired behaviour. Accord-
ing to the SGT, the strain energy U of an isotropic linear elastic 
material with volume Ω under an infinitesimal deformation 
can be formulated as follows (Kahrobaiyan et al. 2011):

where �ij, �j, �
(1)

ijk
,� s

ij
 denote components of the strain tensor, 

P is the dilatation gradient vector, γ is the deviatoric stretch, 
�1 the gradient tensor, and � s is the symmetric part of the 
rotation gradient tensor. They are defined by the following 
relations:

(1)

Us =
1

2 ∫ ∫ ∫
Ω

(

�ij�ij + Pi�j + �
(1)

ijk
�
(1)

ijk
+ ms

ij�
s
ij

)

dV ,

(2)�ij =
1

2

(

�iuj + �jui
)

,

(3)

�(1)ijk =
1

3

(

�i�jk + �j�ki + �k�ij
)

−
1

15

[

�ij
(

�k�mm + 2�j�mk
)

+�jk
(

�i�mm + 2�m�mi
)

+ �ki
(

�j�mm + 2�m�mj
)]

,

(4)�i = �i�mm,

Fig. 1   A schematic diagram of electrostatically actuated CNTs con-
veying fluid
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where ui, �i denote the components of the displacement 
vector and infinitesimal rotation vector, respectively. The 
conjugated force parameters for �, � , �(1) and� s are denoted 
by �,P, �(1) and ms , respectively, where the first one is the 
classical stress tensor and the next ones are the higher order 
stresses. They are defined as follows (Kahrobaiyan et al. 
2011):

where � and � are Lame’s constants and l0, l1, l2 are the mate-
rial length scale parameters corresponding to the dilatation 
gradient, the deviatoric stretch gradient and the rotation 
gradient, respectively. Substituting Eqs. (7–10) into Eq. (1), 
applying the Hamilton principle and using some mathemati-
cal calculations, we obtain the equation of motion of the 
CNT (Fakhrabadi et al. 2014):

where

and E, I,G,A,w, x,N, c,L , and t are elastic modulus, moment 
of inertia, shear modulus, cross-sectional area, deflection, 
axial coordinate, axial force, damping coefficient, length of 
the CNT, and time, respectively.

Next, we define the boundary conditions for cantile-
ver and doubly clamped CNTs with Eqs.  (16) and (17), 
respectively:

(5)
� s

ij =
1

2

(

eipq�p�qj + ejpq�p�qi
)

,

(6)�i =
1

2
[curl(u)]i,

(7)�ij = �tr(�)�ij + 2G�ij,

(8)pi = 2l2
0
G�j,

(9)�
(1)

ijk
= 2l2

0
G�

(1)

ijk
,

(10)mij = 2l2
2
G�ij,

(11)S
�4w

�x4
− K

�6w

�x6
− N

�2w

�x2
+ m

�2w

�t2
+ c

�w

�t
= q(x, t),

(12)S = EI + GA
(

2l2
0
+

120

225
l2
1
+ l2

2

)

,

(13)K = GI
(

2l2
0
+

4

5
l2
1

)

, m = �A,

(14)N = N0 +
EA

2L

L

∫
0

(

�w

�x

)2

dx,

(15)q(x, t) = qfluid + qelec,

The distributed external force in Eq. (11) comprises 
the electrostatic force and the force which results from the 
fluid flow through the CNT.

The electrostatic force can be written as (Dequesnes 
et al. 2002)

where �0,V ,R and G0 represent the electrical permittivity of 
the vacuum (= 8.854 PF), voltage, the radius of the CNT and 
the initial gap, respectively.

The force resulting from the fluid flow including the slip 
boundary condition can be obtained as follows:

We follow the considerations by Beskok and Karni-
adakis (1999). Within this model, the equation based on 
experimental data is postulated in the following form:

where b is a general slip coefficient. Choosing b = − 1, Us 
is the slip velocity of the fluid near the CNT wall surface, 
Uw is the axial rigid body solid wall velocity, and n is the 
outward unit vector normal to the CNT wall surface. The 
parameter σv is the tangential momentum accommodation 
coefficient and is assumed to be 0.7 for practical purposes 
(Shokouhmand et al. 2010).

In this paper, Eq. (19) is used to model the slip velocity 
boundary condition in the Navier–Stokes equations. Up to 
now, for conventional FSI problems, no-slip boundary condi-
tions were considered, in which the influence of Kn on CNTs 
was not included. Thus, the conventional Navier–Stokes 
equations are used but the slip boundary conditions on the 
tube walls are satisfied and an average velocity correction 

(16)
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�x
=
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�x2
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− K
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� ,
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)(
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)

r=R
,
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factor is established, which relates to the average velocity of 
the no-slip and slip boundary conditions.

Therefore, a fully developed, incompressible, viscous 
fluid flow of constant density and viscosity is consid-
ered. Since the Newtonian fluid with a constant pres-
sure gradient and negligible effect of gravitational body 
force is taken into account, the Navier–Stokes equations 
are  (Shames 1962):

where ρ is the mass fluid density, P is pressure, and D
Dt

 is the 
material derivative. In the slip regime, the effective viscos-
ity of the fluid is considered, which, according to Beskok 
and Karniadakis model (Beskok and Karniadakis 1999) is:

where the coefficient α can vary from zero to a constant 
value, according to the formula (Karniadakis et al. 2006):

where �1 = 4 and B = 0.04 are experimental data and �0 can 
be obtained from the free molecular regime:

The solution of Eq. (20) in the axial direction of cylindrical 
orthogonal coordinates is  (Shames 1962):

Hence, to obtain C, we use Eq. (19):

where R is the inner radius of the CNT. Substituting Eq. (25) 
into Eq. (26) leads to the slip and no-slip velocities:

The VCF coefficients are defined as follows:

(20)𝜌
D��⃗U

Dt
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,
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1
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(
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(
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)

(
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)

]

,
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1

4�0

(

�p

�x

)

(

r2 − R2
)

.

(27)

VCF =
Uavg-slip

Uavg-noslip

=
1

Cr(Kn)

(

4

(

2 − �v
�v

)

(

Kn

1 − bKn

)
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)

.

Finally, the following equation for external force due to 
the fluid flow is obtained  (Wang and Ni 2009):

where mf ,P
∗,mc,� and Ai represent the fluid mass, fluid 

pressure, mass of the CNT per unit length, fluid viscosity 
and fluid cross-section, respectively. Substituting Eqs. (28) 
and (18) into Eq. (11) leads to the equation of motion of a 
CNT conveying fluid:

where (P∗A − N)
�2w

�x2
 is equal to zero for the CNTs.

3 � Solution

We define the following non-dimensional parameters:

Substituting the above non-dimensional parameters into 
Eq. (30), we have:

where the lateral displacement w(x̂, t̂) consists of a static part 
and a dynamic part:

3.1 � Static analysis

Ignoring the inertia terms in Eq. (31), the static equation is 
represented by the relation:

(28)

qfluid =
[

mf (VCF)
2U2
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+ P∗A

]
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= qelec,

(30)
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,
⌢
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R
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,
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t

t∗
, t∗ =

√

(mc + mf )L
4

EI
,
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(

mf

EI

)
1

2
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(31)

𝜕4ŵ

𝜕x̂4
− 𝛼1

𝜕6ŵ

𝜕x̂6
+ 𝛼2

𝜕2ŵ

𝜕x̂2
+ 𝛽
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𝜕x̂𝜕t̂
+ 𝛾
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𝜕t̂2
− 𝛿

𝜕3ŵ

𝜕x̂2𝜕t̂

− 𝜉
𝜕3ŵ

𝜕x̂3
+ 𝜁

𝜕ŵ

𝜕t̂
= 𝛼q̂elec,

(32)ŵ(x̂, t̂) = ŵs(x̂) + ŵd(x̂, t̂).
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To solve the above equation, we use the step-by-step lin-
earization method (SSLM) (Talebian et al. 2010), where the 
voltage and the deflection in the Kth step are VK and ŵK , and 
in the (K + 1)th step VK+1 and ŵK+1 . The resultant deflections 
in the (K + 1)th step can be written as

Hence, for the (K + 1)th step, Eq. (33) can be rewritten as

Now, for the investigation of a small value of �V  , 𝜓(x̂)

should be small enough; therefore, using the calculus of 
variation theory and Taylor’s series expansion about ŵK , 
and applying the truncation to its first order for a suitable 
value of �V  , it is possible to obtain desired accuracy. So, the 
linearized equations to calculate 𝜓(x̂) are:

The expansion theory is used to solve the above equa-
tion (Younis and Nayfeh 2003):

where �j is the jth free vibration mode shape of the CNT. 
Substituting Eq. (37) into Eq. (36), multiplying both sides 
by �i and applying the Galerkin method, we have:

where Kij = Km
ij
+ K

f

ij
− Ke

ij
 and Fi are:

(33)
𝜕4ŵs

𝜕x̂4
− 𝛼1

𝜕6ŵs

𝜕x̂6
+ 𝛼2

𝜕2ŵs

𝜕x̂2
− 𝜉

𝜕3ŵs

𝜕x̂3
= 𝛼q̂elec(V , ŵ).

(34)
Vi+1 = Vi + 𝛿V ,

ŵi+1
s

= ŵi
s
+ 𝛿ŵ = ŵi

s
+ 𝜓 (x̂) .

(35)

𝜕4ŵK+1
s

𝜕x̂4
− 𝛼1

𝜕6ŵK+1
s

𝜕x̂6
+ 𝛼2

𝜕2ŵK+1
s

𝜕x̂2
− 𝜉

𝜕3ŵK+1
s

𝜕x̂3
= 𝛼q̂elec

(

VK+1, ŵK+1
)

.

(36)

𝜕4𝜓

𝜕x̂4
− 𝛼1

𝜕6𝜓

𝜕x̂6
+ 𝛼2

𝜕2𝜓

𝜕x̂2
− 𝜉

𝜕3𝜓

𝜕x̂3
− 𝛼

𝜕q̂elec

𝜕ŵK
s

𝜓 − 𝛼
𝜕q̂elec
𝜕V

𝛿V = 0.

(37)𝜓(x̂) =

N
∑

j=1

aj𝜑j(x̂),

(38)
N
∑

j=1

Kijaj = Fi, i = 1,… , n,

(39)

Km
ij
=

1

∫
0

𝜑i𝜑
i𝜐
j
dx̂ − 𝛼1

1

∫
0

𝜑i𝜑
𝜐i
j
dx̂,

K
f

ij
= 𝛼2

1

∫
0

𝜑i𝜑
��

j
dx̂ − 𝜉

1

∫
0

𝜑i𝜑
���

j
dx̂,

Ke
ij
= 𝛼

𝜕q̂elec

𝜕ŵK
s

1

∫
0

𝜑idx̂,Fi = 𝛼
𝜕q̂elec
𝜕V

𝛿V

1

∫
0

𝜑idx̂.

3.2 � Dynamic analysis

To solve the dynamic behaviour of the CNTs conveying 
fluid under DC voltage, the expansion theory is applied to 
Eq. (31) as follows (Karniadakis et al. 2006):

Next, substituting Eq. (40) into Eq. (31), multiplying both 
sides by �i and applying the Galerkin method lead to:

where M, K, C and F are mass, stiffness, damping matrices 
and the force vector, respectively, and are defined as follows:

Due to the complexity of the self-excited nonlinear 
Eq. (41), this equation is solved step by step in the time 
domain. In other words, at each discrete time step, the non-
linear forcing vectors are calculated based on the results of 
the previous step. In this method, if the time steps are suf-
ficiently small, acceptable results can be obtained.

(40)wd(x̂, t̂) =

N
∑

j=1

𝜑j(x̂)qj(t̂).

(41)
N
∑

j=1

Mijq̈j(t̂) +

N
∑

j=1

Cijq̇j(t̂) +

N
∑

j=1

Kijqj(t̂) = Fi,

(41)

Mij = 𝛾

1

∫
0

𝜑i𝜑jdx̂,

Kij =

1

∫
0

𝜑���

i
𝜑jdx̂ + 𝛼2

1

∫
0

𝜑���

i
𝜑jdx̂ − 𝛼1

1

∫
0

𝜑𝜐i
i
𝜑jdx̂ − 𝜉

1

∫
0

𝜑���

i
𝜑jdx̂,

Cij = 𝛽

1

∫
0

𝜑�

i
𝜑jdx̂ + 𝜁

1

∫
0

𝜑i𝜑jdx̂ − 𝛿

1

∫
0

𝜑��

i
𝜑jdx̂,

Fi = 𝛼

1

∫
0

𝜑iq̂elec(V , ŵ)dx̂.

Table 1   The comparison of the static pull-in voltage of CNTs

Boundary condi-
tion

Length scale 
(nm)

Fakhrabadi et al. 
(2013)

Present

C–F 0.1 0.43 0.41
0.4 0.64 0.62
0.5 0.72 0.71

C–C 0.1 6.00 6.12
0.4 7.20 7.36
0.5 7.80 7.73
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4 � Numerical results

This section presents the results obtained from Eq. (41).

4.1 � Validation

To validate our results, two verification procedures have 
been performed. In Table 1, static pull-in voltage is com-
pared with the results of Seyyed Fakhrabadi et al. (2013) and 
in Table 2 dynamic behaviour is compared with the results 
of Dai et al. (2015). Our results are in good agreement with 
those in the literature.

In the next sections, we discuss the effects of Kn and the 
slip boundary condition on the dynamic and pull-in instabil-
ity of the CNTs for C–F and C–C boundary conditions using 
the SGT. The material and geometrical properties of CNTs 
are as follows (Fakhrabadi et al. 2013): CNT Young’s modu-
lus E = 1 TPa; shear modulus G = 0.4 TPa and mass density 
of CNT �c = 2300 kgm−3 ; gap distance G0 = 4 nm; radius 
R = 0.6785 nm; thickness h = 0.34 nm; length L = 50 nm and 
length scale parameters of SGT l0 = l1 = l2 = 0.2 nm ; fluid 
mass density and viscous fluid are �f = 1.169 kg m−3 and 
� = 3 × 10−7 Pa s , respectively (Kaviani and Mirdamadi 
2012; Cengel 2007). 

4.2 � Pull‑in instability

The static pull-in voltage of cantilever and doubly clamped 
CNTs for no flow condition (u = 0), under continuum flow 
and with slip flow regimes, is shown in Figs. 2 and 3, respec-
tively. As it was expected for no flow condition, the static 
pull-in voltage of the C–C CNT is higher than for the C–F 
CNT due to the stiffer structure of C–C CNT. It follows 
from Fig. 2 that the fluid flow increases the static pull-in 
voltage of the C–F CNT and decreases in the C–C CNT. 
This opposite effect of the fluid versus the axial force results 
from the fluid flow through the CNTs. For the cantilever 

boundary conditions, the axial force remains tensile because 
of the free end. The tensile force increases the stiffness of the 
CNT. However, for doubly clamped CNTs, the clamped ends 
transform the axial force to the compressive force and thus 
reduce the stiffness (Fakhrabadi et al. 2014). When the flow 
regime passes from its continuum condition to the slip flow 
regime, the axial force produced by the fluid flow increases, 
therefore, the static pull-in voltage in the slip flow regime 
decreases more and increases more compared to continuum 
flow regime in C–C and C–F CNTs, respectively.

The effects of Kn on the dynamic pull-in voltage for 
three values of the flow speed (u = 1, 2 and 3) are shown 
for both C–C and C–F CNTs in Figs. 4 and 5, respectively. 
From Fig. 4, it can be concluded that increasing Kn causes a 
decrease of the pull-in voltage for different values of u and 

Table 2   Comparison of the dynamic behaviour of CNTs (E = 7.56 
GPa, G = 2.9 GPa, l = 0  µm, ρ = 1000  kg/m3, ρm = 970  kg/m3, 
b = 150 µm, h = 50 µm, bi = 67.9 µm, hi = 22.6, L = 30 nm)

Boundary 
condition

Flow speed Dai et al. (2015) Present

C–F 1 1.37 1.33
2 1.56 1.53
3 1.97 1.97
4 2.72 2.98

C–C 1 8.25 8.19
2 7.83 7.82
3 7.07 7.13
4 5.84 5.87

Fig. 2   The effect of Knudsen number on the static pull-in behaviours 
of C–C CNTs using the SGT

Fig. 3   The effect of the Knudsen number on the static pull-in behav-
iour of C–F CNTs using the SGT
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this decrease is more significant for larger values of u. Fig-
ure 5 shows that for the C–F CNT the Kn parameter has an 
opposite effect. Furthermore, these illustrations demonstrate 
that the effect of Kn on the dynamic pull-in voltage of the 
C–F CNT for different values of u is almost stable, whereas 
for the C–C CNT and larger values of u it is greater.

4.3 � The instability regions

The stability boundaries for C–C and C–F CNTs are shown 
in Figs. 6 and 7, respectively. The diagrams are divided into 
two sub-regions (stable and unstable). As it can be seen 
from Fig. 6 for the C–C CNT case, when V < 8.6, buckling 
instability occurs due to the internal flow as u crosses the 

boundary from the left side. When 8.6 < V < 41.2, pull-in 
instability occurs when u crosses the boundaries from the 
left side, and finally for V > 41.2 the system is totally unsta-
ble for all values of the flow speed. Next, we conclude that 
when Kn increases the stable region decreases—this means 
that for the slip regime for constant voltage the system is 
unstable for smaller u than in the continuum regime and 
that the value of u which will make the system unstable 
is smaller as Kn increases. Note that for the C–C CNT the 
increase of Kn has almost no effect on the buckling instabil-
ity boundary but decreases the pull-in instability boundary.

The instability and stability region diagram for the C–F 
CNT has a different shape compared to the diagram for the 
C–C CNT, as illustrated in Fig. 7. For the C–F CNT we 
have pull-in and flutter instabilities. Figure 7 shows that for 
a small value of V (V < 7.1) when u increases and crosses 
the boundary, it causes flutter instability in the system. Fur-
thermore, for relatively large values of the applied voltage 
(7.1 < V < 21.8) the CNT is unstable when u is small (when u 
increases, the system will be stable and then unstable again). 
The effect of Kn is the same for the C–C CNT in which 
increasing Kn decreases the stable region. This means that 
the stable region for the slip regime is smaller than for con-
tinuum regime. Finally, when   V > 21.8, for the slip regime 
pull-in instability of the system occurs for smaller u ver-
sus the continuum regime, and u becomes smaller as Kn 
increases. On the other hand, flutter instability occurs for 
smaller u, too.

As a closing remark, notice that in the slip regime the 
effect of the flow speed on the stability and the instability 
of the system is greater than for continuum regime, and this 
effect is more pronounced as Kn increases. This means that 
for smaller change of u one can control stability of the sys-
tem in the slip regime.

5 � Conclusions

In this study, we investigated the static pull-in instability 
and the dynamics of CNTs conveying fluid assuming both 
the continuum and the slip flow regimes based on the SGT. 
Furthermore, we considered different boundary conditions 
on CNT, i.e. doubly clamped and cantilever boundary condi-
tions. We studied the effect of the Kn parameter on the static 
pull-in voltage and we observed that the fluid flow increases 
and decreases the stiffness of the C–F and C–C CNTs, 
respectively, which results in greater and smaller static 
pull-in voltage. Moreover, the slip flow regime decreases 
more the pull-in voltage for C–C CNTs and increases it more 
for C–F CNTs compared to the continuum flow regime. In 
the slip flow regime these effects were magnified as Kn 
increased.

Fig. 4   The effect of the Knudsen number on the static pull-in of C–C 
CNTs for different values of flow speed

Fig. 5   The effect of the Knudsen number on the static pull-in behav-
iour of C–F CNTs for different values of flow speed
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We studied the effects of Kn on the dynamic and stabil-
ity regions of CNTs and we obtained the following results:

•	 In the case of C–C CNT, the dynamic pull-in voltage 
of the slip flow regime is greater than in the continuum 
regime.

•	 The increase of Kn results in higher increase of the 
pull-in voltage, especially for greater speed of the flow 
regime.

•	 As Kn increases, the stability region becomes smaller, 
which means that the instability of the system will occur 
for smaller u compared to the continuum flow regime.

For C–F CNTs, the dynamic pull-in voltage decreases as 
the flow regime changes from continuum to slip. Similar to 
C–C CNTs, Kn has the same effect on the stability region 
in which for the slip flow regime smaller changes of speed 
could result in instable or stable versus continuum flow, and 
as Kn increases this interval is smaller.
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Fig. 6   The instability region in 
the (u, V) plane for a C–C CNT 
in different regimes

Fig. 7   Instability region in the 
(u, V) plane for a C–F CNT in 
different regimes
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