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Abstract
This investigation characterizes electrowetting performance, contact angle hysteresis, contact line pinning force, and adhe-
sion work on digital microfluidic devices with inkjet-printed electrodes. It also demonstrates electrowetting-induced droplet 
detachment on these devices. Average performance was similar to cleanroom-fabricated devices in all experimental meas-
urements, but variability was persistently higher on inkjet-printed devices. This appears to be consistent with increased 
defect density and variation in local electrowetting number caused by increased roughness of printed electrodes. This work 
suggests that inkjet-printed devices are suitable for the study of colloidal transport and deposition under electric fields and 
electrowetting-induced droplet detachment when accompanied by rigorous uncertainty analysis.

Keywords Digital microfluidics · Electrowetting on dielectric · Inkjet printing · Contact angle hysteresis · Electrowetting-
assisted droplet detachment

Abbreviations
A  Subscript denoting a property when the contact 

line is advancing
CH  Helmholtz capacitance per unit area of the solid–

liquid interface

Ew  Electrowetting number, a ratio of electrical and 
interfacial energy at the solid–liquid interface and 
subscript denoting a property under that elec-
trowetting number

PTFE  Subscript denoting a property associated with 
PTFE (Teflon AF)

R  Subscript denoting a property when the contact 
line is receding

SU-8  Subscript denoting a property associated with 
SU-8 3005

tot  Subscript denoting the sum of all components of a 
parameter

U  Root mean squared voltage and subscript denoting 
a property under that voltage

Wadh  Adhesion work
�  Surface tension between the liquid and surround-

ing medium
�  Uncertainty (2 standard deviations) in a given 

experimental parameter
�F  Contact line pinning force
�0  Permittivity of free space
�  Relative permittivity
�  Contact angle
0  Subscript denoting the initial unactuated contact 

angle
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1 Introduction

Digital microfluidic (DMF) devices manipulate fluid inter-
faces of confined and unconfined droplets through the appli-
cation of electric fields (Cho et al. 2003; Paik et al. 2003; 
Mugele and Baret 2005; Eral et al. 2011; Mampallil et al. 
2012; Nelson and Kim 2012; Choi et al. 2012; Orejon et al. 
2013; Samiei et al. 2016). These devices leverage the elec-
trowetting on dielectric (EWOD) effect to reduce the appar-
ent contact angle between the droplet and a dielectric mate-
rial above an active electrode. For low-to-moderate voltages, 
this behavior is described by the Young–Lippmann (or elec-
trowetting) equation

 here CH is the Helmholtz capacitance per unit area of the 
solid–liquid interface, U is the root-mean-squared (RMS) 
voltage, � is the surface tension between the liquid and 
the surrounding medium, �0 is the initial unactuated con-
tact angle, and �U is the apparent contact angle observed 
at a given RMS voltage. The change in the interface shape 
depends on the electrowetting number (Ew), a ratio of elec-
trical and interfacial energy at the solid–liquid interface 
(Nelson and Kim 2012). Electrowetting always reduces the 
contact angle since Ew is dependent on U2 . Electrowetting 
behavior is well predicted by (1) low-to-moderate voltages, 
but the prediction breaks down above a system-dependent 
voltage where the contact angle becomes saturated (Walker 
and Shapiro 2006; Mugele 2009; Klarman et al. 2011; Nel-
son and Kim 2012). Comprehensive reviews of these devices 
and their applications are provided by Mugele and Baret 
(2005), Nelson and Kim (2012), Choi et al. (2012), and 
Wang et al. (2017).

While DMF devices can be used in a variety of biological 
applications (Choi et al. 2012), they have yet to achieve a 
high level of commercial success due in part to the expense 
related to microfabrication techniques. One of the advan-
tages of DMF devices is that they do not require channels, 
pumps, or valves like many other microfluidic technolo-
gies. However, these devices are primarily fabricated using 
cleanroom facilities. This makes them significantly more 
expensive to produce than commercially successful paper 
microfluidic devices, such as lateral flow pregnancy testing 
assays (Dixon et al. 2016).

Attempts to reduce fabrication costs of DMF devices 
typically focus on alternate techniques to create conductive 
electrodes or deposit dielectric and hydrophobic polymer 
layers (Watson et al. 2006; Abdelgawad and Wheeler 2007; 
Ko et al. 2014; Fobel et al. 2014; Dixon et al. 2016; Samiei 
et al. 2016; Wang et al. 2017). Low-cost techniques for creat-
ing electrodes on these devices outside a cleanroom include: 
microcontact printing (Watson et al. 2006), laser printing 
on printed circuit boards (Abdelgawad and Wheeler 2007), 

(1)cos
(

�U
)

= cos
(

�0
)

+
(

CHU
2
)

∕2� = cos�0 + Ew,

patterning with hand-drawn photomasks (Abdelgawad and 
Wheeler 2007), and inkjet printing (Ko et al. 2014; Fobel 
et al. 2014; Dixon et al. 2016). While each technique reduces 
fabrication costs, inkjet printing offers an attractive combi-
nation of affordability, accessibility, feature resolution, and 
repeatability. For example, Dixon et al. reported material 
costs of $0.63 per device using an Epson C88 + inkjet printer 
($120) and commercially available conductive ink that could 
print electrodes on DMF devices with a resolution on the 
order of 60 μm (Dixon et al. 2016).

Various methods for fabrication of dielectric and poly-
mer films on DMF devices also provide different advantages 
and disadvantages. These polymer layers can be added by 
spin coating (Watson et al. 2006; Ko et al. 2014; Fobel et al. 
2014), roll-to-roll coating (Dixon et al. 2016), and manual 
application of household plastic wrap (Abdelgawad and 
Wheeler 2007). While application of plastic wrap offers the 
lowest cost solution, resultant droplet motion was sluggish 
(Abdelgawad and Wheeler 2007). Conversely, droplet veloc-
ities were similar to cleanroom-fabricated devices when pol-
ymer films were deposited using spin and roll-to-roll coating 
(Watson et al. 2006; Ko et al. 2014; Fobel et al. 2014; Dixon 
et al. 2016). Spin-coating fabrication offers the advantage 
of low equipment costs (~$5000), while roll-to-roll coating 
offers higher maximum throughput at a significantly larger 
capital expense (~$100,000).

The effectiveness of the alternate fabrication techniques 
described above has been generally characterized by compar-
ing the velocity of confined droplets on low-cost and clean-
room-fabricated devices (Watson et al. 2006; Abdelgawad 
and Wheeler 2007; Ko et al. 2014; Fobel et al. 2014; Dixon 
et al. 2016). Velocity measurements in these works demon-
strate that DMF devices with inkjet-printed electrodes are 
suitable for lab on a chip (LOC) applications that manipulate 
confined droplets to automate biological protocols. While 
droplet velocity is critically important in many DMF LOC 
applications, different parameters play more important role 
in other DMF applications (Eral et al. 2011; Lee et al. 2012, 
2014; Mampallil et al. 2012; Hong et al. 2013, 2015; Orejon 
et al. 2013; Mu et al. 2014; Chae et al. 2015). For example, 
control of colloidal transport and deposition in evaporating 
droplets with electric fields is strongly dependent on contact 
angle hysteresis and pinning force at the contact line (Eral 
et al. 2011; Mampallil et al. 2012; Orejon et al. 2013; Mu 
et al. 2014), and the use of electrowetting-induced droplet 
detachment to shed fluid from working surfaces is depend-
ent on adhesion work at the interface between the droplet 
and the substrate (Lee et al. 2012, 2014; Hong et al. 2013, 
2015; Chae et al. 2015). While droplet velocity is a func-
tion of electrowetting actuation and contact angle hyster-
esis (Schertzer et al. 2010), mobile droplets in DMF devices 
have an actuated advancing contact line and an unactuated 
receding contact line. The role of hysteresis may be different 
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in evaporating droplets with consistently receding actuated 
contact lines. Furthermore, observing comparable veloci-
ties on inkjet-printed and cleanroom-fabricated devices does 
not necessarily demonstrate that this fabrication technique 
is suitable for electrowetting-induced droplet detachment as 
adhesion work is not an explicit function of droplet velocity. 
Since hysteresis and adhesion work have not been explicitly 
characterized on devices with inkjet-printed electrodes, it is 
not yet clear if this fabrication method is suitable for these 
types of investigations.

This investigation compares electrowetting behavior, con-
tact angle hysteresis, contact line pinning force, and adhe-
sion energy of unconfined droplets on DMF devices with 
inkjet-printed and cleanroom-fabricated electrodes. This 
information is used to evaluate the effectiveness of inkjet-
printed DMF devices for applications of colloidal transport 
and deposition in evaporating droplets under applied electric 
fields and electrowetting-induced droplet detachment. If this 
fabrication technique is suitable for these applications, the 
reduction in cost will help make studies in these areas more 
accessible and enable impactful work in a wide variety of 
applications including: fluid handling in biomedical appli-
cations (McHale 2007; Ragoonanan and Aksan 2008; Lee 
et al. 2012; Trantum et al. 2012; Wen et al. 2013; Gulka et al. 
2014; Chae et al. 2015; Hong et al. 2015), fabrication of flex-
ible electronics (Layani et al. 2009; Bromberg et al. 2013a, 
b), nanoparticle self-assembly (Chen et al. 1999; Orejon 
et al. 2011; Bellido et al. 2012; Saha et al. 2012; Corkidi 
et al. 2016), fabrication of liquid lenses (Kuiper and Hen-
driks 2004; Kong et al. 2017), and electrowetting displays 
(Hayes and Feenstra 2003; Roghair et al. 2015), and active 
removal of droplets from windshields, condensers, and fuel 
cells (Kim 2004; Palan and Shepard 2006; Kim and Kaviany 
2007, 2010; Mannetje et al. 2011).

2  Experimental methodology

2.1  Device fabrication

The experimental facility used in this investigation con-
sisted of a digital microfluidic device, an imaging system, a 
dispensed droplet, and an actuation system. Devices in this 
investigation are referred to as cleanroom-fabricated devices 
(CRFs) (Fig. 1a) or inkjet-printed devices (IJPs) (Fig. 1b) 
depending on how the conductive layer of the device was 
deposited. While the fabrication method of the conductive 
layer differed, both device types consisted of a single unpat-
terned electrode (Fig. 1).

The conductive layer on CRFs was created in the Semi-
conductor and Microsystems Fabrication Laboratory 
(SMFL) cleanroom at RIT. The device substrate (Corning 
plain glass slide, 50 mm × 75 mm) was cleaned in piranha 

organic solvent, then sputter coated with aluminum (~1 μm). 
Dielectric (SU-8 3005 ~6.4 μm) films were deposited using a 
two-stage spin-coating process (500 rpm for 10 s; 4000 rpm 
for 30 s; acceleration of 300 rpm/s between stages). Devices 
were then soft baked (Fisher Scientific Isotemp) for two and 
a half minutes at 95 °C, cured in an Electro-Lite EC-500 
(365 nm for 30 s), and hard baked for three minutes at 
150 °C. Finally, hydrophobic films of polytetrafluoroethyl-
ene (PTFE Teflon AF ~100 nm) were spun onto devices at 
2000 rpm for 1 min and hard baked at 160 °C for 10 min.

While dielectric layers used in this investigation are 
thicker than the 1–2 μm layer Parylene-C films that are 
often deposited by chemical vapor deposition (CVD) in 
multiple DMF lab-on-a-chip investigations (i.e., Schertzer 
et al. 2012), they are consistent with investigations exam-
ining low-cost fabrication techniques. For example, Dixon 
et al. used 5–16 μm roll-coated Cyanoresin CR-S cyanoethyl 
pullulan films (Dixon et al. 2016) and typical spin-coated 
DMF dielectric layers include 6 μm PDMS (Watson et al. 
2006) and 5–12 μm SU-8 films (Torabinia et al. 2018; Wang 
et al. 2018). The thickness of the films used here is also 
similar to several recent DMF investigations examining bio-
medical applications (Rackus et al. 2017; Ng et al. 2018) 
and electrowetting-induced droplet detachment (Lee et al. 
2014; Hong et al. 2015; Cavalli et al. 2016) that use CVD to 
deposit 2.5–7 μm Parylene-C dielectric layers to reduce the 
risk of dielectric breakdown.

Electrodes on IJPs were deposited in a manner similar to 
that described by Dixon et al. (Dixon et al. 2016). An Epson 
Stylus C88 + color inkjet printer was loaded with cartridges 
of silver nanoink (Novacentrix JS-B25P) in the black, cyan, 
and magenta nozzles; the yellow nozzle was loaded using 
yellow ink. The conductive layer was printed on a flexible 

(b)

PTFE Conductive 
Layer

SU-8 Substrate

(a)

Fig. 1  Side-view sketches and top-view images of a cleanroom-fabri-
cated (CRF) and b inkjet-printed (IJP) devices
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polyethylene terephthalate (PET) film (Novacentrix Novele 
print media) using print settings as shown in Table 1. Con-
ductive layers were cured at room temperature overnight 
before deposition of dielectric and hydrophobic layers unless 
otherwise indicated.

After electrode curing, IJPs were cut out of the printed 
sheet and mounted on glass slides using adhesive polyimide 
tape. Like the CRFs, first-generation devices were subse-
quently coated with SU-8 and PTFE by spin coating outside 
the cleanroom. Unfortunately, it was found that these devices 
were unstable as the SU-8 film did not bond well to the print 
media. To remedy this issue, a ~100 nm layer of PTFE was 
deposited on the media on all IJPs after printing and prior 
to SU-8 deposition. Despite being deposited using the same 
spin-coating parameters, SU-8 layers deposited on top of this 
insulating PTFE were thinner (~4.4 μm) than those on CRFs 
(~6.4 μm). This result is consistent with previous works that 
demonstrate that spin-coating photoresist on fluoropolymers 
can be difficult due to high hydrophobicity (Li et al. 2011; 
Ikawa et al. 2012; Zhang et al. 2017). While adhesion pro-
moters can be used to improve results, photoresists with 
viscosities above approximately 50 cst can be deposited 
directly (Li et al. 2011). The manufacturer-reported viscos-
ity of SU-8 3005 is 65 cst. The combination of moderate 
viscosity of the photoresist and low surface energy of the 
PTFE film appears to combine to reduce the thickness of the 
spin-coated SU-8 film.

Since the difference in the dielectric layer thickness on 
IJP and CRF devices creates a difference in the capacitance 
per unit area of the device types used in this investigation, 
performance is generally compared as a function of elec-
trowetting number (Ew) and not applied voltage (U). Elec-
trowetting numbers on both device types were determined 
using the surface tension between the water and the sur-
rounding air (γ = 72.8 mN/m), the permittivity of free space 
(ε0 = 8.85 pF/m), and the thickness and relative permittivity 
of SU-8 (εSU-8 = 3.2[−]) and PTFE (εPTFE = 2.0[−]).

To improve the longevity of the print heads, the dead vol-
ume of ink in the printer was purged at the end of each print-
ing session using a diluted cleaning solution. Stock cleaning 
solution consisted of glycerin, ammonia (~1 M), and isopro-
pyl alcohol in a 1:2:10 ratio. The stock solution was diluted 
with three parts deionized water per one part cleaning solu-
tion prior to use. The diluted solution was loaded into each 
nozzle and used to print a repeated pattern of squares until 

the resulting prints were damp with cleaning solution and 
no ink was visible.

2.2  Device operation

Droplets were actuated using a 1 kHz AC signal produced 
by an NI PXI-5402 signal generator that was amplified up 
to 200  VRMS using a Trek PZD700A amplifier. This signal 
was applied to the bond pad on the device and continuously 
monitored using an NI PXI-4072 digital multimeter. Drop-
lets were grounded using one of the two methods. When 
generating electrowetting curves, a 22-nm diameter tung-
sten wire was inserted into a droplet of fixed volume. When 
measuring contact angle hysteresis, the metallic tip of a 
Ramé–Hart microdispenser within the droplet was grounded. 
This allowed for actuation of the droplet while adding or 
removing fluid.

Device quality was characterized by measuring surface 
roughness, electrowetting performance, and the advancing 
and receding contact angles for voltages from 0 to 200 VRMS. 
Surface roughness was measured using a Nanovea ST400 
profilometer.

Electrowetting performance was examined by measuring 
the apparent contact angle as a function of applied voltage. 
Deionized (DI) water droplets (3 μL) were deposited above 
the large unpatterned conductive layer on each device type 
using a micropipette before being grounded. Care was taken 
to ensure that measurement sites were not reused to elimi-
nate any effects of fouling on the surface from previous tests. 
Devices were placed on the backlit stage of a Ramé–Hart 
model 250 goniometer where side-view images were cap-
tured at a rate of 10 frames per second (fps). DROPimage 
Advanced software was used to measure droplet width and 
mean contact angle for each frame.

Contact angle hysteresis as a function of applied voltage 
was measured using a similar procedure. Here, a Ramé–Hart 
microdispenser with a grounded metallic syringe tip was 
used to gradually add or remove fluid from a droplet until 
the contact line began to move. The advancing and receding 
contact angles reported here are the mean angles measured 
by the Ramé–Hart DROPimage software while the contact 
line was advancing or receding (Fig. 2).

Electrowetting-induced droplet detachment experiments 
were performed on both device types using 5 μL droplets 
of salt solution (~1 mM NaCl) grounded by tungsten wire. 
Droplets were actuated with a sequence of square wave 
pulses tuned to a wetting time of approximately 7 ms (Hong 
et al. 2013). Side-view images of the droplet response were 
captured in the DROPimage software at 40 fps.

All measurements reported here were repeated at least 
three times and error bars on related figures represent two 
standard deviations (95% confidence interval).

Table 1  Inkjet printer settings Parameter Setting

Quality Best photo
Paper Ultra-glossy
Print High speed off
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3  Results and discussion

Inkjet-printed electrodes were not actively sintered in this 
investigation. Instead, they were allowed to cure at room 
temperature overnight as in Dixon et al. (2016). The suit-
ability of this protocol was tested by examining the conduc-
tivity of the printed features using this passive technique and 
two active methods of reducing sheet resistance of inkjet-
printed electrodes. The first was a low-cost method similar 
to that reported by Yung et al. (2010) where electrodes were 
subjected to multiple exposures from a DSLR camera flash 
(Nikon Speedlight DB-600). The second was photosintering 
in a Novacentrix PulseForge 3300. PulseForge processing 
requires a large capital investment (~ $1 M) but allows for 
rapid photosintering of inkjet-printed conductive electrodes.

Electrodes that were passively cured had a sheet resist-
ance of 745 ± 105 mΩ/square (Fig. 3). Camera flash expo-
sure reduced resistivity, but diminishing returns were 
observed with multiple exposures. The maximum reduction 
in resistivity was approximately 17% after three exposures. 
This was consistent with results reported by Yung et al. 
(2010). As expected, the improvement in resistivity with the 
PulseForge (~ 84%) was far superior to that of the low-cost 
camera flash method. While both curing methods reduced 
electrode resistivity, neither was adopted in this investiga-
tion. The benefit of reduced resistivity in electrowetting 
applications is likely small as the current in the devices is 
negligible. Furthermore, both methods to improve resistiv-
ity represent an increase in cost and processing time for the 
devices. While these methods were not implemented in this 
investigation, they may be attractive for commercial applica-
tion of these devices.

Surface roughness of inkjet-printed electrodes was exam-
ined to determine if it would have a significant impact on 
the hydrophobicity and contact line dynamics on the device. 
The RMS roughness of the printed electrodes across three 
separate devices was found to be 400 ± 170 nm, approxi-
mately three times greater than the roughness reported by 
Dixon et al. (2016). After deposition of the dielectric and 
hydrophobic films, roughness on IJPs was 189 ± 12 nm and 
roughness on CRFs was approximately equal to the resolu-
tion of the profilometer (73 ± 7 nm). The increased rough-
ness on IJPs could indicate increased defect density on the 
upper surface of the polymer layer. Kozbial et al. defined 
defect density as surface quality or the density of local step 
edges and point defects. They found that it was associated 
with decreased initial contact angles and increased surface 
heterogeneity (Kozbial et al. 2017). Increased heterogeneity 
is also associated with increased variability in the measure-
ment of static contact angles and contact angle hysteresis (Li 
and Neumann 1992; Raj et al. 2012; Kozbial et al. 2017).

Increased roughness of the IJP electrodes could also 
increase apparent heterogeneity of the device under an 
applied voltage due to variations in the local electrowetting 
number (Fig. 4a, b). If roughness of the conductive layer 
was significant relative to dielectric layer thickness, local 
Ew would increase above areas with thinner dielectric lay-
ers, and decrease above areas with thicker dielectric layers 
(Fig. 4c). Appreciable differences in dielectric layer thick-
ness would be expected to increase apparent heterogene-
ity at low-to-moderate voltages, but heterogeneity would 
be expected to decrease at large voltages as local apparent 
contact angles become saturated (Fig. 4d).

Electrowetting performance on both IJPs and CRFs was 
initially well predicted by the Lippmann–Young equation. 
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Fig. 2  Typical example of raw data used to determine advancing (θA) 
and receding (θR) contact angles
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Fig. 3  Sheet resistance of bare IJP electrodes with the following treat-
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three flashes (3F), and PulseForge sintering (PF)
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Deviation from the prediction occurs at similar voltages 
and Ew on IJPs ( U ≈ 120 VRMS , Ew ≈ 0.50 ) and CRFs 
( U ≈ 140 VRMS , Ew ≈ 0.62 ) and full saturation occurred 
at approximately Ew ≈ 1.0 on both device types (Fig. 5). 
The difference in the performance of these devices was 
mainly the result of differences in dielectric layer thicknesses 
and initial contact angles. The thicker dielectric layer on 
the CRFs causes a more rapid decrease in apparent contact 
angle with applied voltage or electrowetting number. But 
since initial contact angle on IJPs (115.7°) was lower than on 
CRFs (118.5°), the apparent contact angle on IJPs was lower 
at all applied voltages before the onset of saturation. While 
the initial contact angle was slightly lower on IJP devices, 
the difference between device types seen here was similar 
to the uncertainty in the measurement and not significantly 
different than the variation in initial contact angle observed 
across multiple experiments on CRF devices (Li and Mugele 
2008). This suggests that the increased roughness on IJPs 
did not have a significant impact on the initial contact angle.

Measurement uncertainty on both device types initially 
increased with Ew . This is consistent with observations 
by Li and Mugele (2008). Uncertainty on IJPs increased 
more rapidly than on CRFs for low-to-moderate elec-
trowetting numbers (Ew < 0.65). The difference in uncer-
tainty between device types began to decrease above 
Ew ≈ 0.65until they were comparable at Ew ≈ 1.0 (Fig. 
S1a). Increased uncertainty in static contact angles on 

IJPs is consistent with the hypothesis that roughness of 
the printed electrodes increases the heterogeneity of the 
surface of the device by increasing the density of surface 
defects. The evolution in uncertainty with Ew is consist-
ent with the hypothesis that electrowetting on rough elec-
trodes can alter the apparent heterogeneity of the device. 
The apparent heterogeneity of the devices could likely be 
reduced by increasing dielectric layer thickness, but this 
would come at the cost of requiring higher actuation volt-
age to achieve a given electrowetting number.

The similarity in the apparent contact angles and elec-
trowetting performance of CRFs and IJPs does not ensure 
similarity of contact angle hysteresis on both device types 
(Burkhart et al. 2017). Contact angle hysteresis is an impor-
tant parameter for applications involving colloidal depo-
sition in evaporating droplets because depinning of the 
contact line can dramatically change the flow in an evap-
orating droplet (Masoud and Felske 2009; Larson 2014; 
Burkhart et al. 2017). High hysteresis may also dampen the 

Fig. 4  Side-view sketches of a a DMF device, b an exploded view 
showing a difference in electrode roughness (not to scale), and 
expected effects of differences in local dielectric layer thickness on c 
electrowetting number and d electrowetting performance

(a)

(b)

Fig. 5  Experimentally observed contact angles on inkjet-printed 
(open) and cleanroom-fabricated (closed) devices as a function of a 
RMS voltage and b electrowetting number. Dashed and dotted lines 
show predictions from the Young–Lippmann equation for IJP and 
CRF devices, respectively
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electrowetting response and prevent electrowetting-assisted 
droplet detachment.

Despite differences in the electrowetting performance, 
contact angle hysteresis on IJPs and CRFs agreed to within 
0.2° ± 3.0° across all electrowetting numbers examined here 
(Fig. 6). As predicted by Li and Mugele (2008), contact 
angle hysteresis under AC actuation decreased with increas-
ing electrowetting number on both device types. Although 
IJPs and CRFs have similar average contact angle hyster-
esis, measurement uncertainty was generally higher on IJPs 
(± 2.6°) than CRFs (± 1.6°). The difference between the 
uncertainty on these device types again increases with Ew 
at low-to-moderate Ew and decreases as the devices experi-
ence contact angle saturation (Fig. S1b). This behavior is 
consistent with the hypothesis that increased roughness of 
the printed electrodes increases heterogeneity on the surface 
of the device by increasing defect density and/or the varia-
tion in the local electrowetting number.

The advancing and receding contact angles can be used 
to quantify the total contact line pinning force as a function 
of Ew on both device types. As shown by Li and Mugele, 
the total pinning force per unit length along the contact line 
( �Ftot ) at a given Ew can be described as:

where �F
A
 and �F

R
 are the pinning forces per unit length 

in the advancing and receding directions, � is the surface 
tension between the fluid and the surrounding medium, and 
�
R,Ew and �

A,Ew are the receding and advancing contact angles 

(2)
�Ftot(Ew) = �F

R
(Ew) + �F

A
(Ew) = �

[

cos
(

�
R,Ew

)

− cos
(

�
A,Ew

)]

,

observed at a given electrowetting number (Li and Mugele 
2008). Scaling �Ftot by surface tension yields

This dimensionless total contact line pinning force per 
unit length ( �F∗

tot,Ew
 ) decreased with electrowetting num-

ber on IJPs and CRFs, and results were generally in good 
agreement on both device types (Fig. 7). These results also 
generally agree with experimental and analytical results 
presented by Li and Mugele that suggest that �F∗

tot,Ew
 under 

AC electrowetting decreases linearly from Ew = 0 to 
Ew =

[

cos
(

�
R,Ew=0

)

− cos
(

�
A,Ew=0

)]/

2 and remains con-
sistent thereafter (Li and Mugele 2008).

Since the pinning force is derived from advancing and 
receding contact angle data, it is not surprising that experi-
mental uncertainty was again higher on IJP devices at low-
to-moderate Ew and similar as the device approaches contact 
angle saturation (Fig. S1c). This repeated trend suggests that 
the low-cost fabrication of IJPs comes with increased vari-
ability as seen by the increased size of the error bars in all 
IJP results. This increased uncertainty is consistent with an 
increase in heterogeneity on the hydrophobic surface due to 
increased roughness of the IJP electrodes. Further study is 
required to confirm this mechanism.

Surface adhesion on IJPs and CRFs was examined by 
performing electrowetting-induced droplet detachment as 
described by Lee et al. (2014). This investigation provides 
what the authors believe is the first demonstration of elec-
trowetting-induced droplet detachment on IJPs.

(3)�F∗
tot,Ew

=
(

�Ftot∕�
)

= cos
(

�
R,Ew

)

− cos
(

�
A,Ew

)

.
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Fig. 6  Contact angle hysteresis (θA − θR) as a function of electrowet-
ting number for inkjet-printed (open) and cleanroom-fabricated 
(closed) devices
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When an actuation pulse on a droplet is tuned to the wet-
ting time, the droplet can overcome surface adhesion and fully 
detach from the surface. Adhesion work ( Wadh ) can be esti-
mated as:

where �0 is the unactuated initial contact angle between the 
droplet and the device and � is the surface tension between 
the droplet and the surrounding medium. It has been dem-
onstrated that the electrical energy in the system ( � ⋅ Ew ) 
must be greater than the adhesion work for the droplet to 
detach from the surface (Lee et al. 2014). By equating the 
electrical energy to the work of adhesion, a minimum thresh-
old electrowetting number ( Ewmin ) for detachment can be 
predicted as

The lower initial unactuated contact angle on IJPs suggests 
that the adhesion work on IJPs is greater than that on CRFs. 
This leads to a higher predicted Ewmin for IJPs (0.57) than 
CRFs (0.51).

Experimentally observed Ewminvalues agreed well with 
theoretical predictions on both IJPs ( Ew ≈ 0.60 ) and CRFs 
( Ew ≈ 0.48 ) (Fig. 8). As expected, the increased adhesion 
energy on IJPs required the addition of more electrical energy 
at the solid–liquid interface than CRFs. Complete detachment 
was possible on all IJP devices despite an increase in adhe-
sion work of approximately 25%. This may not have been the 
case if an increase in hysteresis on the IJPs was large enough 
to dampen the contact line dynamics of the droplet or if the 
reduction in the unactuated contact angle increased Ewmin

beyond the threshold for contact angle saturation.
The frame rate used in this investigation (40 fps) was well 

below the 5000 fps used by Lee et al. (2014) to characterize 
the dynamics and maximum height of electrowetting-induced 
droplet detachment. However, results presented here suggest 
that the wetting dynamics are similar on CRFs and IJPs. Elec-
trowetting-induced droplet detachment requires that the dura-
tion of the actuation pulse be tuned to the wetting dynamics 
so the electrical signal is removed after the contact line over-
shoots its final position but before it reaches steady state. Since 
full detachment was observed at the predicted electrowetting 
number on both devices using the same actuation signal, wet-
ting dynamics on these devices are likely similar. This may not 
have been the case if the contact angle hysteresis on the IJPs 
was significantly greater than that on CRFs.

4  Conclusions

Experimental results presented here suggest that digital 
microfluidic devices with low-cost inkjet-printed electrodes 
are suitable for investigations examining colloidal transport 

(4)Wadh ≈ �
[

1 + cos
(

�0
)]

,

(5)Ewmin = 1 + cos
(

�0
)

.

and deposition in evaporating droplets under electric fields, 
and electrowetting-induced droplet detachment. Such exam-
inations have a wide range of applications in biomedical 
technology, flexible electronics fabrication, photonics, nano-
particle self-assembly, and active shedding of droplets from 
a variety of surfaces.

This investigation characterizes electrowetting perfor-
mance, contact angle hysteresis, contact line pinning force, 
and adhesion work at the solid–liquid interface of digital 
microfluidic devices with inkjet-printed and cleanroom-fab-
ricated electrodes. Average performance across all parame-
ters of interest was similar on both device types. Differences 
in electrowetting performance were due to thinner dielec-
tric layers and lower initial contact angles on inkjet-printed 
devices. The contact angle hysteresis and pinning forces 
along the contact line were comparable over a range of elec-
trowetting numbers and agreed well with previously pub-
lished work on other cleanroom-fabricated devices. While 
the average performance for these parameters was similar 

(a) CRF (b) IJP

(I
II

) 
E

je
ct

ed
(I

I)
 A

ct
ua

te
d

(I
) 

In
iti

al

Fig. 8  Typical experimental images of complete electrowetting-
induced droplet detachment from (a) cleanroom-fabricated and (b) 
inkjet-printed devices. Images represent (I) initial, (II) actuated, and 
(III) ejected droplets



Microfluidics and Nanofluidics (2018) 22:96 

1 3

Page 9 of 10 96

on both device types, the low-cost inkjet-printed devices 
exhibited greater variability in performance, particularly at 
low-to-moderate electrowetting numbers. While these results 
are consistent with the hypothesis that increased roughness 
of the inkjet-printed electrodes increases heterogeneity on 
the hydrophobic surface of the device by increasing the den-
sity of surface defects and/or increasing the variation in the 
local value of the electrowetting number, further study is 
required to confirm these mechanisms. This suggests that 
use of inkjet-printed electrodes in digital microfluidic inves-
tigations should be accompanied with a rigorous uncertainty 
analysis.

This work also demonstrates that analytical predictions of 
the critical electrowetting number are valid for both inkjet-
printed and cleanroom-fabricated devices. While adhesion 
work at the interface between the droplet and the surface was 
approximately 25% greater on devices with inkjet-printed 
electrodes, full droplet detachment was observed on both 
device types. This may not have been the case if increased 
hysteresis on the inkjet-printed devices dampened the con-
tact line dynamics of the droplet or if increased adhesion 
energy pushed the critical electrowetting number for droplet 
detachment above the value for contact angle saturation.
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