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Abstract
We present a new multi-dimensional confocal laser scanning microscopy (CLSM) image correlation for nanoparticle flow 
velocimetry that is robust to sources of decorrelating errors. Random and bias errors from nanoparticle flow measurements 
exacerbate with increased dimensionality in CLSM images, rendering measurements unusable. Our new algorithm tackles 
these measurement limitations in twofold. First, we model and correct for the bias errors introduced by the effects of the 
volumetric laser scanning image acquisition. Second, we developed a new spectral filter using a phase-quality masking 
technique that optimizes its size for the spectral content of CLSM images, without requiring a priori knowledge of displace-
ment fields or flow tracer properties. We validated our algorithm using synthetic images and experimentally obtained 2D and 
3D CLSM images of nanoparticle flow through a micro-channel. We show that our technique significantly outperforms the 
standard cross-correlation (SCC) in reducing both the random and bias errors and accelerated the convergence of ensemble 
correlation velocity measurements from CLSM images.

1 Introduction

The correlation-based velocity measurements from confocal 
laser scanning microscopy (CLSM) images are subject to 
random error due to the Brownian motion of nanometer-
sized tracer particles, and a bias error due to the formation 
of images by raster scanning (Jun 2016). In our recent work 
on the development of the scanning laser image correla-
tion–robust phase correlation (SLICR), the results demon-
strated improved measurement accuracy by establishing a 
method that applies an optimal spectral filter diameter com-
bined with an analytical model of the CLSM measurement 
bias error (Jun 2016). Our analysis verified that these errors 
primarily depend both on the particle size and fluid to scan-
ner velocity ratio (FSR), rather than on either parameter 
alone. The work presented the first successful attempt to 
quantify and mitigate the errors of CLSM-based flow veloci-
metry using diffusion-dominated nanoparticles as flow trac-
ers. While the SLICR processing algorithm was designed 

for one-dimensional measurements, in practice CLSM is 
mostly used to visualize two- or three-dimensional micro-
scopic fields. The objective of this work is to identify and 
understand the effects of both random and bias errors in 2D 
and 3D CLSM measurements, and subsequently expand and 
improve the SLICR algorithm to mitigate the errors in multi-
dimensional imaging with CLSM.

The CLSM has been a popular and useful tool for life 
science researchers over the past several decades, primarily 
due to its ability to remove blur from outside of the focal 
plane of the image (Digman et al. 2005, 2013; Raben et al. 
2013; Rossow et al. 2010a, b). Nowadays, CLSM is com-
monplace in essentially all biomedical research institutions 
(Jonkman and Brown 2015). However, CLSM’s strength in 
high contrast and spatial resolution comes at the expense 
of low temporal resolution (Jun 2016; Digman et al. 2013; 
Rossow et al. 2010a, b; Jonkman and Brown 2015). CLSM 
is slower than widefield imaging because an image is built 
up point by point by a focused laser beam scanning across 
the sample. This drawback causes significant random and 
bias errors when imaging flow tracers to measure particle 
velocity of interest. These errors increase with respect to 
the added dimensionality in CLSM images due to the longer 
time it takes to acquire multi-dimension scans. As a result, 
performing particle image velocimetry (PIV) technique 
with CLSM measurements requires an understanding of the 
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effects of three parameters: the diffusion of the tracer parti-
cles, the laser scanning speed, and the velocity of the flow 
(Jun 2016).

First, a random error due to the Brownian motion of 
small tracer particles increases with respect to higher dimen-
sional CLSM measurements. As the image acquisition time 
increases, the particles’ positions will deviate further from 
those of the fluid pathlines (Einstein 1905; Olsen and Adrian 
2000). In the SLICR algorithm, we optimized the width of 
the Gaussian RPC filter using the Monte Carlo error analysis 
of unidirectional flows of tracer particles that were com-
puter-generated 1D CLSM images to improve the correlation 
SNR and reduce random errors (Jun 2016; Eckstein and Vla-
chos 2009a, b; Eckstein et al. 2008). However, in practice, 
each measurement has a unique SNR that varies based on 
many factors such as a particle size, the nature of the flow 
field, and the characteristics of the image noise. Applying a 
single-sized RPC filter to multiple measurements acquired 
under different conditions is a limitation itself, and there is 
a need for developing a dynamic filter that changes to the 
optimal size for each measurement. To date, no study has 
examined these problems or demonstrated a means to deal 
with them in 2D or 3D CLSM velocimetry.

Second, the FSR is the primary driver of the bias error. In 
our previous work, we showed that the bias error increases 
with respect to the ratio of the mean velocity of the tracer 
particles to that of the laser scanner. The bias error depends 
only on the FSR; therefore, the bias error correction is still 
required under the absence of any Brownian motion in the 
imaging domain (Jun 2016). If the FSR is high, the posi-
tions of the particles within the CLSM images will be dis-
torted due to the longer delay between pixels, as each pixel 
is recorded sequentially in time (Jun 2016). Accordingly, 
the FSR will have multiple components for each dimension 
added to the CLSM measurements. This added complexity 
is due to CLSM’s raster scanning pattern, in which a digital 
image is built-up point by point as a small focused laser 
beam is scanned across the specimen. The three-dimensional 
volume is constructed after scanning the two-dimensional 
x–y (in-plane) domain in multiple z (out-of-plane) locations, 
as illustrated in Fig. 1. Accordingly, the effective scanner 
velocity will be slowest along the z-plane and fastest along 
the x-plane. If the fluid velocity has one component, that is 
aligned with the scanning axis of the CLSM, then the 1D 
analytical bias correction model developed from our previ-
ous work (Jun 2016) can be applied to the measured veloc-
ity to correct for the bias error. However, in practice, flow 
occurs with multiple velocity components irrespective of 
the alignment with the scanning axis of the CLSM. Further-
more, the velocity measurement will have varying magni-
tudes of bias error in different velocity components, which 
is contributed by the FSR. However, no protocol exists to 
mitigate these errors.

Despite this shortcoming, scanning laser image correla-
tion (SLIC) technique used with CLSM images (first intro-
duced by Rossow et al. 2010a, b) has become a popular tool 
for biomedical engineering researchers investigating micro-
channel flow and micro-circulation within live samples 
(Malone et al. 2007; Pan et al. 2009; Sironi 2014) in the last 
few years. More recently, Sironi et al. used a SLIC-like algo-
rithm called flow image correlation spectroscopy (FLICS) to 
measure the velocities of flow tracer particles from a single 
2D CLSM image (Sironi 2014). In this study, the research-
ers captured 2D CLSM images of 1-µm particles flowing 
in a microfluidic channel, and in vivo blood flow meas-
urements in the circulatory systems of zebrafish embryos 
and mouse livers. In this case, information regarding the 
two-dimensional velocity was quantified by computing the 
cross-correlation of the fluorescence fluctuations detected 
in pairs of columns of a selected region of interest of the 2D 
CLSM image where diagonal lines appear (Sironi 2014). 
However, without addressing the random and bias errors in 
which correlating CLSM images are subject to, FLICS will 
yield less accurate measurements. First, the stretched parti-
cle shape that appears as diagonal lines in their 2D CLSM 
images were caused due to the high FSR which will indeed 

Fig. 1  a Illustration of 2D raster scanning pattern from CLSM, recon-
structing 2D image coordinated by scanning mirrors. A 2D image 
is formed by scanning multiple lines row by row along the scanning 
axis, b 3D scan from CLSM, reconstructing a volume from optical 
sectioning using the piezo-electric positioning stage. A 3D volume 
scan is formed by scanning multiple 2D images along the direction 
of the piezo stage scan and c the presence of the bias error in each 
component of the velocity measurement. The dotted area represents 
the measured three-dimensional displacement including the bias error 
(yellow colored area) while the actual particle displacement is repre-
sented by the red colored area
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contribute to the bias error. Second, the velocity measure-
ment quantified from a single image for nanometer-sized 
tracer particles will probably have a significant presence 
of random errors caused by Brownian motion and image 
noise. Although the particle size used by Sironi et al. was 
considerably large (1-µm microsphere and red blood cells 
in the range between 3.0 and 10 µm) with a lower diffusion 
coefficient than nanoparticles, the velocities of these trac-
ers within the circulatory systems change over time. There-
fore, the velocity measurement from a single image does 
not represent the time-varying flow field. Furthermore, the 
stretched-out shape of the particles in the CLSM image will 
cause the intensity peak shape to broaden in the standard 
cross-correlation matrix, which can further increase the ran-
dom error of the measurements. We addressed this issue pre-
viously with 1D CLSM images by minimizing the uncertain-
ties associated with the particle shape on the displacement 
measurements using the phase-only filtering techniques such 
as RPC (Jun 2016). Nevertheless, the aforementioned limita-
tions with measurement accuracies are still observed among 
many published studies utilizing CLSM velocimetry (Dig-
man et al. 2005, 2013; Rossow et al. 2010a, b; Sironi 2014).

A processing algorithm for mitigating measurement 
errors to which multi-dimensional CLSM images are subject 
to will enable development of more robust systems for using 
CLSM velocimetry to characterize micro- and nanoscale 
flow kinematics. Here, we propose a processing method that 
combines a dynamic spectral filter using the phase-quality 
map (Ghiglia and Pritt 1998) and expanded SLICR algo-
rithm (Jun 2016) that mitigates both random and bias errors 
for 2D and 3D CLSM velocity measurements.

2  Methodology

2.1  Phase‑quality masking

Eckstein et al. (Eckstein and Vlachos 2009b) showed that 
the signal-to-noise ratio (SNR) of the cross-power spectrum 
between PIV interrogation regions decreased with increas-
ing spectral wave number. They showed that this SNR was 
Gaussian shaped when the images of the particles were 
themselves Gaussian, and derived the standard deviation 
of the SNR envelope as a function of the particles’ diam-
eters. While the assumption of Gaussian-shaped particles 
is valid in traditional PIV images (Olsen and Adrian 2001), 
the shapes of the particles in CLSM images highly depend 
on the interrogated flow and the microscope parameters, and 
cannot be estimated a priori. This incongruence suggests 
that Eckstein’s “RPC” filter cannot model the SNR in CLSM 
images and applying such a pre-computed spectral filter to 
CLSM cross-correlations will yield suboptimal results. To 
address this, we developed an algorithm to measure the 

variation of SNR across spectral wave numbers in the com-
plex cross-correlation and suppress regions where it is low. 
Our algorithm is based on insight into the behavior of the 
cross-correlation in the Fourier domain and is described 
below.

Recall that the Fourier Shift Theorem illustrates the rela-
tionship between the Fourier transform of an image and that 
of a shifted copy of itself (Westerweel 1997):

where sx and sy are the horizontal and vertical shifts of the 
pattern in pixels, k and m are the horizontal and vertical 
wave numbers in  pixels−1, w and h are the width and height 
of the image in pixels, and F(k,m) is the Fourier transform 
of the pattern f (x, y) . From the cross-correlation theorem,

where C(k,m) is the cross-correlation of f (x, y) and 
g(x, y); G(k,m) is the Fourier transform of g(x, y) , and 
G∗(k,m) is the complex conjugate of G . If g(x, y) is a shifted 
copy of f (x, y) (that is, g(x, y) f

(
x − sx, y − sy

)
 ) then by 

Eq. (1),

The phase of the cross-correlation is given by

By Euler’s theorem, R(k,m) is a complex sinusoid whose 
phase angle �(m, n) can be represented in the Fourier domain 
as a plane of slope �(k,m) = 2�

(
sxk∕w + sym∕h

)
 “wrapped” 

to the range ±� . In practice, �(k,m) is calculated as

where (R) and (R) are the real and imaginary components 
of R(k,m) , and tan−1 is the two-dimensional inverse tangent. 
Figure 2 illustrates the theoretical relationship between dis-
placements relating pairs of noise-free, perfectly correlated 
patterns in the spatial domain and the corresponding phase 
angle of their cross-correlations in the two-dimensional Fou-
rier domain. Because �(k,m) is a (wrapped) plane, we refer 
to it as the “phase-angle plane.”

In practice, the phase-angle-relating PIV image pairs are 
not a perfect plane, but exhibit the effects of noise and the 
variable SNR due to the shapes of the particles as explained 
by Eckstein et al. (Eckstein and Vlachos 2009a, b). The top 
row of Fig. 3 illustrates this, and shows phase-angle planes 
derived from CLSM ensemble cross-correlations (Meinhart 
et al. 1999, 2000; Raffel 2007) 3- and 100-nm particles. The 

(1)
{
f
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)}
(k,m) = e

−i2�
(

sxk

w
+

sym
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regions of these phase-angle planes that appear “smooth” 
and qualitatively resemble those of Fig. 2 contribute energy 
to the correlation peak in the spatial domain that corresponds 
to the best estimate of the image pattern displacement, and 
the regions that appear “noisy” contribute to noise in the 
spatial cross-correlation and to error in the displacement 
estimate. We, therefore, developed an algorithm to automati-
cally identify and preferentially weigh the smooth regions of 
the phase-angle plane to the cross correlation in the spatial 
domain, and concomitantly to suppress the contribution of 
the “noisy” regions.

Our algorithm is based on the fact that because �(k,m) is 
theoretically a plane, its gradient is constant except where 

it wraps to ±� . The gradient of �(k,m) can be calculated to 
account for its wrapping behavior using the “wrapped phase 
difference” described by Ghiglia and Pritt (1998):

Here, Δk and Δm are constant across the Fourier domain 
when �(k,m) is free of noise, and their variances are, there-
fore, identically zero. Accordingly, non-zero variance in 
either Δk or Δm indicates the presence of noise in the phase 
plane. We use a “phase-quality” metric q(k,m) (Ghiglia and 
Pritt 1998) to quantify the local variance of ∇�(k,m) as

Here, Δk
i,j

 and Δm
i,j

 are the scalar wrapped phase differences 

evaluated at the position k = i, m = j , and the overbars 
denote averaged quantities within a square region of width 
and height2r + 1 . Because q(k,m) measures deviation from 
smoothness of �(k,m) , larger values of q(k,m) correspond 
to regions of �(k,m) of higher noise and lower values cor-
respond to regions of lower noise. Figure 3 illustrates the 
relationship between phase-quality and noise in the phase 
plane for representative CLSM PIV ensemble 
cross-correlations.

Our algorithm based on the phase quality of the cross-
correlation is called phase-quality masking (PQM), and 
is depicted in Fig. 4. First, the cross-correlation between 
image pairs is calculated in the typical fashion of conjugate 
multiplying their Fourier transforms. If the “ensemble” cor-
relation is used, then the summation of cross-correlations 
is performed in the Fourier domain. The phase quality of 
the cross-correlation is then calculated according to Eq. (7). 
Next, the phase quality is binarized using a thresholding 
operation, inverted, and then segmented into eight-connected 
regions (Efford 2000). The result of using eight-connected 
regions is that each pixel in the binarized mask is assigned to 
the largest group of pixels that is closest to the center of the 
array, then the shape of the smallest ellipse that can encircle 
that group is calculated, as shown from Fig. 4.

For each region, we calculate a median-weighted centroid 
p̃ as the product of the radial coordinate of its centroid with 
the median radial coordinate of its constituent pixels, i.e.,

(6)
Δk(k,m) = tan−1

(
sin (�(k,m) − �(k − 1,m))

cos (�(k,m) − �(k − 1,m))

)

Δm(k,m) = tan−1

(
sin (�(k,m) − �(k,m − 1))

cos (�(k,m) − �(k,m − 1))

)
.

(7)

q(k,m) =
1

(2r + 1)2

⎛
⎜⎜⎝

���� k+r�
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�
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�2

+
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�
Δm
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�2
⎞⎟⎟⎠
.

(8)p̃i = pi ⋅median(ri) ,

Fig. 2  Phase-angle planes �(k,m) derived from Eqs.  (1)–(5) for two 
different two-dimensional displacements over a grid of 64 × 64 pixels

Fig. 3  Top row: phase-angle planes calculated from experimental 
CLSM images using 3- and 100-nm diameter particles. �(k,m) is 
smoother toward the center of the domain (i.e., the lower wave num-
bers) and the prominence of the noise increases at higher wave num-
bers. Bottom row: phase-quality arrays calculated from the above 
phase-angle planes. Lower values in the phase quality correspond to 
smoother regions of �(k,m) , and thus to areas of higher SNR of the 
cross-correlation in the Fourier domain
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where pi is the radial coordinate of the ith region’s centroid 
and ri is the vector of radial coordinates of the set of pixels 
that constitute the ith region. We chose the region for which 
p̃ is the minimum as the one corresponding to the “high-
quality” (i.e., low noise) region of the cross-correlation. We 
then fit an ellipse to this region, and construct a radially 
symmetric Gaussian spectral filter whose standard deviation 
is equal to one-fourth of the minor axis of that ellipse. We 
refer to this Gaussian function as the PQM, which is then 
used in lieu of the pre-computed “robust phase correlation” 
filter of Eckstein and Vlachos (2009b). The complex phase 
correlation R(k,m) is thus multiplied by our PQM filter prior 
to computing its inverse Fourier transform and estimating 
the pattern displacement by locating its maximum value in 
the spatial domain.

2.2  Bias error correction in three dimensions

The particle image positions in CLSM are influenced by 
three primary factors: three-dimensional fluid velocity 
(Uf, Vf, Wf) , scanner velocity (Us, Vs, Ws) , and random dis-
placement (X�, Y �, Z�) caused by Brownian motion. It should 
be noted that the 3D coordinate axes X, Y, and Z are specifi-
cally assigned to the scanning axes of the CLSM. The coor-
dinate axis X represents the primary scanning axis illustrated 
as a horizontal line (yellow arrow) in Fig. 1a. The primary 
scanning axis (X) alone can generate 1D CLSM images. The 

coordinate axis Y represents the secondary scanning axis 
used to generate 2D CLSM images, which repositions the 
primary scanning axis (X) as illustrated in Fig. 1a. The coor-
dinate axis Z represents the third (piezo stage) scanning axis 
which repositions the primary and secondary scanning axes 
(X and Y) in different plane, constructing 3D volumes con-
sists of stacked 2D CLSM images (Fig. 1a). Equation (9) 
represents the positions of 3-D confocal images of a tracer 
particle in a uniform, unidirectional flow. The Xf ,p is the 
position in the image of the  pth particle from the recorded 
confocal volume scan (fth frame). X0

f ,p
 refers to the initial 

position of the pth particle in space at the beginning of the 
fth frame, and tX

f ,p
 is the time elapsed between the beginning 

of the fth frame and the moment the scanner arrives at the 
position of the pth particle (i.e., Xf ,p∕Us ) along X-coordinate. 
X′
f ,p

 represents the random displacement of the  pth particle 

during the interval tf ,p . The same notations apply for other 
two dimensions (Y- and Z-coordinates) of the particle posi-
tion. Subsequently, the same definition is assigned for the 
next consecutive position and time variables used for each 
consecutive frame (f = 1, 2, 3 …). It should be noted that due 
to the raster scanning pattern of the CLSM, the elapsed scan-
ning time along the Y-direction depends on the total elapsed 
scanning time along X-direction, since the secondary scan-
ning axis (Y) moves once the primary scanning axis (X) com-
pletes scanning a line (Fig. 1). Subsequently, the elapsed 
scanning time along the Z-direction is dependent on both the 
total scanning time along X- and Y-directions, respectively, 
as the third scanning axis (Z) will not move while 2D images 
are being constructed. This means that the particle position 
in X-coordinate will involve a number of additional displace-
ments due to the time elapsed while scanner is moving in Y 
and Z-directions as well. Therefore, the X-coordinate posi-
tion ( Xf ,p ) of the particle recorded in the image consists of 
the elapsed scanning time along all axes X, Y, and Z ( tX

f ,p
 , tY

f ,p
 

and tZ
f ,p

 ), as represented in Eq. (9). Accordingly, the Y-coor-

dinate position ( Yf ,p ) of the particle recorded in the image 
will consist of the elapsed scanning time along Y- and Z-axes 
(Eq. 10) and the Z-coordinate position (Zf ,p) will involve 
only the elapsed scanning time along Z-axis (Eq. 11).

Subsequently, the displacement of particles between con-
secutive frames is given by the following equations.

(9)Xf ,p = X0

f+1,p
+ Uf ⋅ t

X
f ,p

+ Uf ⋅ t
Y
f ,p

+ Uf ⋅ t
Z
f ,p

+ X�
f ,p
,

(10)Yf ,p = Y0

f+1,p
+ Vf ⋅ t

Y
f ,p

+ Vf ⋅ t
Z
f ,p

+ Y �
f ,p
,

(11)Zf ,p = Z0

f+1,p
+Wf ⋅ t

Z
f ,p

+ Z�
f ,p
.

Fig. 4  Algorithm for constructing the PQM
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The difference Xf+1,p − Xf ,p will be referred to as ΔXf ,p 
and ΔtX

f ,p
= tX

f+1,p
− tX

f ,p
 , which is the interval between the 

times at which the scanner reaches the position of the pth 
particle in subsequent frames 

(
ΔXf ,p

Us

+
ΔYf ,p

Vs

+
ΔZf ,p

Ws

)
 . Initial 

positions X0

f+1,p
− X0

f ,p
 (referred as ΔX0

f ,p
 ) can be expressed 

alternatively as Eq. (15), Δt is the recorded elapsed time per 
frame from CLSM and X0′

f ,p
 is the random displacement that 

occurred between the beginnings of frames f and f + 1.

Substituting Eq. (15) in Eq. (12), we get

Additionally, the particle displacement in the image can 
also be expressed in terms of the laser scanning velocities 
(Us, Vs, Ws) which are represented below.

The unknown variables from Eq. (16) are Uf  and the com-
bined random displacement, X�

f+1,p
− X�

f ,p
+ X0�

f ,p
,which 

occurred over three different time instances. In terms of 
measurements, we can regard the ensemble-averaged ⟨
ΔXf ,p

⟩
 as the most probable displacement of particles esti-

mated by averaging cross-correlation of a confocal scanned 
image pair over total number of particles (q) per each frame 
with a sufficiently large total number of frames (m), given as 
follows:

Equation below represents the ensemble average of each 
term.

(12)

Xf+1,p − Xf ,p = X0

f+1,p
− X0

f ,p
+ Uf ⋅

(
tX
f+1,p

+ tY
f+1,p

+ tZ
f+1,p

−tX
f ,p

− tY
f ,p

− tZ
f ,p

)
+ X�

f+1,p
− X�

f ,p
,

(13)

Yf+1,p − Yf ,p = Y0

f+1,p
− Y0

f ,p
+ Vf ⋅

(
tY
f+1,p

+ tZ
f+1,p

− tY
f ,p

−tZ
f ,p

)
+ Y �

f+1,p
− Y �

f ,p
,

(14)
Zf+1,p − Zf ,p = Z0

f+1,p
− Z0

f ,p
+Wf ⋅

(
tZ
f+1,p

− tZ
f ,p

)
+ Z�

f+1,p
− Z�

f ,p
,

(15)ΔX0

f ,p
= Uf ⋅ Δt + ΔX0�

f ,p
.

(16)
ΔXf ,p = Uf ⋅ Δt + Uf ⋅

(
ΔXf ,p

Us

+
ΔYf ,p

Vs

+
ΔZf ,p

Ws

)

+ X�
f+1,p

− X�
f ,p

+ X0�
f ,p
.

(17)ΔXf ,p = Us ⋅ Δt
X
f ,p

+ Vs ⋅ Δt
Y
f ,p

+Ws ⋅ Δt
Z
f ,p
.

(18)
⟨
ΔXf ,p

⟩
=

1

m

m∑
f=1

1

q

q∑
p=1

ΔXf ,p.

The ensemble average of the random displacements ⟨
X�
f+1,p

− X�
f ,p

+ X0�
f ,p

⟩
 will yield zero, due to Brownian 

motion which can be modeled as normally distributed vari-
able with zero mean (Einstein 1905). Subsequently, we get 
the following equation with three unknown variables Uf  , Vf  
and Wf :

After rearranging, the fluid velocity Uf  can now be decou-
pled from the measured ensemble-averaged displacement ⟨
ΔXf ,p

⟩
 , which consists of the bias error due to the effect of 

scanning, given as follows:

Finally, applying the same steps used to derive Eq. (21) 
for other two dimensions, we yield the following equations, 
to solve for three unknown variables Uf  , Vf  and Wf :

2.3  Processing algorithm

Figure  5 introduces the overall processing algorithm 
called scanning laser image correlation–phase quality 
(SLICQ). After filtering the phase correlation with the 
PQM (described in detail from Figs. 2, 3, 4), the next step 
calculates its inverse FT and apply the sub-pixel fit to iden-
tify the most probable displacement of the image pattern. 
Finally, the multi-dimensional bias corrector is applied to 
the sub-pixel displacement, which yields our best estimate 
of the time-averaged displacement of the particles that were 
imaged.

(19)

⟨
ΔXf ,p

⟩
= Uf ⋅ Δt + Uf ⋅

⟨
ΔXf ,p

⟩
Us

+ Vf ⋅

⟨
ΔYf ,p

⟩
Vs

+Wf ⋅

⟨
ΔZf ,p

⟩
Ws

+ X�
f+1,p

− X�
f ,p
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⟩
∕Ws
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2.4  Synthetic image generation

CLSM images of particles under unidirectional flow were 
rendered by sampling synthetic particle flow fields pixel-by-
pixel, scanning under raster scanning pattern across multiple 
planes (Fig. 1), while continuously advecting the underlying 
tracer particles. The interrogated flow field was simulated 
over a 2D and 3D domain, and was seeded with tracer par-
ticles (3 and 100 nm in size) with random initial vertical 
and horizontal coordinates. All the synthetic images were 
generated with the seeding density of  10−2 particles/pix2, 
which was chosen to prevent particle aggregation during 
the experiments. The domain was discretized into interro-
gation regions with size of 512 × 64 pixels for 2D images 
and 512 × 64 × 64 pixels for 3D images, each of which rep-
resented a single station at which the CLSM scanner sam-
pled the field. In our simulations, the FSR was varied from 
0.0 to 3.3 × 10−1. The diffusion was modeled based on the 

Stokes–Einstein equation with the statistics of Brownian 
motion. The specific details of the image formation process 
and modeling particle diffusion with advection can be found 
in Jun et al. (Jun 2016).

2.5  Micro‑channel flow experiments

To evaluate the performance of our SLICQ algorithm on real 
data, we collected 2D and 3D confocal images of nanometer-
sized tracer particles suspended in water flowing through 
a plastic microfluidic channel of rectangular cross-section 
(µ–Slides I Luer, ibidi Inc) in the middle and circular cross-
section at the inlet. Figure 6 illustrates the overall experi-
mental system and imaging location. The dimensions of the 
rectangular cross-section were 0.1 mm (depth) × 5.0 mm 
(width) and 4.0 mm for the diameter of the circular cross-
section (x–y coordinates) at the inlet. Polystyrene fluores-
cent microspheres (0.1 µm diameter; Fisher Scientific) and 
mCherry fluorescent protein (3.0 nm average hydrodynamic 
diameter; BioVision, 694,614) were used as tracer particles. 
The channel was filled with a suspension of particles in 
water, and the concentration and seeding density for both 
3 and 100 nm particles were  10−2 mg/mL and  10−2 parti-
cles/pix2, respectively. The volumetric flow rate through the 
channel was controlled by a syringe pump (Harvard Appa-
ratus), and ranged from 2.0 to 6.0 µL/s. The interrogation 
region for the rectangular cross-section involved ten differ-
ent positions spaced along Z-axis at three different angles 
of rotations 0°, 45° and 90° with respect to the scanner 
direction (Fig. 6) while for the circular section involved one 
center position along Z-axis at three different flow rates (2.0, 
4.0 and 6.0 µL/s). The inlet region was selected to measure 
the out-of-plane velocity (W) component along the Z-axis, 
which cannot be measured within the rectangular channel 
(U and V components only). The expected flow velocities 
at the interrogation spots ranged from 2.0 to 1.5 × 102 µm/s.

A Nikon A1R scanning laser confocal microscope (Nikon 
Corporation, Tokyo, Japan) was used to image the flow 
through the microfluidic channel. The channel was viewed 
through a 40x objective lens (numerical aperture NA = 1.25, 
working distance of 0.61 mm), and illuminated by an argon 
ion laser (561-nm wavelength). The image sizes for 2D and 
3D scans were 512 × 64 pixels and 512 × 64 × 64 pixels, 
respectively. Dwell time at each pixel was 0.1–2.2 µs, with 
an image magnification of 1.6 × 10−1 µm per pixel. Each 
trial consisted of 5.0 × 103 consecutive frames along the 
same image region. Total scan time per frame for 2D and 
3D images ranged from 9.0 to 2.2 × 102 ms, which includes 
additional time pausing at the beginning and end of each 
line. Spatial resolution of the automated piezo scan (Z step 
size) was 3.0 × 10−2 µm. The apparent CLSM particle image 
diameters (2.3 and 4.8 pixels for 3- and 100-nm particles, 
respectively) were estimated using the auto-correlation 

Fig. 5  SLICQ processing algorithm for measuring time-averaged 
velocity of particles imaged by multi-dimensional CLSM
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diameter measured from the experimental images. As dis-
cussed in the introduction, the shape and size of the nanopar-
ticles recorded in the CLSM images are different from that 
of traditional PIV images. First, because of the finite scan-
ning velocity of CLSM, the motion of diffusion-dominated 
particles is often significant on the time scale of the acquisi-
tion of point by point scanning. This introduces an imaging 
artifact similar to motion blur in traditional cameras. Second, 
the nanoparticles are imaged under the diffraction limit of 
the optics. Therefore, the CLSM images cannot accurately 
locate a single particle and distinguish close particles as sep-
arate from one another. As a result, it should be noted that 
the CLSM particle image diameters we are reporting is an 
apparent image size of one or more group of particles with 
imaging artifacts caused by the aforementioned limitations.

3  Results

3.1  Convergence of measurements

Figure 7 and Table 1 show a comparison of ensemble SLICQ 
and SCC velocity estimates convergence for 2D and 3D syn-
thetic and experimental images. The metric used to quantify 
convergence was based on the change of the displacement 
between ensemble increments. The convergence criterion 
was that displacement changed by less than 0.1 pixels for a 
step increase in the ensemble pairs. An upper bound limit 
of 0.1 pixels was referenced from the standard deviation of 

1000 displacement estimates (instantaneously cross-corre-
lated) from synthetic CLSM images generated with no effect 
of diffusion. For both synthetic and experimental CLSM 
images, we quantified the number of ensemble image pairs 
required for convergence of the displacement estimate using 
our SLICQ compared to the SCC. The results show that the 
convergence was faster for the 100-nm than 3-nm particles 
for 2D images estimated with both SLICQ and SCC, due to 
the increased contribution of diffusion to the displacements 
of the smaller particles. Because of the significant random 
motions caused by the small particle sizes with longer time 
scale of the measurement in 2D and 3D images, the SCC 
failed to reach convergence for the expected velocity, and 
instead reached near-zero displacement caused by a strong 
auto-correlation peak in the SCC plane for the 3-nm parti-
cles (2D images) and both the 3- and 100-nm particles (3D 
images).

3.2  Bias correction: synthetic images

Figure 8a shows the accuracy improvement of our bias 
correction model on the converged ensemble SLICQ 
velocity estimates in synthetic 2D images. This case rep-
resents the range of different FSR for X-direction while 
maintaining a fixed fluid to scanner velocity for Y-direc-
tion. The analytical errors (two theoretical lines in Fig. 8a) 
represent computed errors of the uncorrected theoretical 
measurements, purely based in Eqs. (21)–(23). The bias 
error increases with respect to a higher magnitude of the 

Fig. 6  a Schematic of the exper-
imental setup used to obtain 
CLSM images of nanometer-
sized tracer particles flowing in 
water through a micro-channel. 
b Illustration of the orienta-
tion of the micro-channel with 
respect to the scanning direction
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FSR with a maximum error magnitude of about 5 pixels. 
Conversely, low FSR decreased the bias error, approaching 
the behavior of traditional “snapshot” imaging. The filled 
markers in Fig. 8a show the remaining errors after the 
application of our bias correction model to both the X and 
Y components of the velocity measurements.

Figure 8b shows the bias correction model with dif-
ferent FSR for the Y-direction. Despite the fixed FSR 
assigned on the X-direction, the uncorrected error mag-
nitude (U) increased with respect to the higher magnitude 
of the FSR on the Y-direction. The uncorrected error mag-
nitude (V) has a similar trend with lower values than the 
uncorrected error magnitude (U). Such a trend is expected 
based on the derivation from Eqs. (21)–(23) for the bias 
error correction, in which the X component of the fluid 
velocity will have increased bias error when there is a 
non-zero Y component of the fluid velocity.

Figure 9 shows the bias correction model for 3D CLSM 
images with different FSR for the Z-direction. The fluid to 
scanner velocities in the X and Y-directions are fixed. The 
uncorrected errors, the U, V and W components behave 
similarly, as seen in Fig.  8. Subsequently, higher bias 
errors were observed from the U and V components of the 
fluid velocities due to the increased elapsed time which 
was caused primarily by the W component of the fluid 
velocity, according to Eqs. (21)–(23).

These results from Figs. 8 and 9 indicate that applying 
our bias correction yielded 98% reductions in the mean 
and RMS errors, going from 3.3 to 4.9 × 10−2 pixels and 
3.5 to 5.8 × 10−2 pixels.

Fig. 7  Convergence behavior of 
SLICQ and SCC algorithms for 
a 2D and b 3D synthetic images 
of 3- and 100-nm flow tracer 
particles for the U component 
velocity measurement normal-
ized by the expected value, cor-
responding to the measurement 
with the input velocity of 60 µm 
 s−1 with dwell time of 0.1 µs 
(22 data points per case are 
shown in the plot to distinguish 
markers)

Table 1  Convergence estimate 
for the measurement with 
CLSM images

Image size (pixels) 512 × 64 512 × 64 512 × 64 × 64 512 × 64 × 64

Particle size 3 nm 100 nm 3 nm 100 nm
SCC (image pairs)
 Experimental Not converged 101 Not converged Not converged
 Synthetic Not converged 152 Not converged Not converged

SLICQ (image pairs)
 Experimental 409 52 717 204
 Synthetic 410 97 648 306
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3.3  Bias correction: experimental images

Figure 10a compares the theoretical and measured veloc-
ity profiles within the micro-channel using the converged 
SLICQ and un-converged SCC for both tracer particles. For 
experimental data, we estimated the ground-truth velocity 
analytically using the equation for fully developed Poiseuille 
flow, evaluated at the measurement locations that we inter-
rogated. The theoretical confidence interval band was esti-
mated based on the uncertainty of the calculated error by 
propagating (via the Taylor series expansion method) the 
known elemental sources of error in our experiment, and 
the RMS of the measured velocity, through the error equa-
tion. The elemental sources of error we considered were 
the volumetric flow rate delivered by the syringe pump, the 
physical location of the interrogation region, and the dimen-
sions of the microfluidic channel, whose values were used to 
calculate the Poiseuille flow velocity profile.

In this case (a), the micro-channel’s length (X-coordi-
nate in Fig. 6) was aligned with the scanning direction in 
the X-coordinate which would primarily induce the fluid 
velocity to be along the X-direction. For consistent com-
parison between methods, the SCC measurements were 
ensemble averaged using the same number of image pairs 
required to converge the SLICQ measurements. As men-
tioned previously in Fig. 7 and Table 1, the SCC measure-
ments did not themselves converge. As shown in Fig. 10a, 

Fig. 8  Absolute velocity errors 
with respect to a the U velocity 
and b the V velocity ratio (fluid/
scanning) measured from the 
converged ensemble SLICQ 
measurements from 2D CLSM 
synthetic images (20 data points 
per case are shown in the plot to 
distinguish markers)

Fig. 9  Absolute velocity errors with respect to the W velocity ratio 
(fluid/scanning) measured from the converged ensemble SLICQ 
measurements from 3D CLSM synthetic images of flowing 3- and 
100-nm particles (20 data points per case are shown in the plot to dis-
tinguish markers)
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nearly all the U component velocity measurements for 
both 3- and 100-nm particles with SLICQ fell within the 
95% confidence interval about the nominal theoretical 
velocity profile. The V component velocity measurements 
from SLICQ ranged from − 8.7 × 10−1 to 1.8 pixels with a 
mean displacement of 3.4 × 10−1 pixels among collected 
measurement planes. The effect of the bias error correc-
tion from the U component velocities seems marginal, 
which is due to the negligible presence of the V component 
velocities as discussed previously with the analytical bias 
error Eqs. (21)–(23). The presence of both the U and V 
component velocities were imposed by rotating the micro-
channel’s width 45° with respect to the scanning direction 
in the X-coordinate (Fig. 10b). In principle, this particular 
orientation should result in an equal magnitude for both 
the U and V component velocities, as represented by the 
theoretical velocity profile in Fig. 10b. The uncorrected U 
and V component velocity measurements are well below 

the nominal theoretical velocity profile. Subsequently, the 
bias corrections decreased the error magnitude up to 10 
pixels for both the U and V components. The un-converged 
SCC measurements remain near-zero displacement across 
all measurement planes.

Figure 10c represents the final case with 2D CLSM 
images, in which the micro-channel’s width was rotated 
90° with respect to the scanning direction in X-coordi-
nate. With this orientation, the U component velocities 
were near-zero displacement, as the scanning direction 
in X-coordinate is perpendicular to the direction of the 
flow. Theoretically, the V component velocities should 
show a similar trend to Fig. 10a, as for the one component 
velocity with the same flow rate. However, the measured 
V component velocities have lower magnitude across all 
measurement planes than the U component velocity profile 
from Fig. 10a, as a result of the bias error along Y-direc-
tion. After the bias error corrections, the V component 

Fig. 10  Comparison of different 
cases of 2D velocity measure-
ments across the depth of the 
channel for a 0°, b 45° and c 
90° angle between the scanning 
and input flow directions, com-
pared to the theoretical solution 
for plane Poiseuille flow (flow 
rate 2 µl  s−1), FSR between 
1.0 × 10−2 and 3.0 × 10−1. 
Whiskers indicate the 95% 
confidence interval about the 
mean velocity
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velocities changed in magnitude by up to 20 pixels which 
brought the velocity profile much closer to the theoretical 
velocity profile.

Figure  11a represents the three-component velocity 
profiles measured from 3D CLSM images with the 3-nm 
mCherry protein and 100-nm particles in water flowing 
through the micro-channel (0° angle rotation with respect to 
the scanning direction in X-coordinate). The general trends 
for all cases for both SLICQ and SCC measurements look 
similar to Fig. 10a, since only the U component velocities 
are dominant with this orientation of the micro-channel. As 
a result, the effect of the bias error corrections is also negli-
gible. The velocity magnitude for the U component veloci-
ties is higher than the 2D cases due to the longer acquisition 
time with volume scans.

Figure 11b shows the three-component velocity meas-
urements at the center of the circular inlet location, which 
is illustrated in Fig. 6. This specific location was chosen to 
capture the W component velocity inside the micro-channel 
since the flow direction across the rectangular cross-section 
will be predominantly U component alone. The center loca-
tion of the circular cross-section was volume scanned to 
capture the strongest out-of-plane motion of the flow. The 
selected flow rates were 2.0, 4.0 and 6.0 µL/s, and measure-
ments were compared to the theoretical solution for Poi-
seuille flow through a constant circular cross-section.

The three measured W component velocities with ensem-
ble SLICQ are all outside the 95% confidence interval about 
the nominal theoretical velocity profile. After applying the 
bias error corrections, the measurements improved with a 

Fig. 11  Comparison of different 
cases of 3D velocity measure-
ments with 3-nm mCherry 
protein and 100-nm particles 
across. a The depth of the chan-
nel, compared to the theoretical 
solution for plane Poiseuille 
flow (flow rate 2 µl  s−1), 
FSR between 1.0 × 10−1 and 
3.0 × 10−1 and b the center of 
the circular inlet of the channel 
(out-of-plane flow direction), 
compared to the theoretical 
centerline displacement (flow 
rate 2–6 µl  s−1, FSR between 
1.0 × 10-22.5 × 10 − 1). Whisk-
ers indicate the 95% confidence 
interval about the mean velocity
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reduction in error magnitude by up to 7.0 pixels in W com-
ponent velocities and 1.0 pixel in U and V component veloci-
ties. As with all the previous experimental cases, the meas-
urements with SCC resulted in near-zero displacements for 
all three components of the velocity.

4  Discussion

Diffusion of the tracer particles, laser scanning speed, and 
velocity of the flow impact the accuracy of 2D and 3D 
CLSM-based flow velocimetry (Jun 2016). In this study, we 
tackle all these issues through a new processing method that 
combines use of the dynamic spectral filter and 3D bias cor-
rection model.

The Brownian motion of tracer particles in multi-dimen-
sional CLSM images and the effects of their random errors 
were suppressed with the use of the PQM with ensemble 
averaging. The SLICQ demonstrated vastly improved effi-
ciency and versatility as a dynamic spectral filter not requir-
ing a priori knowledge of displacement fields such as dif-
fusivity and particle diameter, which was not capable with 
SLICR algorithm (Jun 2016). The superior performance of 
our SLICQ compared to the SCC is evident from the failure 
of the SCC measurements for 2D and 3D CLSM images with 
3- and 100-nm particles, respectively, from both synthetic 
and experimental results.

Figure 12 illustrates three main types of spatial correla-
tion shapes. The first, Fig. 12a, represents converged SCC 
measurements with 100-nm particles captured in 2D images. 
Even though the correlation magnitude ratio from the first 
peak to the secondary broad Gaussian peak is less than 1.1 
for all 2D measurements with 100-nm particles, ensemble 
SCC measurements with bias error corrections can yield 
as accurate displacement as SLICQ which is represented 
in Fig. 7.

The second shown in Fig. 12b represents correlation 
shapes of all the other SCC measurements including 2D and 

3D 3-nm particle images and 3D 100-nm particle images. 
As discussed in our previous SLICR study (Jun 2016), the 
spatial and temporal resolutions of CLSM devices are not 
optimal to resolve kinematics of such cases with use of 
SCC alone. Such limitations manifest as a broad Gauss-
ian-shaped correlation in the ensemble-averaged SCC as 
shown in Fig. 12b. Even though the magnitude of the broad 
Gaussian-shaped peak shown in Fig. 12b is large (> 1010) 
due to ensemble correlation, the location of the peak is 
always centered near-zero displacement regardless of the 
flow velocity magnitude. The third type shows correlation 
shape from SLICQ after filtering with PQM in which the 
broad Gaussian shape peak no longer exists and maintains 
peak-to-peak ratio greater than 2.2 for all the cases. Unlike 
traditional pair-wise PIV with use of particle sizes larger 
than 1 µm, where well-known SNR metrics (such as correla-
tion peak-to-peak ratio and height of the tallest correlation 
peak) can predict the measurement accuracy, these metrics 
do not apply well when the spatial domain is contaminated 
under decorrelating effects of diffusion and noise (Fig. 12a, 
b). As a result, we used measurement errors as a more rigor-
ous metric representing the measurement robustness.

The main contributor that caused the SCC to fail is the 
rate of image acquisition being much longer than 1D acquisi-
tion of CLSM images which were assessed in our previous 
work (Jun 2016), more than the small tracer particle sizes. 
As the time allowed for nanoparticles to move gets longer, 
Brownian motion manifests as a broad Gaussian-shaped cor-
relation in the ensemble-averaged SCC. This degrades the 
ability of peak-searching algorithms to identify the small 
correlation peak corresponding to the mean background 
velocity of the flow. In contrast to SCC, the RPC algorithm 
(Eckstein and Vlachos 2009b; Eckstein et al. 2008) recog-
nized that the correlation SNR decreases with an increas-
ing wavenumber. Subsequently, the PQM technique from 
SLICQ measures the SNR across the Fourier domain and 
suppresses the correlation where the SNR is measured to be 
low. Ultimately, the SLICQ’s ability to decouple the lower 

Fig. 12  Representative spatial cross-correlation types observed from 
both synthetic and experimental images illustrating, a identified dis-
placement peak from SCC (2D 100-nm particle images), b failed 

SCC without displacement peak (2D and 3D) 3-nm particle images 
and 3D 100-nm particle images and c identified displacement peak 
from SLICQ (all the CLSM images)
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and high wave numbers representing true mean displacement 
and diffusion-dominated displacement, respectively, allows 
a search for the true peak even with the longer time scale of 
the acquisition used in this study.

The analysis of the propagation of bias errors in multi-
dimensional CLSM measurements revealed that measure-
ment with both larger magnitude and number of velocity 
component under the finite scanning velocity of CLSM 
involves higher bias error. With the damaging effects of 
the bias error as shown from our results, there are three 
parameters to consider selectively for CLSM imaging to 
minimize the FSR. First, it will be advantageous to use the 
fastest scanning velocity for CLSM recording regardless of 
the image dimension which will lower the FSR. Second, 
the image size must be chosen with respect to the expected 
velocity displacement. The most dependent scanning dis-
placement (Y- and Z-dimensions for the 2D and 3D CLSM 
images, respectively) should be at least 20 times larger than 
the expected displacement for mitigating the error magni-
tude below 1.0 × 10−1 pixel, according to Figs. 8 and 9. The 
experimental results from Figs. 11 and 12 also demonstrated 
the effects of image dimensions (scanned displacements) 
on the bias error, in which the extreme value of the FSR 
(maximum up to of 3.0 × 10−1) was chosen to increase the 
uncorrected error magnitude. Finally, the fluid velocity can 
be optimized by controlling the input flow devices or geom-
etry of the channel being used when there are limited choices 
of different scanner speeds.

Overall, the process of multi-dimensional image forma-
tion by CLSM and the use of diffusion-dominated nano-
particles as flow tracers further exacerbated the difficulties 
dealing with the random and bias error that we experienced 
with 1D SLIC measurements (Jun 2016). Our new algorithm 
(SLICQ) overcomes these limitations by expanding our 1D 
analytical model of CLSM imaging and replacing the single-
sized RPC filter with the PQM that dynamically changes the 
filter size most optimal for the range of conditions tested in 
this study.

The primary limitation in this study was the flow condi-
tion being steady unidirectional and that our measurements 
required ensemble averaging. Additionally, the point-scanner 
nature of the CLSM system is disadvantageous when explor-
ing more complex global flow fields that interest most PIV 
users. Nevertheless, CLSM having low temporal resolution 
(its main disadvantage), it is still considered the most popu-
lar choice and versatile 3D imaging system for a wide range 
of imaging applications (Rossow et al. 2010a, b; Jonkman 
and Brown 2015; Sironi 2014). Our method to yield reli-
able multi-dimensional scale velocity measurements with 
CLSM will provide many researchers with guidance in the 
designing of micro- and nanoscale flow experiments using 
these instruments.
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