
Vol.:(0123456789)1 3

Microfluidics and Nanofluidics (2018) 22:74 
https://doi.org/10.1007/s10404-018-2093-x

RESEARCH PAPER

uFlow: software for rational engineering of secondary flows in inertial 
microfluidic devices

Daniel Stoecklein1 · Keegan Owsley1 · Chueh‑Yu Wu1 · Dino Di Carlo1 · Baskar Ganapathysubramanian2

Received: 17 April 2018 / Accepted: 18 June 2018 / Published online: 25 June 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Approaches to abstract and modularize models of fluid flow in microfluidic devices can enable predictive and rational engi-
neering of microfluidic circuits with rapid designer feedback. The shape of co-flowing streams in the inertial flow regime has 
become of particular importance for new developments in high throughput microscale manufacturing, biological, and chemi-
cal research. In a process known as flow sculpting, the cross-sectional distribution of fluid elements is deformed due to the 
combined effects of diffusion and transverse advection, which are brought on by interaction with velocity gradients induced 
by sequences of pillar structures. However, the difficulty in solving the Navier–Stokes equations for complex flow-deforming 
geometries makes design in this space unintuitive, time-consuming, and costly. To mitigate these issues, we have efficiently 
embedded flow deformation operations previously relegated to high-performance computing into a free, user-friendly, and 
cross-platform framework called “uFlow”, to bring flow sculpting to the broader community. uFlow computes flow defor-
mation including both advection and diffusion effects from a single pillar in 25 ms on modern consumer hardware, enabling 
real-time manual design and exploration of microfluidic devices, and fast visualization of 3D particles fabricated via stop 
flow lithography or optical transient liquid molding. Advanced numerical routines give instant access to a practically infinite 
set of flow transformations. We showcase uFlow’s design models, describe their implementation and usage, and validate 
the algorithms which allow real-time feedback with confocal imaging and cutting-edge microfluidic particle fabrication.

Keywords  Inertial microfluidics · Microparticles · Modeling · 3D visualization · Computer-aided design

1  Introduction

Enabled by electronic design automation software, modular-
ity and abstraction have been critical concepts that fueled a 
revolution in producing complex electronic circuits to per-
form information processing tasks. Similar approaches can 
aid in the design of microfluidic devices, where software 

can store pre-computed operations of microfluidic com-
ponents, giving those researchers without access to high-
performance computational resources the ability to rapidly 
explore complex physics. An important aspect of these 
software packages is the ability to make rapid prediction 
of the outputs of the entire system when modifications are 
made to modular components, or to their arrangement within 
the system. For example, design of monolithic microfluidic 
devices has been facilitated by hydraulic circuit analysis. 
However, unlike analogous electronic devices—where one-
dimensional electron flow is important—microfluidic engi-
neers may also aim to control the fluid elements within the 
cross section of a channel for mixing, reaction, or separa-
tion applications. Software that abstracts the Navier–Stokes 
and convection–diffusion equations, focusing only on the 
input–output transfer functions while tracking the cross-
sectional flow structure, could benefit the next generation 
of microfluidic designers. Only recently has there been effort 
in this direction for mixing flows and shaping cross-sectional 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1040​4-018-2093-x) contains 
supplementary material, which is available to authorized users.

 *	 Baskar Ganapathysubramanian 
	 baskarg@iastate.edu

	 Dino Di Carlo 
	 dicarlo@ucla.edu

1	 Department of Bioengineering, University of California, 
Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, 
USA

2	 Department of Mechanical Engineering, Iowa State 
University, 2025 Black Engineering, Ames, IA 50011, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-018-2093-x&domain=pdf
https://doi.org/10.1007/s10404-018-2093-x


	 Microfluidics and Nanofluidics (2018) 22:74

1 3

74  Page 2 of 12

flow shape (Mott et al. 2006; Howell et al. 2008; Amini 
et al. 2013).

Over the last two decades, the microfluidics community 
has developed multiple approaches for the passive manipula-
tion of a fluid’s cross-sectional material composition at the 
microscale. Liu et al. (2000) used serpentine channels to 
induce mixing, in which a curving channel was the modu-
lar element that led to turning fluid streamlines with finite 
inertia. Stroock et al. (2002) demonstrated a more straight-
forward method for mixing by embedding herringbone 
structures as modular elements in the wall of a microchan-
nel. This approach allowed for mixing from the Stokes flow 
regime ( Re ≪ 1 ) to inertial flows ( 1 < Re < 100 ) with quali-
tatively similar results. Howell et al. (2004) showed how 
Dean flow in curved channels can achieve efficient mixing, 
and Sudarsan and Ugaz (2006) enhanced this method with 
sudden channel expansions. For more precise control over 
the fluid, Howell et al. (2008) extended the idea of patterned 
microchannel surfaces with the use of grooves for hydrody-
namic focusing. However, each of these methods typically 
employs a small set of flow operations that leverage chaotic 
advective forces, limiting their potential for arbitrary user-
designed flow shapes. Amini et al. (2013) introduced the 
idea of using sequenced microstructures for hierarchically 
designed fluid flow deformation and cross-sectional shaping 
in the inertial regime. This technique for flow manipula-
tion, dubbed “flow sculpting”, has dramatically enhanced the 
level of control possible over the form of microfluid streams.

Flow sculpting uses a sequence of bluff body micro-
structures, each acting as independent operators, to deform 
the cross-sectional structure of inertially flowing fluid. To 
maintain independence between the flow deforming opera-
tors, there are necessary restrictions on the design of a 
flow sculpting device. The primary restriction is that the 
microstructures—cylindrical pillars are commonly used, 
and assumed here—must be spaced far enough apart in the 
microchannel to allow for an individual pillar’s flow defor-
mation, i.e., advection map (Mott et al. 2006; Stoecklein 
et al. 2014) (see Fig. 2), to saturate before the fluid arrives at 
the subsequent pillar. The flow deformation should also have 
no time-dependent effects. These two features prevent cross-
talk between pillars, and enable an elegant computational 
shortcut for simulating flow sculpting devices: the fluid flow 
deformation for any structure can be independently simu-
lated ahead of time, and since we are only concerned with 
the transformation of flow after passing the pillar, advection 
maps of the cross-sectional fluid flow shape can be sequen-
tially composed for real-time simulation of fluid flow defor-
mation. This is especially useful for the inertial flow regime, 
as accurate computational fluid dynamics (CFD) simulations 
that include convective terms to account for inertia are com-
putationally expensive to solve, making their use in design 
costly, and beyond the reach of researchers who are without 

access to high-performance computing (HPC) resources. 
On the other hand, rapid use of pre-computed results from 
complex CFD simulations makes exploratory investigations 
more feasible, and previously difficult design problems trac-
table. In 2014, we implemented this approach and showed 
how one could program the structure of inertial fluid streams 
within a user-friendly graphical interface (Stoecklein et al. 
2014). This framework’s fast advection model has been 
experimentally validated over a wide variety of sculpted 
fluid flow shapes (Stoecklein et al. 2014), and has enabled 
researchers to use flow sculpting for novel applications in 
advanced manufacturing and biological sciences: Nunes 
et al. (2014) fabricated shaped microfibers with tailored 
cross sections by sculpting a UV-polymer pre-cursor, and 
Sollier et al. (2015) designed a solution transfer scheme to 
shift fluid away from larger particles in flow, thus introduc-
ing a high-throughput approach to purify samples, or collect 
reusable reagents.

We have been working on this framework, dubbed 
“uFlow” since its debut, and report here several significant 
advances as part of a high-functionality release of the soft-
ware, including a diffusion model and 3D polymer particle 
shape prediction, that we think will have a broad impact 
on the microfluidics community. A number of features have 
been incorporated into uFlow to bring the user from simple 
point-and-click assembly of flow sculpting devices, through 
post-processing their design with high-resolution images 
and computer-aided design (CAD) models, to advanced 
modeling of mass diffusion and particle fabrication via UV 
polymerization. The inclusion of a transverse mass diffusion 
model can be crucial for design, as diffusive blurring is prob-
lematic with the longer channels that come with more com-
plex flow shapes (increasing fluid time-of-flight), thereby 
limiting the practically useful number of pillars in a flow 
sculpting device, and making advection-only models imprac-
tical. Mass diffusion can also be leveraged to decouple fluid 
streams connected by a thin band of fluid, or purposely erode 
small-scale features of a sculpted shape. Software-aided par-
ticle design dovetails with recent developments in particle 
fabrication, e.g., Paulsen et al. (2015) using stop flow lithog-
raphy to fabricate shaped millimeter-scale 3D particles, 
following up with microscale 3D particles (Paulsen et al. 
2018), and Wu et al. (2015) building a rapid manufacturing 
approach for 3D microscale particles. These processes can 
be used to create functionalized particles for cell capture and 
diagnostics (Bong et al. 2015; Chen et al. 2016) or acceler-
ated wound healing (Do et al. 2015; Griffin et al. 2015), 
encoded hydrogel particles (Lee et al. 2014; Appleyard et al. 
2011), photonic crystals (Galisteo-López et al. 2011), and 
self-assembling hydrogels (Gurkan et al. 2012), for example. 
However, current routes for particle design require full-scale 
Navier–Stokes/convection–diffusion CFD simulations for 
whole devices (Paulsen et al. 2015, 2018), whereas uFlow 



Microfluidics and Nanofluidics (2018) 22:74	

1 3

Page 3 of 12  74

gives a comparable result in a matter of seconds, with no 
CFD expertise required.

Here for the first time we describe the uFlow frame-
work in complete detail, along with the implementation 
and usage of the aforementioned features. Our goal is to 
aid other researchers who wish to adopt the framework to 
address other microfluidic design problems of interest, or 
add functionality themselves. We anticipate that uFlow 
will assist the microfluidics community for design, enable 
rapid visual feedback for fluid mechanics education, and to 
help accelerate the maturation and adoption of microfluidic 
technologies.

2 � uFlow overview

The three primary physics models available in the uFlow 
library (dubbed “uFlowlib”) are those of fluid advection, 
transverse mass diffusion, and microparticle fabrication 
visualization, all of which are accessible through its graphi-
cal user interface (GUI) (see Fig. 1). uFlow also stores sev-
eral thousand advection maps for instant recall via principal 
component analysis (PCA), with interpolation giving access 

to a practically infinite set of flow deformations. uFlowlib 
leverages the graphical processing unit (GPU) available on 
most standard laptops/desktops to accelerate the computing 
to make real-time exploration possible.

We adapt the computation of flow sculpting to GPUs in 
a platform-agnostic manner using the open graphics library 
(OpenGL), which is a cross-platform programming inter-
face for GPUs that is typically utilized in 2D/3D render-
ing for visualization. uFlow itself is written in the Python 
language, while OpenGL routines are programmed in the 
Graphics Library Shader Language (GLSL), and sent to the 
GPU through the Python module “Pyglet”.1 Most of uFlow’s 
library makes use of shaders, which are small programs that 
run in parallel on the GPU and can use data stored in textures 
which reside in GPU memory (analogous to arrays in system 
memory). By aligning flow sculpting simulations with com-
putational routines endemic to the GPU, we have created an 
extremely fast framework for exploration and design. uFlow 
is freely available for Windows and Linux platforms,2 and 

Fig. 1   uFlow graphical user interface (GUI): a inlet flow pattern 
design of the channel cross section indicating different regions of 
the flow; b, c pillar diameter and location for the next pillar, or for 
altering a selected pillar; d Reynolds number (flow physics) for the 
flow sculpting device; e Peclét number (diffusion) for the flow sculpt-
ing device; f polymerization threshold for microparticle rendering; g 

undo/redo, device saving/loading/export; h microparticle rendering 
area; i net flow deformation visualization (can be selected to save a 
high-resolution image); j pillar sequence area (for placement/adjust-
ment of pillars). Note that for ease of use, the pillars are shown much 
closer together than they should be in a fabricated device

1  https​://www.pygle​t.org.
2  www.biomi​crofl​uidic​s.com/softw​are.php.

https://www.pyglet.org
http://www.biomicrofluidics.com/software.php


	 Microfluidics and Nanofluidics (2018) 22:74

1 3

74  Page 4 of 12

its source code is also freely accessible.3 In the next two 
sections, we detail physics models and utilities of uFlowlib, 
along with their implementation and usage in the software.

3 � uFlow physics models

3.1 � Advection

The most basic operation of uFlow is to simulate the con-
vection-driven net fluid flow deformation induced by a user-
designed pillar sequence. Previous work of Amini et al. 
(2013) and Stoecklein et al. (2014) explored the nature of 
steady-state inertial flow past cylindrical bluff-bodies (pil-
lars) in microfluidic channels. The overall lateral displace-
ment due to net inertial convection yields a so-called “advec-
tion map” for a single pillar and fluid flow condition, Re 
(we define the Reynolds number as Re = UDH

�
 , with fluid 

kinematic viscosity � and average downstream velocity U, 
and microchannel hydraulic diameter DH ). An advection 
map is a 2D vector field describing the lateral displace-
ment of fluid in the microchannel cross section, acting as 
a computational shortcut for simulating the full CFD flow 

deformation for a single pillar. By collapsing the streamtrace 
through a 3D velocity field to a 2D map, the net flow defor-
mation from a sequence of pillars in a flow sculpting device 
is well simulated in an extremely rapid manner by simply 
traversing from map to map (see Fig. 2). In fact, the flow 
transformation induced by any arbitrary microchannel geom-
etry (e.g., grooves, curved channels, ridged channels) can be 
represented as an advection map and added to a library of 
pre-computed deformations, any of which are readily placed 
into a flow sculpting device simulation. We ensure seam-
less utility by enforcing a set of requirements on the library 
of advection maps. First, the channel geometry and flow 
physics must match at the inlet and outlet of each micro-
fluidic “module”. One cannot append an advection map for 
which Re = 40 to a device which uses maps computed for 
Re = 20 , nor mix-and-match microchannel height-to-width 
aspect ratios, without a connecting channel that matches the 
boundary conditions at the outlet to the preceding module, 
and at the inlet of the following module. Second, the 3D 
streamtrace must completely capture the flow-induced defor-
mation within the 3D domain, i.e., transverse flow displace-
ment should saturate before fluid exits the domain. Finally, 
the flow should not exhibit any time-dependent effects.

uFlow uses custom full-color RGBA 32-bit floating point 
textures to store advection map data, which describe flow 
displacement on the y–z plane (see Fig. 2a) for a discretized 

Fig. 2   Illustration of the creation of advection maps and their use in 
flow sculpting. (a) Fluid flow is simulated within a 3D domain for a 
single pillar and a given fluid flow condition (Reynolds number Re), 
producing a 3D velocity field. Infinitesimal, massless particles are 
streamtraced through the velocity field, determining each fluid ele-
ment’s (particle) lateral displacement (b) in the microchannel cross-
section. This is performed for a lattice of particles across the entire 
cross-sectional area, with their collective displacements informing 

a single advection map (c) for that pillar’s geometry and the given 
flow physics. The advection map can then be used in place of the 3D 
velocity field for the simulation of a flow sculpting device, where (d) 
transverse fluid displacement is computed for a single fluid element 
by sampling the advection map at the fluid’s current location in the 
channel cross section. This process can be repeated for an arbitrary 
number of pillars or other microchannel modules, provided that each 
3D simulation has matching boundary geometry and flow physics

3  www.bitbu​cket.com/baska​rgrou​p/uflow​.

http://www.bitbucket.com/baskargroup/uflow


Microfluidics and Nanofluidics (2018) 22:74	

1 3

Page 5 of 12  74

grid of NY × NZ fluid element locations. The red and green 
channels store (dy, dz ) displacement data at their respec-
tive locations in the microchannel cross section. Because 
each displacement is computed independently in the 3D 
streamtrace, displacing fluid in uFlow (now represented as 
pixels) is an embarrassingly parallel operation, and well 
suited to execute on the GPU. To simulate flow deformation 
from a microfluidic module (e.g., a pillar), uFlow uses the 
process defined in Appendix 1.

Using uFlow through its graphical user interface (GUI) 
is a simple game-like process (see Fig. 1). Once the pro-
gram is started, most interaction is through the mouse, which 
can select a pillar diameter and Reynolds number from the 
left-pane of uFlow (Fig. 1b, d), and place the pillar within 
the rendered microchannel itself in a selected location 
(Fig. 1j). A view of the flow device’s outlet cross section is 
then shown in color in the upper-right portion of the win-
dow. More complex deformations can be created by plac-
ing additional pillars as desired, although several practical 
limitations—beyond GPU memory to store deformations—
should be considered in creating a flow sculpting device: 
first, transverse mass diffusion will blur deformed shapes, 
the effects of which become exacerbated with longer chan-
nels associated with longer sequences of pillars (diffusion is 
discussed in greater detail in the following section). Second, 
an increased number of obstacles and a lengthened micro-
channel will require higher pressure at the inlet to drive flow. 
High pressure in a microfluidic device can be impractical to 
implement, and introduce flexure (or damage) to the walls 
of the device itself, especially if it has been fabricated from 
softer polymers such as polydimethylsiloxane (PDMS) (Sol-
lier et al. 2011). Finally, it is desirable to minimize flow 
sculpting’s footprint in a lab-on-a-chip device. In addition to 
the above concerns, a smaller device with fewer flow sculpt-
ing parts will allow more room for additional microfluidic 
components (e.g., polymerization, sensors, or visual interro-
gation), and have fewer points of failure during fabrication.

The flow streams and pillar properties are dynamically 
adjustable in uFlow with real-time feedback to the computed 
flow shape. The inlet flow stream widths (Fig. 1a) can be 
changed dynamically by clicking and dragging on the small 
triangles at the lower edge of a stream, a menu to change a 
stream’s color can be opened by right-clicking a stream, and 
new flow streams can be added by double-clicking within 
the inlet flow pattern design. Because the fluid particles are 
colored in each rendered frame, adjustments to the inlet flow 
pattern are immediately reflected in real time in the deformed 
flow shape. Similarly, as uFlow stores each microfluidic 
part’s contribution to the net flow deformation in memory, 
changes made to previously placed parts (e.g., resizing a pre-
vious pillar’s diameter, or changing its location in the chan-
nel) will instantly update the deformed flow shape. The 3D 
view of the flow sculpting device can be rotated (holding in 

the right-mouse button and moving the mouse) moved along 
the channel (holding the left-mouse button and dragging 
the mouse), or zoomed in/out (using the scroll wheel on the 
mouse). An image of the deformed fluid is shown after each 
individual pillar, allowing the user to see the change in the 
fluid flow shape as each pillar sculpts it. This can be informa-
tive for iterative design, and help provide insight into the cha-
otic effects of changes early in the sequence. Notably for appli-
cations in material fabrication, different regions of sculpted 
flow can be functionalized with designed properties by doping 
inlet flow streams with functional materials, such as biotin or 
superparamagnetic particles (Wu et al. 2015).

The net deformation can be output as a high-resolution 
portable network graphics (PNG) format image, and the device 
design itself can be saved in two different forms: uFlow’s cus-
tom .dev format, which can be loaded into other instances of 
uFlow to recreate the design; and a CAD-like .dxf format (see 
Fig. 1g). The .dxf format, which can be opened by many CAD 
programs, is intended to aid in device fabrication, and contains 
a top-down view of the entire flow sculpting device with pillars 
correctly spaced to avoid cross-talk.

3.2 � Diffusion

The effects of mass diffusion have generally been neglected 
in previous flow sculpting work, as it was assumed that high 
Peclét numbers ( Pe = LcUc

D
 , for characteristic length Lc and 

velocity Uc , and diffusivity D, showing the relative dominance 
of the rate of advection vs. diffusion in mass transport) would 
be employed in their use cases. However, the practical effects 
of diffusion can still play a significant role in flow sculpting 
even at relatively high Pe. For example, work done by Stoeck-
lein et al. (2014) relied upon diffusion to produce several flow 
transformations—bridging small gaps to create closed shapes, 
or dissipating connecting threads to separate streams. Mass 
diffusion also affects the minimum feature size in sculpted flow 
shapes, thereby playing a significant role in flow lithography 
approaches that utilize flow sculpting. Hence, we aimed to 
include the effects of diffusion in uFlow’s toolkit in a manner 
that was compatible with the modular assembly of microfluidic 
components.

In principle, the flow physics of a fluid parcel in inertial 
flow is determined by the advection–diffusion equation. We 
track the Lagrangian motion (i.e., pure advection) of the fluid 
parcel using the previously described advection maps. Using 
a frame of reference that is moving with the particle, we can 
consider how diffusion occurs in the direction normal to the 
streamline direction. Diffusion in the cross-sectional y–z plane 
is modeled using Fick’s law:

(1)
�c

�t
= D∇2c.



	 Microfluidics and Nanofluidics (2018) 22:74

1 3

74  Page 6 of 12

We utilize the analytical solution for 2D isotropic diffusion 
from a point source, computing the concentration c(t) from 
an initial mass M at point �, �:

where �, � are local coordinates in the y–z plane (with 
(� = 0, � = 0) representing the center of the point source 
(pixel) being diffused) and t is the time of diffusion. Use 
of this solution is reasonable since we consider pixel-width 
streamlines.

uFlow operates in a non-dimensional domain to allow 
scaling to any microfluidic device which exhibits the scaling 
parameters of Pe and Re. Pe is defined using the microchan-
nel width w for the characteristic length Lc , while the flow 
Reynolds number Re uses the characteristic velocity Uc as 
Re =

UcLDh

�
 , where LDh is the microchannel hydraulic diam-

eter. Equation (2) is made non-dimensional for use in uFlow 
by substituting the Peclét number Pe for D, non-dimensional 
time t∗ = tUc

Lc
 , non-dimensional distances �∗ = �

Lc
 and �∗ = �

Lc
 , 

and multiplying each side by L
2
c

M
:

Note that each pixel in the cross section will suffer a differ-
ent amount of diffusion, as the transit time of fluid at various 
points on the cross section is different. Fluid in the center of 
the channel will experience low time-of-flight due to higher 
velocity, and, therefore, low diffusion, while fluid closer to 
the boundaries have much larger time-of-flight (due to the 
slower velocities as a result of the no-slip boundary condi-
tion), leading to greater diffusion. We, therefore, create an 
effective diffusivity D�(y

∗, z∗) = D�(y∗, z∗) , where �(y∗, z∗) 
is a scalar field of a fluid particle’s non-dimensional time-
of-flight �(y∗, z∗) = L∗

u∗(y∗,z∗)
 , for non-dimensional channel 

segment length L∗ , fluid velocity u∗ = u

Uc

 , and coordinates 

( y∗ = y

Lc
, z∗ =

z

Lc
 ) spanning the microchannel cross section. 

This can be incorporated into a spatially dependent Peclét 
number, Pe(y∗, z∗) = UcLc

D� (y
∗,z∗)

 , which can be used in Eq. (3) 

with a time step t∗ = 1 to estimate diffusive blur resulting 
from fluid travel through a single channel segment for a pixel 
at ( y∗, z∗ ). That is, uFlow diffuses the mass at a point (pixel) 
at ( y∗, z∗ ) with a gaussian distribution in local pixel-centered 
coordinates ( �∗, �∗) , with a diffusive length proportional to 

1

Pe(y∗,z∗)
.

Although a unique time-of-flight as a function of cross 
section position and pillar component could be utilized in 
this scheme, we approximate D� by assuming that the bulk 
of a fluid element’s time-of-flight will be spent in the open 

(2)c(�, �, t) = M
(

1

4�Dt

)
e

−(�2+�2)

4Dt ,

(3)
L2
c

M
c(�∗, �∗, t∗) =

(
Pe

4�t∗

)
e

−Pe(�∗2+�∗2)
4t∗

channel, and calculate �(y∗, z∗) from an analytical solution 
for the velocity field u∗(y∗, z∗) considering laminar flow in 
a rectangular duct  (Spiga and Morino 1994). A non-
dimensional time-of-flight is calculated based on a series 
sum for velocity from Spiga and Morino (1994), and the 
known inter-pillar spacing (Amini et al. 2013) ( L∗ = 10

w

Lc
 ), 

yielding the scalar field �(y∗, z∗) . The resulting diffusive 
blur is applied after each pillar deforms the cross-sectional 
flow shape, with the diffused result becoming the input for 
the next pillar. This is trivially incorporated into the uFlow 
framework.

We consider the diffused mass M as the RGB color 
profile at each pixel, and embed the previously defined 
gaussian function within the advection-coloring fragment 
shader. To diffuse a single point, a fragment shader uses 
Eq. (3) to sample a 7 × 7 neighborhood of pixels (the span 
of which is defined by the diffusive length 1

Pe
 ), and calcu-

lates how each neighbor will affect the single point under 
consideration. The point is then colored by summing each 
neighbor’s diffused contribution, along with its own dif-
fused color, advected from the inlet streams. This sum is 
normalized by the number of points sampled, allowing 
this approach to work near the boundaries where fewer 
pixels are sampled. The diffusion operation automatically 
updates with each frame render, so adjustments to the 
Peclét number in the GUI (see Fig. 1e) will change the 
visualized diffusive blur in real-time. If a non-diffusive 
image is desired (advection only), the device’s Peclét num-
ber can be increased to the point where diffusive effects 
are no longer present. Practically, we see this for Pe ≥ 107.

Despite some simplification of the physics, this diffu-
sion model replicates experimental behavior well. Fig. 3 
shows how the time-of-flight field �(y∗, z∗) , based on the 
velocity field for laminar duct flow, diffuses a co-flow of 
streams in a straight channel in the expected “hourglass” 
shape (Ismagilov et al. 2000). In Fig. 4, uFlow’s diffusion 
model is compared to confocal images taken from flow 
sculpting devices with Pe = 105 [fabricated and imaged 
using the techniques outlined by Amini et al. (2013)], 
alongside non-diffusive simulations ( Pe = 107 ) to demon-
strate the difference. Note that near the boundaries—where 
time-of-flight goes to infinity as the fluid velocity goes 
to zero—the large effective diffusive length will signifi-
cantly blur the sculpted fluid, diluting the fluid mass. This 
is an effect uFlow captures, as shown by comparison to 
experimental results in Fig. 4. While showing qualitative 
accuracy, there is further scope for improvement of incor-
porating the effect of diffusion. Future work will include 
per-pillar time-of-flight information, as advection maps 
use only two of the four available channels in an RGBA 
texture to store a (dy, dz) vector field.



Microfluidics and Nanofluidics (2018) 22:74	

1 3

Page 7 of 12  74

3.3 � Microparticle fabrication visualization

Flow sculpting has been used with stop flow lithogra-
phy (Paulsen et al. 2015, 2018) and optical transient liquid 
molding (Wu et al. 2015) to fabricate shaped millimeter- and 

micrometer-scale particles. The basic idea is to shape an 
inlet stream containing a crosslinkable polymer precursor, 
and polymerize the shaped stream using a UV light source 
with a defined mask shape once the flow is stopped (see 
Fig. 5a). This creates a 3D polymer microparticle with a 
flow-sculpted shape in one orientation, and a mask-defined 
shape in an orientation normal to that. The cross-sectional 
flow shape is limited by what is possible through inertial 
flow sculpting. The mask used to define the UV light—typi-
cally a standard photolithography mask—has high precision 
for smaller features, allowing for essentially any 2D design 
to form the shape of the microparticle in the UV-light direc-
tion. Ultimately, both shapes will be affected by an extended 
diffusive process during the stopped-flow portion of fabrica-
tion ( ≈ 1s), which should be anticipated during the design of 
both shapes and minimized or accounted for in software as 
much as possible for a more faithful recreation of the target 
3D geometry (Wu et al. 2015).

uFlow uses an indirect approach for rendering the 
expected particle shape, without computing the actual 
particle geometry as an intermediate step. The rendering 
algorithm uses a signed distance function (SDF) represen-
tation of the particle in combination with a ray marching 
scheme (Hart 1996), discussed in detail as Supplementary 
Fig. S1. The result of this algorithm is a fast renderer that 
produces an image of the predicted particle shape.

To visualize the fabricated microparticle, uFlow needs a 
sculpted flow shape and a shape for the orthogonal optical 
mask that selectively exposes the shaped flow stream to UV 
light. By default, uFlow selects the central fluid stream as 

(a)

(b)

(c)

Fig. 3   Diffusion in uFlow. a A parabolic velocity profile u∗ for a rec-
tangular channel is calculated using Spiga and Morino’s analytical 
solution (Spiga and Morino 1994), which is used with a fixed chan-
nel length to calculate a non-dimensional fluid flow time-of-flight � . 
The scalar field �(y∗, z∗) is then used to create a spatially dependent 
diffusivity coefficient D� (y

∗, z∗) , which is in the fundamental solution 
to Fick’s law to blur the fluid flow. This is demonstrated for a non-
advected inlet flow pattern (b), which is diffused for two equivalent 
pillar lengths (c) with Pe = 105

Fig. 4   Examples of uFlow’s simulated diffusion compared to confo-
cal images from experiments. Shown are simulations with no effec-
tive diffusion ( Pe = 107 , left) and moderate diffusion ( Re = 20 , 
Pe = 105 , middle), with confocal images from flow sculpting devices 
with matching flow conditions ( Re = 20 , Pe = 105 , right). These 
results show how uFlow’s diffusion model provides more realistic 

grounding in design. Note the loss of small features in the sculpted 
flow shapes, e.g., in the second and 4th rows near the right wall. 
Additionally, the well-defined gaps in the alternating bands of fluid 
in the third row become quite diffused, which is a loss of a distinct 
feature that uFlow predicts



	 Microfluidics and Nanofluidics (2018) 22:74

1 3

74  Page 8 of 12

the polymer pre-cursor, while sheath flow surrounding the 
central stream is the same monomer but without the pho-
toinitiator (making viscosity uniform throughout the chan-
nel). Different streams can be chosen to be polymerized by 
altering a sequence of booleans in the polymerized_
streams variable within the main script, uflow.py. The 
user-modifiable mask shape is a 256 × 256 black-and-white 
image,“mask.png”, placed in uFlow’s top-level directory (a 
rectangular UV-mask is visible in the floor of the visualized 
microchannel in Fig. 1h). We demonstrated this method of 
design using uFlow’s flow sculpting operations with a donut-
shaped mask to design a 3D particle with two pores, shown 
in Fig. 5b. Optical transient liquid molding (OTLM) (Wu 
et al. 2015) was used to fabricate the resulting shape, which 
is shown Fig. 5c.

While purely advective flow would retain all photoinitia-
tor within the sculpted polymer precursor shape, diffusion—
naturally present to some degree in most flows—will bring 
some amount of photoinitator into neighboring regions. 
To take the effects of diffusion on the fabricated particle 
into account, uFlow has a user-adjustable “polymerization 
threshold” value which determines the UV-curable volume 
fraction required to achieve solidification (see Fig. 1(f)). 
This threshold is also affected by the energy in the UV light, 
which will depend on intensity and exposure time [this is 
discussed in more detail in Ref. Wu et al. (2015)]. By adjust-
ing both the Peclét number and polymerization threshold, 

one changes the degree to which the fluid shape expands 
and neighboring fluids diffuse into the final polymerized 
particle shape.

4 � Advanced compression and interpolation 
routines

The utility of uFlow is predicated on quick access to 
advection maps derived from full-scale solutions to the 
Navier–Stokes equations. However, the intent of its users, 
whether to create a particular flow shape, direct fluid to a 
particular region of the microchannel cross section, or some 
other discipline-specific goal, cannot be fully anticipated 
when preparing a useful set of advection maps. We, there-
fore, seek to provide as large of a design space as possible.

uFlow allows access to a continuous set (i.e., infinite 
set) of pillar diameters and locations by compressing a 
discrete dataset of pre-computed advection maps using 
principal component analysis (PCA). PCA uses a set of n 
high-dimensional observations 

(
Ok

)n
k=1

 , each of dimension 
m, to create a new basis of principal components 

(
PCk

)n
k=1

 
in the high-dimensional space which maximally explains 
the variance among all observations in the dataset. Once the 
high-dimensional basis has been constructed, each of the 
dataset’s original observations can be recreated as Ôi from a 

Fig. 5   Microparticle fabrication via optical transient liquid molding 
(OTLM) and visualization in uFlow. a Flow sculpting can be used 
with OTLM to fabricate tailored 3D microparticles. A pillar sequence 
shapes a UV-crosslinked polymer precursor into some user-designed 
shape in the flow direction (red), while a mask is placed over the 
channel in the post-pillar sequence region (yellow). When the flow 
stops, a UV light shines on the mask, polymerizing the sculpted flow 
to have the mask’s shape in the UV light orientation, and the flow 

sculpted shape in the flow direction. b 3D particle estimation of a 
porous particle in uFlow, with a flow shape, optical mask (defined 
in mask.png), and the resulting 3D particle visualization. c OTLM 
fabrication of the porous particle designed in b, shown with its flow 
direction face (top image) and mask-defined face (bottom). uFlow’s 
prediction and the experiment show good agreement. The scale bar is 
100 μ m. (Color figure online)



Microfluidics and Nanofluidics (2018) 22:74	

1 3

Page 9 of 12  74

linear combination of the new basis vectors PCj (where each 
vector PCj is of size m):

where the coefficient �i,j is an observation-specific low-
dimensional mapping, indicating how the observation Oi 
aligns with the direction of the principal component PCj . 
This mapping is generated by simply projecting an observa-
tion onto the PCA basis.

PCA orders the principal components by the variance 
explained in the original dataset, i.e., PC1 explains the most 
variance of all principal components, PC2 the second-most, 
and so on. Therefore, if the data efficiently map to a linear 
basis, a small subset of all n available principal components 
can be used to reconstruct any of the original data to a nomi-
nal degree of accuracy. This efficiency is determined by cal-
culating the cumulative proportion of variance explained by 
the chosen subset of principal components and comparing it 
to the total variance in the dataset. This produces an effec-
tive cumulative “energy content”, E, which, for a principal 
component’s variance-explained �j is found for a reduced 
number of nR principal components by:

where ET , the total cumulative energy content of the dataset, 
is found by:

A dataset is well represented using the basis formed by nR 
principal components as E(nR) → 1 . A tradeoff can then be 
made between complete reconstruction of the original data 
(which requires all n principal components, in which case 
one may as well use the original data), and using a subset 
of the first nR ≪ n principal components to reconstruct data 
to an acceptable degree. This is a powerful form of adap-
tive data compression (Andrews et al. 1967), as one need 
only store nR principal components and the original data’s 
projected mapping in the low-dimensional space (m arrays 
of nR floating point values).

For uFlow, the high-dimensional dataset being com-
pressed is a collection of 3,224 advection maps, calculated 
for Re = {10, 20, 30, 40} from 31 different normalized pillar 
diameters of d∕w = [0.2 ∶ 0.02 ∶ 0.8] and 26 normalized pil-
lar locations y∕w = [0.0 ∶ 0.02 ∶ 0.5] for channel width w. 
These maps were created using an in-house streamtracing 

(4)Ôi =

n∑

j=1

𝛼i,jPCj,

(5)E(nR) =
1

ET

nR∑

j=1

�j,

(6)ET =

n∑

j=1

�j.

code (there are many freely available visualization software 
packages that contain effective streamtracing tools, such 
as Paraview), tracing through 3D velocity fields created on 
HPC resources using an experimentally validated Finite Ele-
ment Method framework (Diaz-Montes et al. 2014). Such a 
large dataset may not be easily stored and transferred across 
computers, or easily recalled for computation on the GPU, 
but its fine sampling is well-suited to PCA compression 
and interpolation. We found that splitting the dataset’s dy , 
dz displacement data into separate datasets made for more 
efficient PCA compression, likely due to differences in 
variance between vertical and horizontal velocities being 
difficult to explain with the same linear basis. In using a 
reduced number of nR = 300 principal components (from 
a possible n = 3224 ), we are able to reconstruct any of the 
original observations with a cumulative energy content of 
E(nR) = 99.89% . Therefore, uFlow need only store the first 
300 principal components (as 2D RGBA textures) and each 
observation’s low-dimensional mapping to effectively rec-
reate any of the original 3,224 advection maps, with data 
compressed to ≈ 9.3% of its original size.

Beyond compressing the original data, PCA enables 
interpolation within the low-dimensional mapping to create 
advection maps not contained in the original dataset (given 
a smoothly varying low dimensional embedding). This is 
achieved by linearly interpolating a desired pillar’s low 
dimensional mapping from its nearest neighbors within the 
original dataset, and using the new mapping with Eq. (4) 
and the dataset’s principal components to construct a new 
advection map.

We tested PCA interpolation by reconstructing non-
original advection maps across the Re = 20 domain, and 
comparing them to natively-streamtraced advection maps 
using the L2-norm: error = ‖Ô − O‖2∕‖O‖2 . We found that 
over 98% of the reconstructed data had less than 5% relative 
error, with a mean reconstruction relative error of 1.76% , 
and a maximum relative error of 10% (see Supplemental 
Fig. S2). However, most of the error does not contribute to 
a significant difference in the flow prediction (see Fig. 6), 
and the worst-case error can be explained by low-magnitude 
displacements making the relative error larger (see Supple-
mental Fig. S3). With such low error overall, we are confi-
dent that PCA interpolation can be used in uFlow to access 
a practically infinite set of pillar configurations, provided 
the number of pillars in a sequence stays within the limits 
of practical fabrication (i.e., fewer than 30 pillars) to avoid 
significant error propagation. PCA interpolation in uFlow 
is currently limited to pillar geometry and location only, as 
the sampling of Reynolds numbers is likely too coarse for 
accurate interpolation.

The PCA library is implemented in uFlow as the OGLP-
CAFactory class, which reads from a stored set of 300 
principal components and the original dataset’s dy , dz 



	 Microfluidics and Nanofluidics (2018) 22:74

1 3

74  Page 10 of 12

low-dimensional mappings (stored as text files). The linear 
reconstruction in Eq. (4) is encoded into a set of fragment 
shaders to reconstruct a requested advection map on-the-fly 
on the GPU, with no discernible latency compared to recall-
ing a stored advection map. On a personal computer with 
an AMD Ryzen 1700 CPU at 3.0 GHz, an NVIDIA GTX 
1060 GPU, and 16 GB of memory running Ubuntu 16.04, 
the entire process of recalling an advection map via PCA, 
advecting and diffusing fluid, and estimating the 3D micro-
particle, is completed in approximately 25 ms.

5 � Conclusions

uFlow gives users with modest computing hardware access 
to a practically infinite set of high-performance computa-
tional fluid flow simulations, capable of real-time design 
and exploration, and complete with estimations of diffusion 

effects and visualization of fabricated microparticles using 
various masks. uFlow also enables users to incorporate new 
microfluidic components to sculpt flow of their own design, 
and shows how they can be efficiently stored for quick access 
on the GPU.

With the addition of diffusion modeling and an expan-
sive and extensible library of pillar configurations, major 
shortcomings have been ameliorated. The primary modes of 
uFlow’s functionality—flow sculpting and visualization—
are accessible through the GUI, while the new advection 
map storage is found in the publicly available uFlow code. 
By including microparticle fabrication visualization, uFlow 
is now reaching into a set of post-flow-sculpted operations 
and analyses which can have immediate impact on micro-
particle design and optimization. Our goal is to enable the 
broader microfluidics community—be they researching 
diagnostic technology, advanced manufacturing, or other 
new applications of flow sculpting—to easily integrate 

Fig. 6   First row: flow shapes generated with original, natively 
streamtraced advection maps using 10- to 12-pillar sequences. Sec-
ond row: flow shapes generated from PCA-interpolated advection 
maps using the same designs in the first row. For the flow shapes 

in the second and third columns, none of the pillars were among 
the observations used to construct the PCA basis (e.g., d∕w = 0.75 , 
y∕w = 0.125 ), and required interpolation within the low-dimensional 
PCA space

Fig. 7   An overview of the current capabilities of uFlow, with short-term and long-term visions for new features and improvements for uFlow’s 
flow operators, physics models, analysis, and computational backend



Microfluidics and Nanofluidics (2018) 22:74	

1 3

Page 11 of 12  74

complex flow physics into their research and technology 
designs.

In Fig. 7, we summarize uFlow’s current capabilities 
and outline future plans, with uFlow’s features categorized 
as flow operators, physics models, tools for analysis, and 
improvements to the computational backend (e.g., the PCA 
advection map library introduced in this work). Future 
directions for uFlow’s flow operators include curved chan-
nels (introducing Dean flow) and top-down asymmetric 
full-channel flow sculpting using pillars of variable height, 
herringbone structures, or steps in the channel. Eventually, 
we envision a toolkit enabling users to easily pipeline their 
own customized flow operators into uFlow. We also plan to 
integrate predictions of finite-sized particle advection into 
uFlow, and in the far future, multi-phase fluid transport via 
flow sculpting. In terms of analysis and post-processing, cal-
culations of concentration gradients and voxelized particle 
geometries are logical next steps, and long-term plans are to 
integrate uFlow with the automated design software FlowS-
culpt (Stoecklein et al. 2016). Finally, we plan to continue 
building upon uFlow’s computational backend by imple-
menting a continuous flow Reynolds number selection, and 
introducing new channel aspect ratios.

Acknowledgements  This research is supported in part by the National 
Science Foundation (NSF) through NSF-1306866 and NSF-1149365.

Appendix 1

The following steps describe the advection operation that is 
programmed into a fragment shader for per-pixel execution 
on the GPU:

1.	 A set of fluid “particles” are distributed uniformly across 
the 2D domain (microchannel cross section) as a set of 
GL_POINTS (an OpenGL primitive, describing a single 
point in 1D, 2D, or 3D space). The points will collectively 
describe the fluid as it is transformed via flow sculpting.

2.	 All fluid particles are colored and rendered as pixels in 
parallel by a fragment shader, coloring each point based 
on which inlet stream they are located in at the micro-
channel inlet.

3.	 After a pillar—or some microfluidic part—is placed in 
the microchannel, a vertex shader concurrently samples 
the advection map for that part (stored in the GPU as 
a 32-bit 2D texture) on a uniform grid, computes the 
displacement (using hardware-accelerated bilinear inter-
polation), and stores the net displacement in a new 2D 
texture.

4.	 This texture—now storing the net flow displacement—is 
sampled by another vertex shader, transforming all fluid 
particles to their updated locations in parallel.

5.	 A fragment shader then colors each pixel based on its 
initial location at the inlet.

Steps 1 and 2 are part of uFlow’s initialization, step 3 only 
occurs when a new microfluidic part is added to the flow 
sculpting device, and steps 4–5 are processed for each frame 
rendered (at 60 frames per second). Currently, uFlow con-
tains a library of pillars spanning the height of their channel 
with a channel aspect ratio of 4:1, width:height, so each 
transformation is symmetric about the horizontal channel 
midline. Therefore, we only compute advection in the top 
half-channel cross section, and mirror the result about the 
channel midline.

References

Amini H, Sollier E, Masaeli M, Xie Y, Ganapathysubramanian B, Ha 
Stone, Di Carlo D (2013) Engineering fluid flow using sequenced 
microstructures. Nat Commun 4(May):1826

Andrews CA, Davies JM, Schwarz GR (1967) Adaptive data compres-
sion. Proc IEEE 55(3):267–277

Appleyard DC, Chapin SC, Srinivas RL, Doyle PS (2011) Bar-coded 
hydrogel microparticles for protein detection: synthesis, assay and 
scanning. Nat Protoc 6(11):1761–1774

Bong KW, Kim JJ, Cho H, Lim E, Doyle PS, Irimia D (2015) Synthe-
sis of cell-adhesive anisotropic multifunctional particles by stop 
flow lithography and streptavidin-biotin interactions. Langmuir 
31(48):13,165–13,171

Chen L, An HZ, Haghgooie R, Shank AT, Martel JM, Toner M, Doyle 
PS (2016) Flexible octopus-shaped hydrogel particles for spe-
cific cell capture. Small 12:2001–2008. https​://doi.org/10.1002/
smll.20160​0163

Diaz-Montes J, Xie Y, Rodero I, Zola J, Ganapathysubramanian B, Par-
ashar M (2014) Federated computing for the masses—aggregating 
resources to tackle large-scale engineering problems. Comput Sci 
Eng 16(4):62–72

Do AV, Khorsand B, Geary SM, Salem AK (2015) 3d printing of scaf-
folds for tissue regeneration applications. Adv Healthc Mater 
4(12):1742–1762

Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Peréz LS, Blanco A, 
López C (2011) Self-assembled photonic structures. Adv Mater 
23(1):30–69

Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T (2015) 
Accelerated wound healing by injectable microporous gel scaf-
folds assembled from annealed building blocks. Nat Mater 
14(7):737–744

Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U (2012) 
Emerging technologies for assembly of microscale hydrogels. Adv 
Healthc Mater 1(2):149–158

Hart JC (1996) Sphere tracing: A geometric method for the antialiased 
ray tracing of implicit surfaces. Vis Comput 12(10):527–545

Howell PB, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS 
(2008) Two simple and rugged designs for creating microfluidic 
sheath flow. Lab Chip 8(7):1097–1103

Howell PB, Mott DR, Golden JP, Ligler FS (2004) Design and evalua-
tion of a Dean vortex-based micromixer. Lab Chip 4(6):663–669

Ismagilov RF, Stroock AD, Kenis PJa, Whitesides G, Stone HA (2000) 
Experimental and theoretical scaling laws for transverse diffusive 
broadening in two-phase laminar flows in microchannels. Appl 
Phys Lett 76(17):2376

https://doi.org/10.1002/smll.201600163
https://doi.org/10.1002/smll.201600163


	 Microfluidics and Nanofluidics (2018) 22:74

1 3

74  Page 12 of 12

Lee J, Bisso PW, Srinivas RL, Kim JJ, Swiston AJ, Doyle PS (2014) 
Universal process-inert encoding architecture for polymer micro-
particles. Nat Mater 13(5):524–529

Liu RH, Ma Stremler, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, 
Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional 
serpentine microchannel. J Microelectromech Syst 9(2):190–197

Mott DR, Howell PB Jr, Golden JP, Kaplan CR, Ligler FS, Oran ES 
(2006) Toolbox for the design of optimized microfluidic compo-
nents. Lab Chip 6(4):540

Nunes JK, Wu CY, Amini H, Owsley K, Di Carlo D, Stone HA (2014) 
Fabricating shaped microfibers with inertial microfluidics. Adv 
Mater 26:3712–3717

Paulsen KS, Di Carlo D, Chung AJ (2015) Optofluidic fabrication for 
3D-shaped particles. Nat Commun 6:6976

Paulsen KS, Deng Y, Chung AJ (2018) DIY 3D Microparticle Genera-
tion from Next Generation Optofluidic Fabrication. Adv Sci. https​
://doi.org/10.1002/advs.20180​0252

Sollier E, Amini H, Go DE, Pa Sandoz, Owsley K, Di Carlo D (2015) 
Inertial microfluidic programming of microparticle-laden flows 
for solution transfer around cells and particles. Microfluid Nano-
fluid 19:53–65

Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping 
polymers for microfluidic devices and high pressure injections. 
Lab Chip 11(22):3752

Spiga M, Morino GL (1994) A symmetric solution for velocity profile 
in laminar flow through rectangular ducts. Int Commun Heat Mass 
Transfer 21(4):469–475

Stoecklein D, Davies M, Wubshet N, Le J, Ganapathysubramanian B 
(2016) Automated design for microfluid flow sculpting: multi-
resolution approaches, efficient encoding, and GPU implementa-
tion. J Fluids Eng 139:1–11

Stoecklein D, Wu CY, Owsley K, Xie Y, Di Carlo D, Ganapathysubra-
manian B (2014) Micropillar sequence designs for fundamental 
inertial flow transformations. Lab Chip 14(21):4197–4204

Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides 
GM (2002) Chaotic mixer for microchannels. Science (New York, 
NY) 295:647–651

Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. Proc Nat 
Acad Sci USA 103(Track II):7228–7233

Wu CY, Owsley K, Di Carlo D (2015) Rapid software-based design 
and optical transient liquid molding of microparticles. Adv Mater 
27(48):7970–7978

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations

https://doi.org/10.1002/advs.201800252
https://doi.org/10.1002/advs.201800252

	uFlow: software for rational engineering of secondary flows in inertial microfluidic devices
	Abstract
	1 Introduction
	2 uFlow overview
	3 uFlow physics models
	3.1 Advection
	3.2 Diffusion
	3.3 Microparticle fabrication visualization

	4 Advanced compression and interpolation routines
	5 Conclusions
	Acknowledgements 
	References


