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Abstract
A growth of single crystal diamond (SCD) microchannels on HPHT diamond substrate has been carried out successfully 
by a simple and novel method. Firstly, aluminum film was patterned on SCD diamond substrate surface by magnetron 
sputtering, photolithography and dry etching techniques. Secondly, the aluminum patterns were transferred onto diamond 
substrate via inductively coupled plasma etching to form grooves on diamond surface. Finally, microchannels were achieved 
by epitaxial lateral overgrowth of SCD on the surface of prepared substrate by microwave plasma chemical vapor deposi-
tion system. After that, fluorescent liquid was introduced to check hollowness of the microchannels. This work provides a 
simple and time saving method to fabricate SCD microchannels for microfluidic system, which offers a great potential for 
hard environment applications.
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1  Introduction

Compared with traditional microchannel materials, diamond 
is an excellent material due to its extremely properties such 
as highest thermal conductivity, low friction coefficient, high 
mechanical hardness, chemical inertness, high breakdown 
voltage, high electrical resistance, low dielectric constant as 
well as outstanding biocompatibility (May 2008; Gaidarzhy 
et al. 2007). The employment of diamond would present a 
significant improvement in hard environment applications. 
For example, it is a material of heat spreader channel system 
in high-temperature chemical reactions to high power elec-
tronic devices as a result of its highest thermal conductivity 
(Asmussen and Reinhard 2002). It is also a biosensing mate-
rial for drug transport on account of its biocompatibility as 
well as high-chemical stability and largest optical bandgap 
(Kim et al. 2007). Moreover, it owns substantial benefits of 
electroosmotic pumping systems with highly corrosive fluids 
due to its excellent thermal, chemical, mechanical and semi-
conductor properties (Becker and Locascio 2002).

Nevertheless, diamond is difficult to be micromachined 
due to its mechanical hardness and chemical stability and 
also be lacking of well-established diamond micromachining 
technique. Previously, due to the difficulty of forming heter-
oepitaxial single crystal diamond films, diamond microchan-
nels were mainly fabricated on polycrystalline films via sac-
rificial layer technology (Chandran et al. 2017; Muller et al. 
2004, 2005). Compared to SCD, polycrystalline diamond 
has disadvantages of grain boundaries, impurities, relatively 
high friction coefficient and large stress of films (Guillen 
et al. 2005), which cause degradation of performance and 
poor reproducibility. Recently, researchers focus on finding 
feasible ways to fabricate SCD microchannel using laser 
machining (Jedrkiewicz et al. 2017; Su et al. 2013), ion 
beam lithography (Picollo et al. 2017; Strack et al. 2013) 
and epitaxial lateral overgrowth (Fu et al. 2017) techniques. 
This paper reports a simple and time saving way to fabricate 
a batch of SCD microchannel structures on HPHT diamond 
substrate via etching groove and ELO growth techniques. It 
is a significant development towards fabrication of micro-
channel with theoretically excellent material for microfluidic 
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2 � Experiment details

The HPHT Ib (001) SCD substrate was used in this experi-
ment. Aluminum film with thickness of 6 µm was depos-
ited on the surface of substrate by magnetron sputtering 
method. The SPR220 photoresist (PR) was spun on dia-
mond substrate with a speed of 5000 rpm, resulting a PR 
thickness of about 6 µm. Then the standard photolithog-
raphy process was used to form PR stripes with width of 
30 µm and the distance between two stripes was 30 µm. 
After pattering, the PR stripes were transferred onto alu-
minum surface by inductively coupled plasma (ICP) etch 
process until all unmasked aluminum was etched out, dur-
ing which Cl2, BCl3 and Ar were used as etching gases. 
Then, grooves were processed in the area without alu-
minum covered areas by ICP etching, during which O2 and 
Ar were used as the reaction gases with the flow rates of 
50 and 20 sccm, respectively. After etching, the thickness 
of aluminum stripes decreased to approximately 500 nm. 
The sample was ultrasonically cleaned by a HCl solution 
to lift-off aluminum stripes. Then, SCD microchannels 
were fabricated by loading the patterned groove sample 
into MPCVD chamber for ELO growth until the growth 
sidewalls were connected continuously. The thickness of 
the as-grown diamond layer was about 100 µm. The micro-
channel fabrication processes are schematically illustrated 
in Fig. 1.

3 � Results and discussion

The morphologies of fabricated SCD grooves were char-
acterized by optical microscope (OM), scanning electron 
microscopy (SEM), and laser scanning confocal micros-
copy (LSCM), as shown in Fig. 2. Figure 2a, b are the 
OM and SEM images, indicating a bright strip of diamond 
windows with a relative smooth surface and a clear bound-
ary, and a dark strip of fabricated grooves. Figure 2c, d 
shows the typical LSCM image and the cross sectional 
profiles of the fabricated SCD grooves, exhibiting that the 
width and depth of each groove is about 30 and 20 µm, the 
distance between two adjacent grooves is about 30 µm and 
the grooves sidewall have an inclination between 2°and 
6° from vertical by ICP etching. Additionally, the profile 
indicates that the bottom roughness is about 8 nm.

Figure 3a is a SEM image of the sample surface after 
5 h growth by MPCVD, illustrating that diamond grooves 
have been covered completely during ELO growth. The 
as-grown sample surface morphology was measured 
by AFM within the area of 100 × 100 µm2, indicating a 
smooth surface with a roughness of 10 nm, as shown in 

Fig. 3b. Figure 3c is the optical microscope image taken 
with both reflection and transmission light. The hazily 
bright and dark strips are corresponding to diamond win-
dow and groove area, indicating a microchannel with neat 
edge. The groove area is darker than diamond window area 
because the light was reflected to the other direction by the 
microchannel sidewalls.

The cross section of the microchannels and its enlarged 
view are shown in Fig. 4a, b, respectively. The length and 
height of the fabricated microchannels were measured to be 
2.35 and 21.35 µm, respectively. Figure 4c shows the Raman 

Fig. 1   Schematic of SCD microchannel fabrication process
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spectra of points I-VI indicated in Fig. 4a, whose Raman 
excitation wavelength was 532 nm. There is a sharp peak 
shown in microchannel measurement at 1333 cm−1, reveal-
ing good composition of diamond sp3 (Steven and Robert 
2004). Meanwhile, full widths at half maximum (FWHM) 
of diamond Raman spectra (points I–V) are approach-
ing to that of substrate (point VI), and peaks located at 
1400–1450 cm−1 appear in Raman spectra are typical peaks 
related to the fluorescence of CVD grown diamond with N2 
introduction.

To evaluate the quality of ELO film, XRD investigation 
has been carried out as shown in Fig. 5b. For comparison, 
the quality of substrate has also been checked whose result 

are presented in Fig. 5a. The FWHM values of the substrate 
and ELO film are 0.01031° and 0.03878°, respectively, indi-
cating an acceptable quality of ELO diamond film compared 
with that of the substrate (Wang et al. 2016; Yan et al. 2002).

Then, sample with microchannels was immersed into 
fluorescent liquid to check the continuity. Figure 6a shows 
a schematic of fluorescent liquid in microfluidic channels. 
A Nikon A1 laser scanning confocal microscopy was per-
formed to detect the number of photons to check the pres-
ence of liquid inside of fabricated channels. As the channel 
structure of the diamond sample hosts nitrogen-vacancy 
(NV) fluorescent complexes in high concentrations at 
575 and 637 nm, it was necessary to choose a fluorophore 

Fig. 2   SCD substrate after ICP 
etching a OM image, b SEM 
image (tilt 45°), c LSCM image, 
d cross section profile obtained 
by LSCM

Fig. 3   SCD microchannel sample after 5 h ELO growth. a SEM image, b AFM image, c optical image focusing on microchannels
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Fig. 4   a Cross section SEM 
images of the SCD microchan-
nels. b Enlarged view of a. 
c Raman spectra taken from 
different locations around the 
channel (as shown in the adja-
cent SEM images)

Fig. 5   XRD spectra a substrate. b As grown diamond film

Fig. 6   a Schematic of SCD microchannel with fluorescent liquid. Laser scanning confocal microscope images of b two-dimensional diagram 
corresponding to “A” direction in a. c Three-dimensional diagram corresponding to “B” direction in a 
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whose emission features do not overlap with that of the NV 
center of diamond. Fluorescent liquid with emission peak 
at 480 nm was used in our experiment. Confocal micro-
scope image taken from directions “A” and “B” is shown in 
Fig. 6b, c, respectively. The excitation and detector wave-
lengths are 408 and 425–550 nm, respectively. An intense 
and uninterrupted luminescence were observed, indicating 
that microchannels were hollow and continuous.

4 � Conclusions

In summary, we report a simple method to fabricate SCD 
microchannel structure on diamond substrate by etching 
groove and ELO growth technology. Raman and XRD spec-
tra were used to evaluate the diamond film in microchannel 
areas, indicating an acceptable quality. The intense and unin-
terrupted luminescence confocal microscope images taken 
from ELO diamond sample indicate that the microchannel 
are hollowness and continuity. The processes in this work 
may provide a feasible method to fabricate SCD microchan-
nel for microfluidic systems which can be applicable in hard 
environment.
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