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Abstract
Although the theoretical model of carbon nanotube conveying flow has been evolving from under macroscale theory frame-
work to under nanoscale theory framework, for now, the small-scale effects have yet to be considered thoroughly. Herein, after 
extending the compatibility condition, we propose an improved model. Compared with the previous models, the improved 
model is not only dependent on the nonlocal parameter, but also comprehensively takes all the factors related to Knudsen 
number, namely effective viscosity, slip boundary condition and non-uniform flow profile, into account. Based on this model, 
a formula of critical flow velocity is derived in addition to numerical results and our model gives a considerably decreased 
critical flow velocity. Besides, when Knudsen number and nonlocal parameter increase, the critical flow velocity goes down 
dramatically, which indicates that the effects of Knudsen number cannot be neglected, and we demonstrate that the dispute 
over nonlocal parameter may impair the reliability of theoretical prediction of critical flow velocity. We also find that the 
effects of nonlocal parameter and Knudsen number on critical flow velocity are probably uncoupled.
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1  Introduction

Thanks to the combination of reduced dimension, unique 
geometry and special lattice structure (Iijima 1991; Wong 
and Akinwande 2011), carbon nanotube (CNT) displays 
extraordinary mechanical and physical properties (Treacy 
et al. 1996; Hone 2001; Saito and Kataura 2001; Yakob-
son and Avouris 2001; Zhang et al. 2017) and promises an 
exciting potential for drug delivery (Bianco et al. 2005; Liu 
et al. 2009), nanosensory (Mubeen et al. 2007) and energy 
harvesting (Zhang et al. 2016). Underlying most of the appli-
cations, the behavior of conveying flow is fundamental. And 
when fluid flows through CNT, fascinating phenomena, such 
as vibration and pitchfork instability occur.

It is quite an attraction to study CNT conveying flow 
(CNTCF) and its theoretical model evolves as time elapses. 
The work of Yoon et al. (Yoon et al. 2005) directly intro-
duced classical continuum theory into this field. They 

employed Euler–Bernoulli beam theory and plug flow to 
model CNT and the flow inside it, respectively, and inves-
tigated the vibrations with various flow velocities and the 
critical flow velocity. By considering viscosity and slip 
boundary condition, Khosravian et  al. (Khosravian and 
Rafii-Tabar 2007) re-derived the force applied by the flow 
from Navier–Stokes (NS) equation. Compared with Yoon’s 
equation, Khosravian’s contained two more extra terms 
which were directly related to viscosity. To give CNT a 
more precise description, Khosravian et al. (Khosravian 
and Rafii-Tabar 2008) then took the shear effect and rota-
tional inertia into account and employed Timoshenko beam 
theory to model CNTs. Although the critical flow velocity 
of Timoshenko’s model was smaller than that of Euler’s, 
the variance decreased with an increasing aspect ratio, 
which meant that Euler’s model was accurate enough if the 
aspect ratio of CNT was sufficiently big. At this stage, the 
theories which were usually used to study pipe conveying 
fluid were introduced into the research of CNTCF without 
modification.

It cannot be denied that classical continuum theory was 
accurate enough to be applied to studying pipe conveying 
flow in macroscale. However, it lacks descriptions of micro-
structure and long-range interaction, and thus is not good 
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enough in the scale of CNT(s) (Askes and Aifantis 2011). 
Nonlocal continuum theory (Eringen 1983; Wang 2010; Li 
et al. 2015; Zhu and Li 2017c, d), which strengthened the 
classical one by taking small-scale effects into account, was 
widely accepted in study of nano-carbon materials (Lu et al. 
2006; Wang et al. 2007; Wang and Varadan 2007; Wang 
and Liew 2007; Yang et al. 2014; Li et al. 2016; Zhu and Li 
2017a, b). Inspired by this, Lee et al. (Lee and Chang 2008) 
added a term which represented the small-scale effects of 
CNT just like the one in the governing equations of CNT 
into the equation of fluid-conveying CNT. Based on Lee’s 
work, Soltani et al. (Soltani et al. 2010) and Hashemnia et al. 
(Hashemnia et al. 2011) added other terms on account of 
fluid viscosity and matrixes that CNT was embedded in. 
It was an inspiring step to introduce nonlocal continuum 
theory into this area. Unfortunately, the equation derived 
by Lee et al. however, was not justified (Tounsi et al. 2009). 
It seemed that Lee et al. used the equation of CNT without 
fluid rather than that with fluid to cancel out the second 
derivative of moment in the equation of motion. Tounsi et al. 
noticed this defect and obtained a new equation, which was 
widely recognized (Wang 2009; Liang and Su 2013).

So far, the work mentioned above only involved small-
scale effects of CNT. It should not be neglected that the fluid 
inside CNT was confined in small scale, too. Considering 
this, Rashidi et al. (Rashidi et al. 2012) suggested employ-
ing Knudsen number ( Kn ) to model small-scale effects of the 
inside flow. Indeed, Kn , which was often used to determine the 
flow regime (Karniadakis et al. 2005), was a non-dimensional 
parameter defined as the ratio of mean free path of fluid mol-
ecules to the diameter of CNT and could be considered an 
excellent index of scale. It could reach even beyond 0.3 in the 
case of CNT conveying water flow (Holt et al. 2006), where 
it fell into the slip flow regime and transition flow regime. 
Clearly, no-slip boundary condition was unjustified in such 
scale. Furthermore, both dynamic viscosity of fluid and slip 
velocity on the interface (Ali Beskok 1999) depended on Kn . 
Rashidi et al. defined a factor named velocity correction fac-
tor (VCF), which is the ratio of the average velocity with and 
without considering Kn , to correct the average velocity in the 
equation of motion obtained by Khosravian and Rafii-Tabar 
(2007). Then, they studied its first eigenfrequency and found 
an appreciable influence of Kn . Inspired by the definition of 
VFC, Mirramezani and Mirdamadi (2012a) corrected the most 
basic equation of pipe conveying fluid (Paidoussis 2014) and 
found that an increasing Kn resulted in a decreasing critical 
flow velocity. Besides, they detected a coupled-mode flutter 
under clamped–pinned condition, if Kn was nonzero. Based 
on this, Kaviani and Mirdamadi (2012) studied the effects of 
Kn on viscosity employing Polard model and Roohi model, 
respectively. They reported that as Kn increased, representing 
a decreasing scale, the viscosity of fluid went down and VFC 
went up. As a result, the critical velocity decreased. On the 

other hand, we had learnt from the study of fluid-conveying 
pipe in macroscale (Guo et al. 2010; Hellum et al. 2010; Kutin 
and Bajsić 2014) that a parameter named momentum correc-
tion factor was needed when fluid with non-uniform velocity 
profiles flows inside the pipe, because there was a quadratic 
term of fluid velocity in the equation. This parameter in small 
scale was investigated by Sadeghi-goughari and Hosseini 
(Sadeghi-goughari and Hosseini 2015).

Hereafter, most of the work combining small-scale effects 
of both CNT and inside flow concerned complex beam model 
(Kiani 2017) or shell model (Zeighampour et al. 2017; Mahi-
nzare et al. 2017), complicated geometry (such as multi-wall, 
bifurcation or multi-span) (Arani et al. 2015, 2016; Deng et al. 
2017) and coupling with surroundings (such as matrixes, tem-
perature and magnetic field) (Hosseini and Sadeghi-Goughari 
2016; Askari and Esmailzadeh 2017; Sadeghi-Goughari et al. 
2017). The fundamental effects of small scale of both CNT and 
fluid, nevertheless, received scant attention. It either neglected 
the effects of nonlocal parameter, or considered the effects of 
Kn not in a thorough way. The effects of effective viscosity and 
non-uniform flow, for example, were missing (and the result-
ant model, herein, is referred to as the ‘original model’). In 
the present work, we built an improved model of CNTCF by 
comprehensively considering small-scale effects of both CNT 
and inside flow, respectively, quantified by nonlocal param-
eter � and Knudsen number Kn . The compatibility condition 
is extended from the interface of CNT and inside flow to the 
whole cross section of inside flow. Then by systematically 
considering all the factors related to Kn , including effective 
viscosity, slip boundary condition and non-uniform flow pro-
file, the governing equation is derived from nonlocal elastic 
theory and Navier–Stokes equation, which shows that the cor-
rection of flow velocity in viscosity terms should be taken into 
account as well. Besides the numerical results of eigenvalues 
and critical flow velocity, a formula of critical flow velocity is 
also obtained analytically.

2 � Equation of motion

2.1 � Equation on lateral motions of nonlocal beams

For Euler–Bernoulli beam model with only distributed loads 
which herein indicate those applied by the inside flow, the 
equilibrium equation for lateral vibration can be expressed as

where mp is linear density of CNT, w is lateral displacement, 
Ff is fluid load, M is flexural moment, t is coordinate of time 
and x is axial coordinate.

Although nonlocal differential elastic models were 
reported to be approximate ones (Zhu and Li 2017c, d), 

(1)mp

�2w

�t2
= Ff −

�2M

�x2
,
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considering their simplicity, a large amount of recent work, 
such as Tang and Yang (2018a), Bahaadini and Hosseini 
(2018), Zhang et  al. (2018) and Oveissi and Ghassemi 
(2018), have been still based on them, which suggests that 
such models can still provide valuable references. Therefore, 
the Eringen nonlocal model (Eringen 1983) is employed in 
the present work to simplify the depiction, according to 
which stress is expressed as

where e0 is a constant depending on material, a is an internal 
characteristic length, E is Young’s modulus, and � is strain. 
Combining (1) with (2), one can obtain

where I is flexural inertia.

2.2 � Small‑scale effects of fluid

Under the continuum flow regime, the boundary condition 
of a domain is usually assumed approximately to be no-slip 
(Baudry et al. 2001; Lauga et al. 2007). To extend the vali-
dation of NS equation to transitional flow, the partial-slip 
boundary condition should be introduced. Based on the tan-
gential momentum flux analysis near an isothermal surface 
(Thompson and Owens 1975; Ali Beskok 1997), a relation 
is obtained (Ali Beskok 1999)

where vs is the slip velocity near the wall, v� is the tangen-
tial velocity one mean free path � away from the wall, vw 
is the tangential velocity of the wall and �v is tangential 
momentum accommodation coefficient which characterizes 
the exchange of momentum between fluid particles and wall. 
After expanding v� at vs in Eq. (4), one obtains

where n is the normal vector of the well. In order to get 
a second-order slip boundary condition, the higher-order 
terms are cut off. Besides, a slip coefficient b is introduced to 
avoid the computational difficulties brought by the second-
order derivative of v . It is an empirical parameter and can 
be determined either by experiments or by data of linearized 
Boltzmann (Ohwada et al. 1989; Loyalka and Hamoodi 
1990) or direct-simulation Monte Carlo method (Bird 1994). 
For fully developed flow in channels, b = −1 . Considering 

(2)� =
(

e0a
)2 �2�

�x2
+ E�,

(3)

EI
�4w

�x4
+ mp

�2w

�t2
− Ff −

(

e0a
)2 �2

�x2

(

mp

�2w

�t2
− Ff

)

= 0,

(4)vs =
1

2

(

v� +
(

1 − �v
)

v� + �vvw
)

,

(5)vs − vw =
2 − �v

�v

(

�

(

�v

�n

)

s
+

�2

2

(

�2v

�n2

)

s

+…

)

,

that the wall does not move along the axial direction of CNT, 
i.e., vw = 0 , the expression of slip velocity at boundary is 
(Ali Beskok 1999; Mirramezani and Mirdamadi 2012a)

where vsl is the velocity profile of the slip flow, R is the 
radius of CNT, Kn is Knudsen number and �v is assumed 
0.7 (Shokouhmand et al. 2010).

Furthermore, in small scale, when the scale of channel goes 
down, the interaction among fluid particles is influenced, and 
therefore, the viscosity changes. To describe the relation of 
viscosity and scale parameter, a formula is adopted as (Pollard 
and Present 1948; Ali Beskok 1999; Karniadakis et al. 2005; 
Kaviani and Mirdamadi 2012)

where

�e is the effective viscosity in nanoscale, while �0 is the 
bulk one. According to both theoretical and experimental data 
(Karniadakis et al. 2005), 𝛼̄ is a function of Kn , i.e.,

𝛼̄ = 𝛼0
(

tan−1
(

𝛼1Kn
B
))

 and �1 = 4, B = 0.4 are two empir-
ical parameters. �0 can be determined by

2.3 � Extended compatibility condition 
and derivation of fluid load

For deriving fluid load from NS equation, the compatibility 
condition is critical. In the previous work (Khosravian and 
Rafii-Tabar 2007; Mirramezani et al. 2013) which narrates the 
derivation of fluid load from NS equation, the compatibility 
condition is described as that on the interface of pipe and inter-
nal flow, the corresponding velocities and accelerations along 
the lateral displacement direction were equal, i.e.,

and

where vx(r) represents the axial velocity distribution of inter-
nal flow along radial direction, and thus, r herein should 

(6)vsl(r = R) = R

(

�v − 2

�v

)(

Kn

1 − bKn

)(

�vsl

�r

)

r=R

,

(7)�e = �0 ⋅ Cr,

(8)Cr =
1

1 + 𝛼̄Kn
,

𝛼0 = lim
Kn→∞

𝛼̄ =
64

3𝜋
(

1 −
4

b

) =
64

15𝜋
.

(9)vr =
dw

dt
,

(10)
dvr

dt
=

d2w

dt2
,

(11)
d

dt
=

�

�t
+ vx(r)

�

�x
,
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equal R , because it is on the interface. Going down this road 
without modification, one will end up gaining a governing 
equation depending on vx(R) rather than vx(r) . This is a dis-
aster for non-slip flow regime, where vx(R) is zero, and in 
other words, the governing equation has nothing to do with 
the velocity of internal flow.

To keep consistency with the governing equations in pre-
vious work, we propose an extended compatibility condition 
that the corresponding lateral velocities and accelerations of 
internal flow on the entire cross section equal those of CNT on 
the very same cross section. Hence the r in Eq. (11) can take 
the value all over the cross section. Since the fluid–solid inter-
action is usually considered to be a sort of “weak coupling” 
in the case of pipe conveying flow, i.e., the state of flow can 
influence the motion of CNT but not vice versa, our proposal 
is reasonable.

Substituting Eq. (11) into linear NS equation,

where �f, v and p represent density of internal flow, flow 
velocity and pressure of internal flow, and project the result-
ant equation in lateral direction, one can gain the expression 
of fluid load at specific position r,

where the first three terms on the right-hand side represent 
the inertial force, Coriolis force and centrifugal force and 
the last two terms are related to the viscous effects. Then, 
the fluid load can be derived by integrating Eq. (13) over the 
cross section, i.e.,

In the light of small-scale effects, the velocity profile of 
internal flow is derived from NS equation as

whose average over the cross section is

(12)�f
dv

dt
= −∇p + �e∇

2v,

(13)

�p

�r
= −�f

(

�2w

�t2
+ 2vx(r)

�2w

�t�x
+ v2

x
(r)

�2w

�x2

)

+ �e

(

�3w

�t�x2
+ vx(r)

�3w

�x3

)

,

(14)
Ff =

R

∫
0

(

−�f

(

�2w

�t2
+ 2vx(r)

�2w

�t�x
+ v

2

x
(r)

�2w

�x2

)

+�e

(

�3w

�t�x2
+ vx(r)

�3w

�x3

))

⋅ 2�rdr.

(15)vsl(r) =
1

4�e

⋅

�p

�x

(

r2 − R2 − 2R2
2 − �v

�v

Kn

1 − bKn

)

(16)Usl =
1

Af

R

∫
0

vsl(r) ⋅ 2�rdr,

where the cross-sectional area of CNT chamber is referred 
to as Af . On the other hand, the average velocity without 
small-scale effects is also calculated,

Thus, VCF can be expressed as

Since the inertial force of an infinitesimal element is pro-
portional to the square of its axial velocity, if Ff is expressed 
as the function of average flow velocity, the coefficient in 
inertial term should be

Therefore, fluid load is derived as

Substitute Eq. (20) into Eq. (3), and non-dimensionalize 
the resultant expression to gain a general knowledge on 
CNTCF without the distraction of specific physical situ-
ation. Then one can obtain the dimensionless equation of 
motion

with dimensionless parameters

(17)U =
1

Af

R

∫
0

vns(r) ⋅ 2�rdr.

(18)VCF =
Usl

U
= (1 + ãKn)

(

1 +
2 − 𝜎v

𝜎v
⋅

4Kn

1 − bKn

)

.

(19)� =
∫ R

0
vx(r)

2
⋅ 2�rdr

(∫ R

0
vx(r) ⋅ 2�rdr

)2
= 1 +

1

3
(

2−�v

�v

4Kn

1−bKn
+ 1

)2
.

(20)
Ff = −�fAf

(

�2w

�t2
+ 2VCF ⋅ U

�2w

�t�x
+ �(VCF)2U2 �

2
w

�x2

)

+ �0Af ⋅ Cr

(

�3w

�t�x2
+ VCF ⋅ U

�3w

�x3

)

.

(21)

�4�

��4
+

�2�

��2
+ 2�

1

2 ⋅ VCF ⋅ u
�2�

����
+ � ⋅ (VCF)2u2

�2�

��2

− � ⋅ Cr ⋅ s

(

�3�

����2
+ VCF ⋅ �

−
1

2 u
�3�

��3

)

− �2
�2

��2

(

�2�

��2
+ 2�

1

2 ⋅ VCF ⋅ u
�2�

����
+ � ⋅ (VCF)2u2

�2�

��2

−� ⋅ Cr ⋅ s

(

�3�

����2
+ VCF ⋅ �

−
1

2 u
�3�

��3

))

= 0,

� =
w

L
, � =

x

L
, � =

(

EI

mp+mf

)
1

2 t

L2
, s =

Af

L2
,

� =
mf

mp+mf

, � =
e0a

L
, � =

L2�0

((mf+mp)EI)
1
2

, u =
(

mf

EI

)
1

2
LU,
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where �, � , �, s, �, �, � and u are dimensionless lateral dis-
placement, axial coordinate, time coordinate, cross-sectional 
area of CNT chamber, mass parameter, nonlocal parameter, 
bulk viscosity parameter and axial flow velocity, respec-
tively. L is the length of CNT and mf represents the linear 
density of internal flow, i.e., mf = �f ⋅ Af.

It should be noted that the viscosity is taken into 
account and it naturally needs to be corrected in the non-
local terms in our derivation, unlike that in previous work 
(Mirramezani and Mirdamadi 2012b; Kaviani and Mir-
damadi 2013).

3 � Solving method

3.1 � Parameters of the system

The fluid flowing inside CNT is assumed as water with den-
sity of 103 kg/m3 and bulk viscosity of 1.12 × 10−3 Pa s. 
CNT is assumed as continuum with linear density of 4.26 × 
10−15 kg/m and flexural rigidity of 2.74 × 10−23 N m2. Kn 
is defined as

Λ is the mean free path of water molecules, which is 
around 0.3 nm (Holt et al. 2006), and D is the diameter of 
fluid-conveying CNT. It is reported that the diameter of CNT 
is between 0.4–50 nm (Ma et al. 2010), but water molecules 
can flow through CNT(6,6) only in single file (Andreev et al. 
2005; Chopra and Choudhury 2013), which suggests that D 
is between 0.81–50 nm. Therefore, Kn is 0.006–0.369. In the 
practical calculation, six samples of Kn are sampled by equal 
path from this range, and together with the case where small-
scale effects are neglected, they compose the value set of Kn , 
i.e., {0, 0.0060, 0.0786, 0.1512, 0.2238, 0.2964, 0.369}.

The value of nonlocal parameter is determined accord-
ing to prior work. It should be pointed out that there is a 
dispute over the value of nonlocal parameter and the lit-
erature (Soltani et al. 2010; Narendar et al. 2011; Arash 
and Wang 2012; Liang and Han 2014) shows quite a dis-
tribution of the value. (It should be noted that, in the pre-
sent paper, we do not intend to give our own preferential 
value of nonlocal parameter. Instead, we choose a set of 
values according to the prior literature and try to give a big 

(22)Kn =
Λ

D
.

picture of the influence of Kn , no matter what value nonlo-
cal parameter is assigned to.) As one can see in Fig. 1, the 
selections of nonlocal parameter gather around the points of 
0.0024, 0.0525 and 0.2 . And the maximum and minimum 
are 9.7830 × 10−5 and 0.2 . Including the case where nonlocal 
effect of CNT is not taken into account, � is taken from the 
set 

{

0, 9.783 × 10−5, 0.0024, 0.0525, 0.2
}

.

3.2 � Basis functions and the corresponding discrete 
system

In order to gain the eigenvalues and critical flow velocity, 
Eq. (21) is discretized by Galerkin method. By taking the 
vibration mode shapes, � =

{

�j(�)
}

(j = 1, 2, 3,… ,N) , of 
corresponding beam as basic functions and referring to 
corresponding coordinates as q =

{

qj(�)
}T  , the system 

described by Eq. (21) can be discretized into

where

(23)[M]
d2q

d�2
+ [C]

dq

d�
+ [K]q = 0,

[

b0
]

kj
=

1

∫
0

�k�jd� ,

[

b1
]

kj
=

1

∫
0

�k

d�j

d�
d� ,

[

b2
]

kj
=

1

∫
0

�k

d2�j

d�2
d� ,

[

b3
]

kj
=

1

∫
0

�k

d3�j

d�3
d� ,

[

b4
]

kj
=

1

∫
0

�k

d4�j

d�4
d� ,

[

b5
]

kj
=

1

∫
0

�k

d5�j

d�5
d� .

Fig. 1   Distribution of nonlocal 
parameter �
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In the practical calculation, N  is taken as 12 and the 
system is solved under pinned–pinned boundary condition.

4 � Results and discussion

4.1 � Validation of model and results

It should be pointed out that any conception related to insta-
bility in the following parts, such as instability and critical 
velocity, exclusively refers to that of the first order, since 
that of higher order occurs after the finite deformation of the 
first order and makes no sense under the framework of linear 
theories (Yoshizawa et al. 1985; Tang and Yang 2018b).

To validate the model, the imaginary parts of eigenvalues 
are compared with those of reference, when a specific set 
of values are assigned to the parameters. Taking � = 1 and 
� = 0 in Eq. (21), one can gain the original model. When 
� = 0.2 and Kn = 0.001 , the imaginary parts of eigenvalues 
of the first two modes, which indicate the vibrational fre-
quencies of corresponding modes, were calculated. Figure 2 
shows how they change with various flow velocities. When 
flow velocity increases from 0 to a critical point, the vibra-
tional frequencies decrease. For the first mode, it reaches its 
critical point at u = 2.64 , when the vibrational frequency 
reaches zero, which means the vibration stops. For the sec-
ond mode, it gets there at u = 3.882 , when the vibrational 
frequency shows a sharp turn. The results shown in Fig. 2 
contain no appreciable difference compared with the previ-
ous work (Mirramezani and Mirdamadi 2012b).

To validate the numerical results, the expression of criti-
cal velocity when � = 0 under pinned–pinned boundary con-
dition is derived as follows. When pitchfork instability which 
is static occurs, all the terms related to the derivative of time 
� equal 0 in Eq. (21), i.e.,

of which the eigen-equation is

Then, Eq. (24) has two eigenvalues �1,2 = 0 and another 
two nonzero eigenvalues, �3,4 , meet

To find out if �3,4 are multiple roots, the discriminant of 
Eq. (26) is derived

It is easy to show that VCF > 0 and Cr2s2𝜈2∕𝛽 ≪ 4𝛼 , if 
their profiles depending on Kn are drawn (see the dotted line of 
Figs. 3, 4). Therefore, Δ𝜆 < 0 with u > 0 , which indicates that 
the two nonzero eigenvalues of Eq. (24) compose a conjugate 
complex pair. As a result, the general solution of Eq. (24) can 
be expressed as.

Because the pitchfork instability of CNTCF with both ends 
supported is a kind of buckling like that of beams, Eq. (24) 
should have nonzero solution, which requires that not all of the 
coefficients on the right-hand side of Eq. (28) equal 0 . Consid-
ering pinned–pinned boundary condition, one can obtain the 
expression of critical flow velocity

where

(24)

�4�

��4
− �s ⋅ Cr ⋅ VCF ⋅ u

�3�

��3
+ � ⋅ � ⋅ (VCF)2u2

�2�

��2
= 0

(25)�2
(

�2 − �s ⋅ Cr ⋅ VCF ⋅ u� + � ⋅ � ⋅ (VCF)2u2
)

= 0 .

(26)�2 − �s ⋅ Cr ⋅ VCF ⋅ u� + � ⋅ � ⋅ (VCF)2u2 = 0.

(27)Δ� = u2(VCF)2
(

Cr2s2�2

�
− 4�

)

.

(28)� = c1 + c2� + c3e
�3� + c4e

�4� .

(29)uCr =
2�

VCF ⋅ �
,

Fig. 2   Imaginary part of eigen-
value versus flow velocity u , 
when � = 0.2 and Kn = 0.001
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Draw the profiles of both theoretical and numerical criti-
cal flow velocity as Fig. 5, where the two profiles are almost 
indistinguishable with the relative error no more than 0.18% . It 
should be noted that the relative error is always positive which 
means that theoretical values are always a bit smaller than 
the numerical ones. This can be understood by looking into 
the process of recognizing the critical flow velocity. The real 
parts of the first eigenvalue pair of the system are equal until 
the flow velocity reaches its critical point. To gain the critical 
flow velocity, the differences of the real parts are calculated 
and sequenced in the order of increasing flow velocity. And 
the velocity corresponding to the first nonzero difference is 
recognized as the critical flow velocity. This process by itself 
should statistically make the numerical value lag behind the 

(30)� =
√

4� − Cr2s2�2�.
theoretical one by the exact step value of velocity, herein 0.001 . 
The red dashed line in the inset of Fig. 5 shows the relative 
errors caused by this bias. If this bias is canceled out, the over-
all relative errors will fluctuate around 0 , which are mainly 
caused by round-off errors. Hence, the theoretical and numeri-
cal critical values agree with each other perfectly well.

Besides, a comparison between the tendency of the real 
parts of eigenvalues in the present work and that in the previ-
ous work is made for validation. The real parts of eigenval-
ues are responsible for the decay of corresponding modal 
vibration of the system. It is expected to be negative once 
the viscosity of the fluid is taken into account, for the sys-
tem itself contains damping. As shown in Fig. 6, the real 
parts of eigenvalues increase with an increasing Kn . This is 
reasonable because the effective viscosity diminishes as Kn 
goes up (see the solid line of Fig. 3) and an increasing real 

Fig. 3   The evolvement of VCF, 
� and Cr versus Kn

Fig. 4   Comparison between 4� 
and Cr2s2�2∕� versus Kn
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parts of eigenvalues suggests a decreasing damping effect, 
which agrees well with previous work (Wang and Ni 2009; 
Rashidi et al. 2012).

4.2 � Comparison between improved model 
and original model

Critical flow velocity is predicted through both improved 
model and original model. Their differences are calculated 
(see Fig. 7). The decrease of critical flow velocity given 
by the improved model can reach as much as 13.4% , and it 
almost remains unchanged, when � increase. However, as Kn 
increase, the difference between the two shrinks. Only around 
1.8% of reduction is left, once Kn = 0.369 . This change can 
be explained by the evolvement of Cr and � versus Kn . As 
is shown in Fig. 3, when Kn increases, Cr goes down and � 
tends to approach 1 . In other words, when the scale of the 

system is relatively big but still far below the threshold of 
nanoscale, the effects of effective viscosity and non-uniform 
flow profile are considerable. As the scale consistently goes 
down, the effective viscosity decreases and slip velocity on 
the interface increases. This means a decreasing drag of both 
neighboring fluid and CNT, which encourages the flow pro-
file to be uniform. As a result, the improved model evolves 
towards the original model. All in all, the improved model 
can considerably decrease the critical flow velocity, though 
these effects are weakened by an increased Kn.

4.3 � Effects of Kn

To exclusively look into the effects of Kn , the nonlo-
cal parameter � is temporarily assumed 0 . Under the 
pinned–pinned boundary condition, as one can see in 
Fig. 5, when Kn is limited to 0.001 , the drift of critical flow 

Fig. 5   Comparison between 
theoretical and numerical values 
of critical velocity and their 
relative error

Fig. 6   The real parts of eigen-
values versus Kn ( u = 0.3)
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velocity is unquestionably insignificant, merely around 
0.8% of reduction, to be precise, according to Mirramezani 
et al. (Mirramezani and Mirdamadi 2012b). With Kn going 
from 0 to as high as 0.369 , however, the drop of critical 
flow velocity is dramatic, 76.5% , and cannot be neglected. 
This phenomenon can be predicted by Eq. (29), which 
shows that the critical flow velocity uCr is inversely pro-
portional to the product of VCF and � . Figure 4 illustrates 
that 4� is far bigger than Cr2s2�2∕� by at least three orders 
of magnitude. Cr2s2�2� should be even smaller which can 
then be neglected compared to 4� , since � is the ratio of 
linear density of internal flow to that of CNTCF and less 
than 1. Therefore, � is dominated by 4� or � ≈ 2

√

� , more 
specifically. It is seemingly confusing where uCr goes, with 
VCF going up and � going down as shown by dotted line 
and dashed line in Fig. 3 when Kn increases. But after 
comparing VCF marked by the dotted line in Fig. 3 with 
4� marked by the dotted line in Fig. 4, one can reasonably 
infer that VCF dominates the product of the two, which 
suggests that it is the slip boundary condition arising out 
of the small-scale effect of fluid that makes a main contri-
bution to the dramatic decrease of critical flow velocity.

As mentioned in the validation subsection, a drop of 
damping effect caused by increasing Kn is also observed. 
Indeed, as shown in Fig. 6, the real parts of eigenvalues 
increase with Kn , the extent to which varies with differ-
ent � , though. Taking u = 0.3 for example, the growth can 
reach as much as 33.3% relative to that where small-scale 
effects of fluid are missing. Clearly, this is caused by the 
reduction of effective viscosity due to the increase of Kn 
(see the solid line of Fig. 3). Hence, in the light of Kn , the 
predictive energy efficiency of CNTCF may see a signifi-
cant improvement.

4.4 � Effects of �

When � varies, the trends shown by profiles of uCr versus Kn 
are similar (see Fig. 8), though the quantity of the line does 
decline with an increased � . Obviously, the effects of � on criti-
cal flow velocity are not as significant as those of Kn , provided 
that Kn is limited to 0.369 and � to 0.2 . Especially when � 
takes values in the vicinity of 0 , the lines are so close that 
their differences are unappreciable no matter how Kn varies, 
which suggests that the effects of � on critical flow velocity is 
negligible. If � is taken as high as 0.2 , however, things are dif-
ferent. uCr drops at least 14.24% , compared with the case where 
� = 0 . Thus taking a proper � is important to give a reasonable 
prediction of uCr , and undoubtedly, the dispute over � impairs 
the reliability of the theoretical prediction.

4.5 � Effects of Kn and �

It is noteworthy that if one looks into Fig. 8, one may find the 
gaps between different lines become smaller, when Kn goes 
up, i.e., the quantities of the lines drops. Indeed, uCr,�∕uCr,0 , 
the ratios of uCr corresponding with various � to that with 
� = 0 , are extremely close with each other, despite various Kn 
(see Fig. 9). Even if � = 0.525 , where the biggest difference is 
detected, the variance is still no more than 0.001 . It seems that 
� determines a factor that scales down the line of uCr versus Kn . 
Similar phenomenon can be observed if uCr,Kn∕uCr,0 (herein, 
the subscript 0 means Kn = 0 ) is computed. To describe these 
in mathematics, fix other parameters and exclusively assume 
uCr is a function of Kn and �,

(31)uCr = f (Kn, �)

Fig. 7   Decrease of u
Cr

 obtained 
by the improved model relative 
to that by the original model
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According to the above observations, it can be rewritten as

where f1(�) is a function of � and independent of Kn , while 
f2(Kn) is exclusively dependent on Kn and can be taken as 
Eq. (29). Then,

which suggests that the effects of Kn and � on uCr are prob-
ably uncoupled.

5 � Conclusions

In this paper, we proposed an improved model by compre-
hensively taking small-scale effects of both CNT and inside 
flow, respectively, marked by nonlocal parameter ( � ) and 

(32)uCr = f1(�) ⋅ f (Kn, 0) = f2(Kn) ⋅ f (0, �)

(33)uCr = f1(�) ⋅ f2(Kn)

Knudsen number ( Kn ) into account. By extending the com-
patibility condition from the interface of CNT and inside 
flow into the whole cross section, and systematically con-
sidering nonlocal elastic theory and all the factors related 
to Kn , viz. effective viscosity, slip boundary condition and 
non-uniform flow profile, the governing equation of CNTCF 
was derived. Based on this new governing equation, a for-
mula of critical flow velocity was derived in addition to 
numerical results of eigenvalues and critical flow velocity. 
Comparing with the original model, we demonstrated that 
the improved model could foresee a considerable decrease 
of critical velocity, especially when Kn was relatively small.

According to the results, an increased Kn resulted in a 
drop of critical flow velocity. After cautiously comparing 
the three factors related to Kn , we found VCF was the domi-
nant factor in the formula of critical flow velocity. There-
fore, it was the slip boundary condition arising out of the 

Fig. 8   The profiles of u
Cr

 versus 
Kn with various � . The inset 
is a zoomed-in picture around 
Kn = 0

Fig. 9   The ratio of u
Cr,� to u

Cr,0 . 
The inset is a zoomed-in picture 
around � = 0.0525
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small-scale effect of fluid that mainly caused this reduction, 
though the contribution of effective viscosity and non-
uniform profile was also considerable and should not be 
neglected. Besides, when Kn went up, a considerable rise of 
the real parts of eigenvalues which were responsible for the 
decay of corresponding modal vibration, was also observed, 
due to the fall of effective viscosity. Consequently, a big-
ger Kn might witness a significantly improved predictive 
energy efficiency of this system. On the other hand, limited 
to 0.2 , � could shrink the critical flow velocity by as big 
as 14.24% . In the light of dispute over � , the reliability of 
theoretical prediction was undoubtedly impaired. Moreover, 
the ratios of critical flow velocity corresponding with vari-
ous � to that with � = 0 were tremendously close. A similar 
pattern was observed as well when it was Kn that was under 
consideration, which indicated that the small-scale effects 
of CNT and inside fluid on critical flow velocity were prob-
ably uncoupled.
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