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Abstract
We present a novel method to simulate magnetic resonance imaging (MRI) for the assessment of slow flow at Reynolds 
number Re ≈ 0.02 . We couple Bloch equations with dissipative particle dynamics (DPD) to study the effect of flow dynamics 
at the mesoscopic level on acquired MR images. The Bloch equations are used to propagate the evolution of the magnetiza-
tion of particles while their trajectories are being computed simultaneously based on DPD interaction forces. The magnetic 
resonance assessment of fluid velocities is performed using a phase-contrast MRI technique, implemented by a spin echo 
single-sided bipolar gradient sequence. The computational cost for simulating the fluid flow is successfully reduced by an 
efficient implementation of a vectorized isochromat algorithm. We demonstrate successful simulation of laminar flow, flow 
with diffusion effects, and flow around an obstacle. The method can be used to simulate convective and diffusive flow MRI 
experiments at the mesoscopic level.

Keywords Phase-contrast magnetic resonance imaging · Dissipative particle dynamics · Isochromat summation method · 
Spin echo single-sided bipolar gradient pulse sequence

1 Introduction

Since the first report by Lauterbur (1973), magnetic reso-
nance imaging is increasingly being used to visualize fluid 
dynamical processes (Crooks and Singer 1983; Bryant et al. 
1984; Hammer et al. 1990; Elkins and Alley 2007). Its non-
invasive nature makes MRI ideal for the purpose, and the 
methodology is increasingly being used to verify compu-
tational fluid dynamics codes, especially for complex flows 
(Botnar et al. 2000; Glor et al. 2002; Zhao et al. 2003; Ooij 
et al. 2012). Conversely, computational tools can help to 
understand and plan complex MRI processes, by capturing 
the essential dynamical processes of both flow and MRI 

within a single framework. Thus, the development of MRI 
is being accelerated through support from MRI simulation.

Some of the examples where MRI simulation is playing 
a significant role are: as an educational tool in medicine and 
radiology (Torheim et al. 1994; Rundle et al. 1990); for a 
blood flow pattern assessments in various vascular geom-
etries (Canstein et al. 2008; Boussel et al. 2009; Papatha-
nasopoulou et al. 2003); in the design and optimization of 
MR sequences (Brenner et al. 1997; Stöcker et al. 2010); 
in the investigation of the effect of in-plane flow and diffu-
sion on MRI (Marshall 1999; Jochimsen et al. 2006; Azhar 
et al. 2016); in the study and diagnosis of a broad range of 
cardiovascular flow related diseases (Giddens et al. 1993; 
Steinman 2004; Boussel et al. 2009).

MRI simulation methods can be roughly separated into 
two categories. The first category deals with the numerical 
analysis of the flow dynamics through different geometries 
by means of computational fluid dynamics (CFD). CFD is 
well capable of estimating flow fields for arbitrarily com-
plex vessel geometries. It is extensively used to predict 
flow patterns in a number of vascular forms, including the 
thoracic aorta (Canstein et al. 2008), the intracranial aneu-
rysms (Boussel et al. 2009), and the carotid bifurcation 
(Milner et al. 1998; Thomas et al. 2003; Long et al. 2000). 
CFD is established as a strong research tool in the field of 
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MRI. The accuracy of a flow field estimation through CFD 
depends on the assumptions in the selected model. This 
sometimes suffers from partial volume effects and limited 
resolution (Harloff et al. 2010). Although different CFD 
models include thermal fluctuations, so far the method has 
only been used to predict convection along the velocity 
direction in MRI. In many situations, a simple continuum 
description based on the Navier–Stokes equation is not suf-
ficient, since details at the molecular level, including ther-
mal fluctuations, play a central role in the MRI process.

The second category deals with investigation of the 
causes of artifacts, enhancement of images, and the study 
of MRI sequences through MRI simulators. These simula-
tors are developed using three different approaches. The 
first approach uses proton density maps to synthesize 
new images for different pulse sequences (Riederer et al. 
1984; Ortendahl et al. 1984; Bobman et al. 1985). This 
method does not simulate a complete MRI process, nor is 
it able to simulate artifacts and flow dynamics. The second 
approach is a k-space formalism (Ljunggren 1983; Twieg 
1983; King and Moran 1984). Here, the Fourier transform 
of a user-defined object is computed first, then the data 
are multiplied on a point-by-point basis, with the k-space 
trajectories obtained using a pulse sequence. The motion 
propagates through several sampling periods. MR tagging 
is also successfully implemented with this approach (Crum 
et al. 1997, 1998). Although an efficient computational 
technique for a single excitation, but it fails at the choice 
of MRI sequences and parameters. Different parameters 
must be treated separately, which make it difficult to apply 
to, for example, different tissue characteristics. The most 
realistic approach is based on an isochromat summation 
method (Bittoun and Taquin 1982; Summers et al. 1986; 
Petersson et al. 1985). Here the ‘object’ is a two- or three-
dimensional array of spin elements with different MRI 
parameters attached to it, such as spin density and relaxa-
tion times. The evolution of spins or magnetizations in 
time is calculated by solving the Bloch equations (Bloch 
1946). This method is close to reality as it can simulate 
most of the phenomena encountered during MR imag-
ing, but so far few attempts have been made to include 
explicit fluid models that can capture diffusion effects 
on images. Jochimsen et al. (2006) modeled the effect of 
self-diffusion by continuous damping of the magnetization 
at each iteration of the solution of the Bloch equations 
with diffusion terms by Torrey (1956). The computational 
complexity of isochromat method is twofold: the number 
of time step increases with the square of the image size 
and with the number of spin elements, making it difficult 
to use for velocity imaging. Ian Marshall (1999, 2010) 
used the isochromat method at first for in-plane flow and 
subsequently for fluid flow in carotid bifurcation geom-
etries. In both cases, the flow was modeled using CFD 

to obtain positions and velocities of the particles. These 
positions and velocities were then fed into a simulator for 
post processing.

An alternative way of solving the Navier–Stokes equa-
tions and its generalization could be particle-based schemes 
where flow is simulated at mesoscopic levels. Smoothed par-
ticle hydrodynamics (SPH) (Gingold and Monaghan 1977; 
Lucy 1977; Monaghan 2005) performs discretization of the 
Navier–Stokes equation based on the interpolation on par-
ticles, but only multi-particle collision dynamics (MPCD) 
(Malevanets and Kapral 1999, 2000) and dissipative par-
ticle dynamics (DPD) (Hoogerbrugge and Koelman 1992; 
Español and Warren 1995; Groot and Warren 1997) allow a 
direct simulation of diffusive hydrodynamics with explicit 
representation of thermal fluctuations. These methods have 
already been successfully applied to a number of NMR flow 
problems (Cenova et al. 2011; Soares et al. 2013; Yazdani 
and Karniadakis 2016; Tosenberger et al. 2011).

The purpose of this article is to introduce an efficient 
and more realistic imaging simulation tool, which not only 
retains the essence of real experiments, but also provides 
rich information for future design of new MRI experiments 
at little extra computational expense. This is achieved by 
coupling MRI with DPD at the mesoscopic level. A spin 
echo single-sided bipolar gradient (SE-SBP) pulse sequence 
is successfully applied and studied for different flow veloci-
ties and geometries.

2  Methods

To achieve an efficient simulation of flow-MRI, we integrate 
dissipative particle dynamics into the isochromat summa-
tion method. The result: a versatile simulator shown sche-
matically in Fig. 1, which is capable of simulating different 
pulse sequences, flow dynamics and different geometries 
with obstacles.

2.1  The isochromat summation method

In an isochromat summation or time-domain method, 
spin dynamics is fully monitored throughout the image 
formation process using Bloch’s equations (Bloch 1946), 
where the time evolution of the spin magnetization vector 
M = (Mx,My,Mz)

T is given as

where M0 is the net equilibrium polarization, (T1, T2) are the 
spin–lattice relaxation and spin–spin relaxation constants, 

(1)
dM

dt
= �(M × B) −

⎛⎜⎜⎝

Mx∕T2
My∕T2

(Mz −M0)∕T1

⎞⎟⎟⎠
,
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respectively, and � is the gyromagnetic ratio of the sample 
fluid. The total magnetic field B of a sample fluid under the 
influence of a gradient and RF pulse in an arbitrary direc-
tion will be

where B0 is a static magnetic field, ΔB(r) is the local mag-
netic field inhomogeneity, G(t) is the applied field gradient, 
and B1(t) is the radio frequency (RF) pulse at a spatial coor-
dinate r . The MRI simulator kernel is based on the discrete 
time solution of the Bloch equations where the magnetiza-
tion vector coupled with the particle is iteratively computed 
by means of rotation matrices and exponential scaling. There 
are four main events occurring on the magnetization vector 
namely, the RF pulse, the application of a gradient and the 
precession of a spin with relaxation. The effect of all these 
events on the magnetization vector can be summed up with 
the following equation:

where R(�) is a rotation matrix for precession of the spins in 
a chosen axis. Choosing the z-axis and the angle � it will be

where �� is associated with the field inhomogeneities by

and �G is linked to the applied gradient rotation depending 
upon the strength and duration of the gradient

(2)B(r, t) = B0z + ΔB(r)z + (G(t).r)z + B1(t).

(3)M(r, t + Δt) = R(��)R(�G)R relaxRRFM(r, t),

(4)R(�) =

⎛⎜⎜⎝

cos � sin � 0

− sin � cos � 0

0 0 1

⎞⎟⎟⎠
,

(5)�� = �ΔB(r)Δt.

R relax in Eq. (3) describes the relaxation effects given by the 
following matrix:

RRF represents the discrete ‘delta’ pulses for 90◦ and 180◦ 
flip. These pulses are applied on single component of mag-
netization on resonance during which the gradient pulses are 
switched off. The MR signal is acquired by two orthogonally 
placed coils, i.e., x–y plane. It is a one-dimensional discrete 
complex signal, which is used to fill the single line of a k
-space volume at a given excitation. The one point S(t) of the 
MR signal is obtained by summation of local magnetization 
over the entire fluid sample. The real and imaginary parts of 
the complex signal are given as

The next point of MR signal is obtained after the evolution 
of the magnetization according to the Eq. (3) with a time 
step Δt . The Fourier transform is used to construct an image 
from the k-space data.

(6)�G = �r∫
t+Δt

t

G(�)d�.

(7)R relax =

⎛⎜⎜⎝

e−Δt∕T2(r) 0 0

0 e−Δt∕T2(r) 0

0 0 1 − e−Δt∕T1(r)

⎞⎟⎟⎠
.

(8)S(t) =
∑
r

M(r, t)x + j
∑
r

M(r, t)y.

Fig. 1  Schematic representa-
tion of the image construction 
process using the coupling of 
MRI and DPD. (a) A control 
volume showing a DPD liquid 
that produces hydrodynamic 
behavior through pair interac-
tion forces Fij ; (b) application 
of a spin echo sequence on the 
particles manipulating their 
magnetic vector M ; (c) storage 
of the MRI signals in k-space; 
(d) 2D Fourier transform to 
form the images from k-space
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2.2  SE‑SBP sequence

There are a number of MR sequences that show sensitivity 
to flow in non-contrast magnetic resonance angiography, but 
they also lead to artifacts in many applications. The flow-
compensated gradient-echo sequence in the time of flight 
method is optimized to favor the vascular signal over that 
of the surrounding tissue, but it is not suitable for a slow 
flow due to signal loss. A pulsed field gradient spin echo 
sequence can be used to image slow flow and diffusion (Ste-
jskal and Tanner 1965; Scheenen et al. 2001) where unipolar 
diffusion gradients induce signal attenuation and diffusivity 
in each voxel, which can be estimated by

where S(b) is the observed signal, S(0) is the signal in the 
absence of diffusion, and D is the apparent diffusion coef-
ficient. G is the magnitude of gradient pulse with duration � 
and diffusion time Δ.

Phase-contrast sequence is more resourceful; it cannot 
only be used to image vessels but can also be used to quan-
tify the blood flow and obtain diffusion-weighted images 
(Freidlin et al. 2012). As the local magnetization is a vec-
tor quantity, it gains phase when subjected to flow under 
gradients. There are three contributions to the phase of MR 
signal according to Eq. (2). The first phase contribution is 
due to static field B0 , which is zero in a rotating frame; the 
second phase contribution is due to field inhomogeneities 
ΔB0 ; and the third contribution is due to the applied mag-
netic gradient in the direction of motion, which gives rise 
to time-dependent and spatially varying phase. In the imag-
ing signal, static spins and moving spins give rise to time-
dependent and spatially varying phase. So the total phase 
gain in a rotating frame at echo time t echo is

where Φ0 is the unknown background phase; the second and 
third components describe the influence of static spins at r 
and moving spins with velocities v on the phase components, 
respectively. Velocity encoding is performed using bipolar 
gradients that results in zero phase contribution due to sta-
tionary spins. The moving spins will experience linear phase 
change dependent on the velocity given as

where T is the total bipolar gradient duration and G is the 
strength of the gradient. However, the background phase 
effect Φ0 cannot be refocused using a single bipolar gradient. 
Therefore, two datasets of signal phase are acquired using 

(9)S(b) = S(0)e−bD ; b = �2G2�2
[
Δ −

�

3

]
,

(10)Φ(r, t) = Φ0 + �r∫
t echo

0

G(t)dt + �v∫
t echo

0

G(t)tdt,

(11)Φ1(v) = −�v∫
t echo

0

G(t)tdt = �G(T∕2)2v,

two loops of sequence with the appropriate velocity encod-
ing gradients. The subtraction of the two resulting phase 
images allows the quantitative assessment of velocities and 
diffusion in the fluid. A complete spin echo single-sided 
bipolar gradient (SE-SBP) sequence is shown in Fig. 2.

2.3  Flow dynamics

The fluid in the MRI–DPD simulator is modeled using dissi-
pative particle dynamics (DPD) (Hoogerbrugge and Koelman 
1992), where a set of interacting point particles represent the 
material under observation. This method has been successfully 
applied to simulate the hydrodynamic behavior of real fluids. 
This is achieved through pairwise interactions, composed of 
conservative, dissipative and random forces exerted on particle 
i by particle j, respectively. The positions and momenta of the 
particles are updated at discrete time steps. The updates are 
computed based on Newton’s second law with equations of 
motion for particle i reads as

where ri and vi are the position and velocity vectors of par-
ticle i. FC

ij
 is a conservative force, FD

ij
 is a dissipative force, 

and FR
ij
 is a random force. The conservative force is a soft 

(12)
dri

dt
= vi;

(13)mi

dvi

dt
=Fi(t) =

∑
j≠i

(FC
ij
+ FD

ij
+ FR

ij
),

Fig. 2  A basic spin echo imaging sequence—with two added bipo-
lar gradient sets of opposite polarity—is used for one direction flow 
encoding. Each set uses a repetition of 90◦ and 180◦ pulses for phase 
encoding steps
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repulsion acting along the line of centers and is usually given 
by (Hoogerbrugge and Koelman 1992; Groot and Warren 
1997)

where aij is the maximum repulsion between particle i and j, 
with rij = ri − rj ; rij = |rij| , and eij = rij∕rij . rCc  is the so-called 
cutoff radius of the interaction. The remaining two forces, 
dissipative and a random, are given by

where wD and wR are the r-dependent weight functions that 
vanish for r > rc with vij = vi − vj , and �ij(t) is a randomly 
fluctuating variable with Gaussian statistics: < 𝜃ij(t) >= 0 
and ⟨�ij(t)�kl(t�)⟩ = (�ik�jl + �il�jk)�(t − t�) . These forces 
conserve angular momentum since they act along the line 
of centers. The random and dissipative forces are not inde-
pendent but coupled through a fluctuation–dissipation theo-
rem. Espanol and Warren showed that there are two neces-
sary conditions that must be fulfilled to keep the system 
in thermodynamic equilibrium. First requirement allows us 
to choose one of the two weight functions appeared in Eq. 
(15). Second requirement relates their amplitude and kBT  . 
Precisely as

(14)FC
ij
=

{
aij(1 − rij∕rc)eij, rij < rC

c
;

0, otherwise,

(15)
FD
ij
= − �w(rij)

D
(eijvij)eij;

FR
ij
= �w(rij)

Reij�ij,

(16)
wD

(r) = [wR
(r)]2;

�2
= 2�kBT .

A flow chart showing the complete MRI–DPD scheme is 
depicted in Fig. 3. It shows a spin echo sequence with two 
bipolar gradient loops being executed during a simultane-
ously running fluid dynamics defined by DPD.

2.4  Scaling

The fluid flow behavior was based on a standard DPD 
scheme for water with the parameters as defined by Groot 
and Warren (1997). A repulsive parameter aij = 75kBT∕� 
was chosen to simulate the compressibility of the water 
model. The velocity Verlet scheme was used with � = 0.5 
and noise amplitude � = 3 . All simulations were performed 
on a three-dimensional box with various sizes defined 
as per the needs of the experiments. We use the notation 
u = uDPD ∗ [u] to relate SI units to DPD units. Here the left 
hand side denotes a variable u in SI-units, [u] denotes the 
unit of u as used in the simulation, while uDPD is a numeri-
cal unit-less value of u when expressed in the DPD unit. We 
fixed the length of our system by choosing the pixel size. We 
fixed the mass unit [m] by comparing the fluid density with 
the density of water of � = �water[�] at room temperature. 
Upon choosing the temperature as 1[T] = 298 K , the unit 
of time [t] is fixed through the unit of energy [�] = kBT  . We 
also required the unit of magnetic field [B] to be specified as

Since there is no interaction between the magnetic field and 
the DPD forces, the current unit is independently chosen.

Laminar flow, with a parabolic and shear velocity pro-
files, was imposed as initial condition on the flow in the 

(17)[B] =
[m]

[I][t]2
.

Fig. 3  The flow chart of the 
complete MRI–DPD method 
with spin echo sequence added 
two bipolar gradients. After 
coupling of the flow dynamics 
with the spin dynamics, the 
sequence is applied on DPD 
particles. 2 × N samples are 
acquired after 2 × N phase 
encoding steps to get two sets of 
phases. These two sets of phases 
are then subtracted to construct 
the phase image
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channel. Water flows along the x-axis from left to right 
in the channel and does not encounter periodic bound-
ary conditions until one phase step of the image sequence 
depicted in Fig. 2 is completed. Periodic boundary condi-
tions were applied along the y-axis (perpendicular to the 
flow) and the particle velocities were restored to the pre-
applied initial conditions upon re-entering the channel. A 
no-slip boundary condition was modeled along the x- and 
z-axis. However, the effect of a no-slip boundary condi-
tion was intentionally unaccounted for in phase-contrast 
imaging. The imaging was conducted on an area around 
the center, which was sufficiently far away from the no-slip 
boundary. A rectangular obstacle was constructed in the 
flow path located in the middle of the channel as shown in 
Fig. 4. The dimension of the obstacle was 84 μm × 84 μm . 
The obstacle walls acted as reflectors for the approaching 
DPD particles, achieved by implementing bounce back 
boundary conditions. Here we avoided implementing DPD 
interaction forces between the fluid and the wall particles, 
as these soft interaction forces will not prevent the fluid 
from entering the obstacle.

3  Results

The MRI–DPD simulator code was written and imple-
mented in MATLAB version 2015a and ran on a PC with 
a 4-core i7-2600 CPU processor. The general MRI and 
DPD parameters used for all the simulations are listed in 
Table 1. Further case-specific parameters are mentioned in 
the respective section. The simulated cases are MR imag-
ing of a parabolic flow, shear flow, diffusive flow, and flow 
through an obstacle.

3.1  Phase‑contrast imaging of laminar flow

A parabolic flow phase image with a peak velocity of 
18 μm∕s is shown in Fig. 5. The field of view (FOV) is 
0.57 mm × 0.42 mm with a matrix size of 100 × 100 and 
with a slice thickness of 0.1 mm . There were roughly 30,000 
DPD particles flowing, but only 2700 particles used for 
imaging. The spin echo sequence with bipolar gradients 
was applied along the flow direction (x-direction) with a 
strength of 1.6 mT∕m and duration of 30 ms . The repetition 
TR and echo time TE were 210 ms and 150 ms , respectively. 
Similar parameters were used for a shear velocity profile 
shown in Fig. 6.

3.2  Diffusion weighted image using SE‑SBP 
sequence

On decreasing the peak velocity from 18 to 3.15 μm∕s , 
we are able to record the effect of thermal fluctuations 

Fig. 4  Geometry used for PC-MRI of flow crossing an obstacle. The 
schematic shows a parabolic flow approaching a rectangular obstacle 
located in the middle of the channel. Dashed lines indicate the only 
area where magnetization is applied to the imaging particles

Table 1  Fluid properties for water and DPD parameters

Quantity Value (SI) Value (DPD)

Length unit [l] 2.1 × 10−5 m 1
Mass unit [m] 9.4 × 10−12 kg 1
Time unit [t] 1s 1
Density � 1000 kg∕m3 1
Time step Δt 1.0 ms 10−3[t]

Cutoff rC
c
 , Eq. (14) 1.5 × 10−5 m 0.7

Magnetic field unit [B] 1 × 10−6 T 1
Frequency gradient G 0.48mT∕m 0.01
Phase gradient G 0.95mT∕m 0.02
Offset frequency Δ�max 0…± 10Hz 0…± 10

T1, T2 1.2, 0.2 s [Ref. Levitt 
2001]

1.2,0.2

(a) (b)

Fig. 5  (a) In-plane laminar flow encoded phase image with peak 
velocity of 18 μm∕s in the x-direction. Bipolar gradient was applied 
along the flow direction. (b) A plot showing velocity measurement of 
the particles (each averaged along the x-axis) relative to their position 
in the channel across the y-axis. The reference velocity profile (red 
curve) is obtained through DPD calculations without magnetization, 
while the (blue curve) is obtained through PC-MRI. There is good 
agreement between both measurements



Microfluidics and Nanofluidics (2018) 22:55 

1 3

Page 7 of 11 55

on MRI images. At lower velocities, the phase gain due 
to diffusive motion of particles becomes prominent on 
MR images manifested by pixelation. Due to the veloc-
ity-dependent phase shift, we switched to higher bipo-
lar gradient strength, i.e., 1.9 mT/m for slower velocities 
while the rest of the MRI parameters were kept the same 
as applied before. An effect of diffusion on the image is 
visible in Fig. 7. This is in contrast to the image with the 
faster parabolic flow, where the gain in the phase magni-
tude due to higher velocity is larger than the phase accu-
mulation due to diffusive motion. An image with similar 
effect of diffusion was captured when the flow channel was 
subjected to shear flow. The obtained diffusion-weighted 
image is shown in 8 clearly depicting the thermal fluctua-
tion, which was obtained by lowering the rate of advec-
tion relative to the rate of diffusion. The velocities were 
measured using PC-MRI up to a duration of one imaging 
sequence with field of view 0.57 mm × 0.42 mm ; they are 
plotted in Figs. 7b and 8b.

3.3  PC‑MRI of flow crossing an obstacle

We further imaged the effect of an obstacle on 
PC-MRI for four relatively slow f low velocities. 
Fluid entered the channel with different velocities 
v1 = 6.3 μm∕s, v2 = 10.5 μm∕s, v3 = 14.7 μm∕s  i n 
Fig. 9a–c, respectively. The channel width was 0.55 mm 
with FOV = 0.42 × 0.34 mm . The strength of bipolar gradi-
ent was kept the same, i.e., 1.9 mT∕m because this gradient 
value was well suited for imaging faster as well as slower 
velocities. As the fluid flow exceeded a certain threshold 
velocity, which in this case was 18 μm∕s , the phase image 
was pixelated (Fig. 9d). As the flow profiles did not indicate 
any flow turbulence, the pixelation of the image must have 
been due to only choosing unsuitable sequence parameters. 
For such slow flows, therefore, different parameters for bipo-
lar gradients are required to get proper phase image.

4  Discussion and conclusions

We successfully visualize flows in the form of parabolic 
and shear profile shown in Figs. 5 and 6 and quantitatively 
analyzed using phase-contrast MRI method. In the simple 
spin echo bipolar (SE-SBP) sequence, we did not encounter 
spurious signals to disrupt the image considerably. As the 
flow along the x-axis dominates, a small phase variation due 
to thermal noise was averaged out using low pass filter.

The effect of thermal fluctuations on the flow images is 
shown in Figs. 7 and 8, which was possible by choosing the 
velocity 3.15 μm∕s . By imaging the parabolic profile at slow 
speed, the impact of flow on the phase gain becomes nearly 
indistinguishable from the impact of diffusion, because the 
particles start obtaining similar phase values for both cases 
of either moving in one velocity layer or diffusing between 
different velocity layers.

(a) (b)

Fig. 6  (a) Phase magnitude image of an in-plane shear flow with the 
same peak velocity of 18 μm∕s in the x-direction with bipolar gra-
dient applied along the flow direction. (b) A plot showing velocity 
measurement of the particles (each averaged along the x-axis) relative 
to their position in the channel across the y-axis. The reference veloc-
ity profile (red curve) is obtained through DPD calculations without 
magnetization, while the (blue curve) is obtained through PC-MRI. 
There is good agreement between both measurements

(a) (b)

Fig. 7  (a) Phase image of a slow parabolic flow profile, with peak 
velocity of 3.15 μm∕s in the x-direction. A prominent thermal fluctu-
ation effects becoming visible on the phase image. (b) A plot showing 
the phase gain values of the particles (each averaged along the x-axis) 
relative to their position across the y-axis. A variation in phases 
acquired due to diffusion are clear in this plot

(a) (b)

Fig. 8  (a) Phase image of a shear velocity flow profile with peak 
velocity of 3.15 μm∕s in the x-direction. A prominent thermal fluc-
tuation effects become visible on the phase image. (b) A plot showing 
the phase gain values of the particles (each averaged along the x-axis) 
relative to their position across the y-axis. A variation in phases 
acquired due to diffusion are clear in this plot
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DPD gave us realistic aspect in simulating flow by 
incorporating thermal fluctuations, and made possible 
imaging a slow flow passing by an obstacle (Fig. 9). In 
contrast, it is difficult in CFD to realistically simulate 
spins moving around curved paths at slow flow. In Fig. 9c, 
it is clearly visible that the image at higher flow rate is 
smoother before the particles strike the obstacle and dis-
persion effects come about. However, increasing the flow 
velocity further to 18 μm∕s (Fig. 9d) results in the failure 
of the SE-SBP sequence and the whole image becomes 
pixelated in random brightness. In this case, other bipolar 
gradient parameters should be applied.

In the SE-SBP sequence, there were two sequence 
loops, from which we obtained two complex images data 
and these two acquisitions were directly subtracted on 
pixel-by-pixel basis. Freidlin et al. (2012) used only one 
part of the sequence loop to get diffusion-weighted images 
in moving media. Since diffusion is a random motion, sub-
traction of phases will not affect the randomness, so this 
sequence is not only valid for slow flow but also for diffu-
sion measurement. A diffusion constant can be calculated 
using Eq. (9) (Freidlin et al. 2012).

The MRI–DPD simulator code was written in MATLAB 
script. Total time for simulating 30,000 fluid particles with 
2700 image particles for a single set of a pulse sequence 
was 8 h on a 4-core processor. This time is less than pre-
viously recorded time for isochromat summation of flow 
measurements (Marshall 1999), where in one of the cases 
the computations were spread over 100 processors in a 
cluster (Marshall 2010). Although the isochromat summa-
tion method is computationally relatively complex, it has 
the advantage that it simulates MRI phenomena close to 
reality. The computational complexity of the isochromat 
method is of fourth order O(n4) . The computational cost 
depends on the square of the number of particles O(n2) , 
which further increases to O(n4) on implementation of 
gradients. However, we can speed up computation of the 
spin dynamics by implementing a vectorized code instead 
of a scalar code. We compared both scalar and vectorized 
codes to image 2000 stationary spins. The former took 5 
h to obtain the image, while the latter merely 23 s. As dis-
cussed by (Martin 1989; Brown and Martin 1984), the sca-
lar code’s execution is slow as compared to vector codes 
due to the overheads associated with implementing the 
for-loops; and the same applies in our case, since updat-
ing the particle magnetization necessitates calculating the 
gradient values in each inner loops. In the vectorized code, 
gradient values are calculated in matrix form thus avoid-
ing excessive overheads and magnetizations are updated 
by matrix multiplication. Vectorization is well placed in 
MATLAB, making it our first choice for implementing the 
vectorized isochromat as well as DPD algorithm. Other 
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Fig. 9  Phase images of particles on the left and velocity profiles on 
the right, bypassing an obstacle for various flow velocities. Fluid is 
entering the channel from the left, bypassing the obstacle that is posi-
tioned in the middle of the channel. For the case of the phase images 
with slow velocity profile (a, b), diffusion-loaded image is recorded 
with particles stuck at the obstacle for a while before leaving, thus 
contributing to the bright spots at the left wall of the obstacle. For 
the case of the phase image with higher velocity profile (c), initially 
a smooth phase magnitude is visible on the left side of the obstacle; 
but soon after colliding with the obstacle, the fluid particles disperse 
giving a distortion in the image. For the case of the phase image with 
even higher velocity (d), the complete phase image becomes pix-
elated due to inappropriate values of the parameters in the SE-SBP 
sequence. In this case, different values of the bipolar gradient strength 
and duration need to be tested
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reasons of choosing MATLAB was the ease and availabil-
ity of better graphics and signal processing tools.

We presented here a proof of concept of MRI–DPD 
scheme. Here fixing the transport properties of the fluid was 
not a prerequisite. DPD enables the choice of diffusion con-
stants and viscosity values for the desired fluid. Even though 
the self-diffusion constant of a DPD particle is generally not 
equal to the self-diffusion constant of the real fluid that it 
should represent, it is possible, at least for simple fluids, to 
establish a connection between the two (Azhar et al. 2016). 
The two diffusion constants are proportional, and the propor-
tionality constant is the third root of the number of micro-
scopic objects (e.g., water molecules for the self-diffusion of 
water) contained in one DPD particle according to the mass 
assigned to it. Multi-particle collision dynamics (MPCD), 
on the other hand, is also a suitable candidate for slow flow 
and diffusion-weighted MRI simulation, but it yet misses the 
simplicity and freedom that DPD provides for the choice of 
transport properties as well as its implementation.

Recently, we published a study on the effect of thermal 
fluctuations on NMR signals (Azhar et al. 2016). To our 
best knowledge, no report exists on the effect of thermal 
fluctuations on MR images at mesoscopic level. Current 
model is very simple but efficient. Choosing simple spin 
echo sequence with the essence of reality is well preserved. 
Azhar et al. (2016) so far coupled DPD with NMR by intro-
ducing extra degrees of freedom for magnetization, and 
solved Bloch equations for these extra degrees of freedom 
using the particle dynamics code SYMPLER (Kauzlarić 
et al. 2014). Here, however, we chose a different approach 
for coupling thermal motion with MRI. Computational cost 
for solving the Bloch equations with sophisticated integrator 
such as Runge–Kutta of higher order was simply avoided 
without losing any important effect on the results. Time 
discrete solution of Bloch equations is also the preferred 
choice in the design of MRI simulator, not only to avoid high 
computational cost but to also enjoy more flexibility for the 
implementation of different pulse sequences.

This technique opened new possibilities for simulating 
flow and diffusion MRI at mesoscopic level. This MRI–DPD 
simulator is also better suited to study DW-MRI. All types 
of pulse sequences, targeting solely either diffusion or flow 
imaging can be easily implemented with this DPD–MRI 
simulator. This new method can be used to image restricted 
diffusion of intracellular molecules, can also be used for 
flow imaging of cardiovascular disorders, such as stenosis. 
Furthermore, the DPD–MRI method can also simulate an 
aorta artery for assessing vessel patency and can even be 
expanded to model blood flow phenomena such as coronary 
slow flow, moving arteries and non-Newtonian flow. There 
is a strong need for better filter design, which could single 
out diffusion from noise due to discrete frequency spectrum. 
Computational time for larger geometries could be an issue 

in the future. It will be addressed either by writing a DPD 
algorithm on lower level languages such as C++/Python 
and then linking it with MRI MATLAB script or by saving 
positions and velocities of DPD particles [e.g., computed 
with SYMPLER (Kauzlarić et al. 2014] for post processing 
through MRI simulator. A high-performance DPD end or a 
post processing will surely speed up the overall time needed 
for simulating the complex and larger geometries. Further 
improvement entails simulating artifacts encountered in 
images such as chemical shift, intra-voxel dephasing, imper-
fection of slice selection but this is beyond the scope of the 
present article.

In conclusion, we have successfully demonstrated the 
mesoscopic simulation of MRI of slow flow and diffusion, 
including the test of SE-SBP sequence and the effect on flow 
images due to an obstacle. The simulator developed, pro-
vides a complete work station that can be used for simulat-
ing a variety of MRI experiments depending on the desired 
experiment with little modification. We believe the method 
effectively combines the MRI simulator with flow dynamics 
to simulate MRI experiments for different geometries.

Acknowledgements MA acknowledges funding from DAAD (Grant 
Number A0895301) for this research and also would like to thank Dr. 
Waltraud Buchenberg, Mr. Torsten Kirk, and Dr. Said Abdu for fruit-
ful discussions. AG and DK acknowledges partial funding by the DFG 
(Grant Number GR 2622/6-1). DK also acknowledges partial funding 
by the DFG (Grant Number KA 3482/2). JGK acknowledges partial 
funding from the ERC Senior Grant Number 290586—NMCEL, and 
the excellence cluster Brain-Links-Brain-Tools EXC 1086. The authors 
acknowledge partial funding by the University of Freiburg through the 
German excellence initiative.

References

Azhar M, Greiner A, Korvink JG, Kauzlarić D (2016) Dissipative par-
ticle dynamics of diffusion-nmr requires high Schmidt-numbers. 
J Chem Phys 144(24):244101

Bittoun J, Taquin J (1982) A simulator for NMR imaging experiments: 
its interest for adjusting apparatus. Comptes Rendus des Seances 
de l’Academie des Sciences 295(6):649–652

Bloch F (1946) Nuclear induction. Phys Rev 70(7–8):460
Bobman SA, Riederer SJ, Lee JN, Suddarth SA, Wang HZ, MacFall JR 

(1985) Synthesized mr images: comparison with acquired images. 
Radiology 155(3):731–738

Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, 
Boesiger P (2000) Hemodynamics in the carotid artery bifurca-
tion: a comparison between numerical simulations and in vitro 
mri measurements. J Biomech 33(2):137–144

Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, 
Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-
contrast magnetic resonance imaging measurements in intracranial 
aneurysms in vivo of flow patterns, velocity fields, and wall shear 
stress: comparison with computational fluid dynamics. Magn 
Reson Med 61(2):409–417

Brenner AR, Kürsch J, Noll TG (1997) Distributed large-scale simula-
tion of magnetic resonance imaging. Magn Reson Mater Phys Biol 
Med 5(2):129–138



 Microfluidics and Nanofluidics (2018) 22:55

1 3

55 Page 10 of 11

Brown FB, Martin WR (1984) Monte carlo methods for radia-
tion transport analysis on vector computers. Prog Nucl Energy 
14(3):269–299

Bryant DJ, Payne JA, Firmin DN, Longmore DB (1984) Measurement 
of flow with nmr imaging using a gradient pulse and phase differ-
ence technique. J Comput Assist Tomogr 8(4):588–593

Canstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz 
A, Küffer J, Hennig J, Markl M (2008) 3d mr flow analysis in 
realistic rapid-prototyping model systems of the thoracic aorta: 
Comparison with in vivo data and computational fluid dynamics 
in identical vessel geometries. Magn Reson Med 59(3):535–546

Cenova I, Kauzlarić D, Greiner A, Korvink JG (2011) Constrained 
simulations of flow in haemodynamic devices: towards a com-
putational assistance of magnetic resonance imaging meas-
urements. Philos Trans R Soc Lond A Math Phys Eng Sci 
369(1945):2494–2501

Crooks LE, Singer JR (1983) Nuclear magnetic resonance blood flow 
measurements in the human brain. Science 221(4611):654–656

Crum WR, Berry E, Ridgway JP, Sivananthan UM, Tan LB, Smith MA 
(1997) Simulation of two-dimensional tagged MRI. J Magn Reson 
Imaging 7(2):416–424

Crum WR, Berry E, Ridgway JP, Sivananthan UM, Tan LB, Smith 
MA (1998) Frequency-domain simulation of mr tagging. J Magn 
Reson Imaging 8(5):1040–1050

Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applica-
tions of magnetic resonance imaging in the measurement of fluid 
motion. Exp Fluids 43(6):823–858

Español P, Warren P (1995) Statistical mechanics of dissipative particle 
dynamics. EPL (Europhys Lett) 30(4):191

Freidlin RZ, Kakareka JW, Pohida TJ, Komlosh ME, Basser PJ (2012) 
A spin echo sequence with a single-sided bipolar diffusion gradi-
ent pulse to obtain snapshot diffusion weighted images in moving 
media. J Magn Reson 221:24–31

Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics 
in the localization and detection of atherosclerosis. J Biomech 
Eng 115(4B):588–594

Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: 
theory and application to non-spherical stars. Mon Not R Astron 
Soc 181(3):375–389

Glor FP, Westenberg JJM, Vierendeels J, Danilouchkine M, Verdonck P 
(2002) Validation of the coupling of magnetic resonance imaging 
velocity measurements with computational fluid dynamics in a u 
bend. Artif Organs 26(7):622–635

Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging 
the gap between atomistic and mesoscopic simulation. J Chem 
Phys 107(11):4423

Hammer BE, Heath CA, Mirer SD, Belfort G (1990) Quantitative flow 
measurements in bioreactors by nuclear magnetic resonance imag-
ing. Nat Biotechnol 8(4):327–330

Harloff A, Nußbaumer A, Bauer S, Stalder AF, Frydrychowicz A, 
Weiller C, Hennig J, Markl M (2010) In vivo assessment of wall 
shear stress in the atherosclerotic aorta using flow-sensitive 4d 
MRI. Magn Reson Med 63(6):1529–1536

Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic 
hydrodynamic phenomena with dissipative particle dynamics. 
EPL (Europhys Lett) 19(3):155

Jochimsen TH, Schäfer A, Bammer R, Moseley ME (2006) Efficient 
simulation of magnetic resonance imaging with Bloch–Torrey 
equations using intra-voxel magnetization gradients. J Magn 
Reson 180(1):29–38

Kauzlarić D, Dynowski M, Pastewka L, Greiner A, Korvink JG (2014) 
SYMPLER: SYMbolic ParticLE simulatoR with grid-computing 
interface. Comput Phys Commun 185:1085

King KF, Moran PR (1984) A unified description of NMR imag-
ing, data-collection strategies, and reconstruction. Med Phys 
11(1):1–14

Lauterbur P (1973) Image formation by induced local interactions: 
examples employing nuclear magnetic resonance

Levitt MH (2001) Spin dynamics: basics of nuclear magnetic reso-
nance. Wiley

Ljunggren S (1983) A simple graphical representation of Fourier-
based imaging methods. J Magn Reson (1969) 54(2):338–343

Long Q, Xu XY, Ariff B, Thom SA, Hughes AD, Stanton AV (2000) 
Reconstruction of blood flow patterns in a human carotid bifur-
cation: a combined CFD and MRI study. J Magn Reson Imaging 
11(3):299–311

Lucy LB (1977) A numerical approach to the testing of the fission 
hypothesis. Astronom J 82:1013–1024

Malevanets A, Kapral R (1999) Mesoscopic model for solvent 
dynamics. J Chem Phys 110(17):8605–8613

Malevanets A, Kapral R (2000) Solute molecular dynamics in a mes-
oscale solvent. J Chem Phys 112(16):7260–7269

Marshall I (1999) Simulation of in-plane flow imaging. Concepts 
Magn Reson 11(6):379–392

Marshall I (2010) Computational simulations and experimental stud-
ies of 3d phase-contrast imaging of fluid flow in carotid bifurca-
tion geometries. Jo Magn Reson Imaging 31(4):928–934

Martin WR (1989) Successful vectorization-reactor physics monte 
carlo code. Comput Phys Commun 57(1–3):68–77

Milner JS, Moore JA, Rutt BK, Steinman DA (1998) Hemodynam-
ics of human carotid artery bifurcations: computational studies 
with models reconstructed from magnetic resonance imaging of 
normal subjects. J Vasc Surg 28(1):143–156

Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog 
Phys 68(8):1703

Ooij PV, Guedon A, Poelma C, Schneiders J, Rutten MCM, Marquer-
ing HA, Majoie CB, VanBavel E, Nederveen AJ (2012) Com-
plex flow patterns in a real-size intracranial aneurysm phantom: 
phase contrast mri compared with particle image velocimetry 
and computational fluid dynamics. NMR Biomed 25(1):14–26

Ortendahl DA, Hylton N, Kaufman L, Watts JC, Crooks LE, Mills 
CM, Stark DD (1984) Analytical tools for magnetic resonance 
imaging. Radiology 153(2):479–488

Papathanasopoulou P, Zhao S, Köhler U, Robertson MB, Long Q, 
Hoskins P, Xu Y, Marshall I (2003) MRI measurement of time-
resolved wall shear stress vectors in a carotid bifurcation model, 
and comparison with CFD predictions. J Magn Reson Imaging 
17(2):153–162

Petersson S, Persson RBR, Ståhlberg F (1985) Computer simulation 
of the NMR-signal after an arbitrary pulse sequence (abstract 
in Swedish). Hygiea 94:259

Riederer SJ, Suddarth SA, Bobman SA, Lee JN, Wang HZ, MacFall 
JR (1984) Automated mr image synthesis: feasibility studies. 
Radiology 153(1):203–206

Rundle D, Kishore S, Seshadri S, Wehrli F (1990) Magnetic reso-
nance imaging simulator: a teaching tool for radiology. J Digit 
Imaging 3(4):226–229

Scheenen TWJ, Vergeldt FJ, Windt CW, De Jager PA, Van As H 
(2001) Microscopic imaging of slow flow and diffusion: a 
pulsed field gradient stimulated echo sequence combined with 
turbo spin echo imaging. J Magn Reson 151(1):94–100

Soares JS, Gao C, Alemu Y, Slepian M, Bluestein D (2013) Simula-
tion of platelets suspension flowing through a stenosis model 
using a dissipative particle dynamics approach. Ann Biomed 
Eng 41(11):2318–2333

Steinman DA (2004) Image-based computational fluid dynam-
ics: a new paradigm for monitoring hemodynamics and ath-
erosclerosis. Curr Drug Targets Cardiovasc Hematol Disord 
4(2):183–197

Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin ech-
oes in the presence of a time-dependent field gradient. J Chem 
Phys 42(1):288–292



Microfluidics and Nanofluidics (2018) 22:55 

1 3

Page 11 of 11 55

Stöcker T, Vahedipour K, Pflugfelder D, Shah NJ (2010) High-
performance computing MRI simulations. Magn Reson Med 
64(1):186–193

Summers RM, Axel L, Israel S (1986) A computer simulation 
of nuclear magnetic resonance imaging. Magn Reson Med 
3(3):363–376

Thomas JB, Milner JS, Rutt BK, Steinman DA (2003) Reproducibil-
ity of image-based computational fluid dynamics models of the 
human carotid bifurcation. Ann Biomed Eng 31(2):132–141

Torheim G, Rinck PA, Jones RA, Kvaerness J (1994) A simulator for 
teaching MR image contrast behavior. Magn Reson Mater Phys 
Biol Med 2(4):515–522

Torrey HC (1956) Bloch equations with diffusion terms. Phys Rev 
104(3):563

Tosenberger A, Salnikov V, Bessonov N, Babushkina E, Volpert V 
(2011) Particle dynamics methods of blood flow simulations. 
Math Model Nat Phenomena 6(5):320–332

Twieg DB (1983) The k-trajectory formulation of the nmr imaging 
process with applications in analysis and synthesis of imaging 
methods. Med Phys 10(5):610–621

Yazdani A, Karniadakis GE (2016) Sub-cellular modeling of platelet 
transport in blood flow through microchannels with constriction. 
Soft Matter 12(19):4339–4351

Zhao SZ, Papathanasopoulou P, Long Q, Marshall I, Xu XY (2003) 
Comparative study of magnetic resonance imaging and image-
based computational fluid dynamics for quantification of pul-
satile flow in a carotid bifurcation phantom. Ann Biomed Eng 
31(8):962–971

Publisher’s Note Springer Nature remains neutral with regard to 
urisdictional claims in published maps and institutional affiliations.


	DPD enables mesoscopic MRI simulation of slow flow
	Abstract
	1 Introduction
	2 Methods
	2.1 The isochromat summation method
	2.2 SE-SBP sequence
	2.3 Flow dynamics
	2.4 Scaling

	3 Results
	3.1 Phase-contrast imaging of laminar flow
	3.2 Diffusion weighted image using SE-SBP sequence
	3.3 PC-MRI of flow crossing an obstacle

	4 Discussion and conclusions
	Acknowledgements 
	References


