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Abstract
Non-equilibrium effects exist extensively in microfluidic flows, and the accurate simulation of the Knudsen layer behind them 
is rather challenging for the linear Newton–Fourier model. In this paper, a high-order reduced model (nonlinear coupled 
constitutive relations) from Eu’s generalized hydrodynamic equations is applied for the investigation of the micro-Couette 
flows of diatomic nitrogen and monatomic argon as well as Maxwell and hard-sphere molecules using the MacCormack 
scheme. In order to simulate the confined flows accurately, a set of enhanced wall boundary conditions based on this model 
are derived with respect to the degree of non-equilibrium. Both the 1st-order Maxwell–Smoluchowski model and the Lang-
muir slip model are also investigated. For a large range of Knudsen numbers, the results show that the enhanced boundary 
conditions make a significant improvement in the prediction of flow profiles, especially the temperature profile. The reason 
behind that is analyzed in detail. The numerical predictions obtained from the high-order model in conjunction with the 
enhanced boundary conditions are also compared with DSMC, regularized 13 moment equations, Burnett-type equations 
as well as Navier–Stokes solutions, which highlight its excellent capability in describing the underlying mechanism of the 
Knudsen layer in the Couette flow.

Keywords  Wall boundary conditions · Micro-Couette flow · Nonlinear coupled constitutive relations · Generalized 
hydrodynamic equations

1  Introduction

Microscale gas flows can be found extensively in and around 
the channels of certain micro-electromechanical systems 
(MEMS), such as micro-turbines and pumps, micro-motors, 
micro-bearings and nanotubes, which has emerged as an 
interesting area for prying into the fundamental physical 
phenomena in such micro-devices (Ho and Tai 1998; Li 
et al. 2014; Osman et al. 2012; Wang and Li 2004; Zhang 
et al. 2012). In general, when the characteristic scale in 
such confined channels can be comparable to gaseous mean 
free path, rarefaction effect would become significant and 
insufficient collisions to equilibrate the process of heat 
and momentum transport make it challenging to simulate 

micro-flows accurately, especially through continuum meth-
ods where the linear laws of Navier–Stokes–Fourier (NSF) 
are not available any longer for non-equilibrium transport.

Much effort has been put into the theoretical tools to get 
the real physical solution of the challenging confined flow 
problems of which NSF equations fail in description. Boltz-
mann equation provides a significant option to describe the 
dilute gas flows at all degrees of rarefaction. However, the 
highly nonlinear particle collision term in the right-hand 
side of the Boltzmann equation entailing great mathemati-
cal complexity has prevented any attempt of direct solu-
tions. One of the most successful methods for the solution 
of the Boltzmann equation has to be direct simulation Monte 
Carlo (DSMC) method based on a probabilistic procedure 
of tracking statistically representative particles, which was 
first proposed by Bird (1994). However, subject to its sta-
tistical fluctuation, it is expensive both in computational 
time and memory requirements, particularly for low-speed 
flows in MEMS (Oran et al. 1998). In order to reduce the 
computational consumption, Fan and Shen (2001) proposed 
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information preservation method (IP) and have gained its 
success to simulate low-speed gas flows in microscale. 
Another route for the solution of Boltzmann equation is to 
simplify or discrete the collision term, such as linearized 
Boltzmann equation (Grad 1963), modeling equation meth-
ods (BGK, ES-BGK and Shakhov models) (Bhatnagar et al. 
1954; Holway 1966; Shakhov 1968), discrete velocity meth-
ods (DVM), discrete ordinate method (DOM) (Broadwell 
2006; Yang et al. 2016) and unified gas-kinetic scheme 
(UGKS) (Xu and Huang 2010), etc.

The micro-Couette flow in MEMS can be regarded as a 
benchmark case for the investigation on a crucial physical 
layer of few free paths away from the solid surface, which 
is defined as the Knudsen layer. Extended hydrodynamic 
equations (EHE) have provided potent tools in capturing 
these microscale flows with acceptable computational effi-
ciency. However, the underlying physical phenomena of 
the Knudsen layer behind the Couette flow, such as nonlin-
ear velocity profile, larger temperature difference, smaller 
shear stress, nonzero normal stress, tangential heat flux 
and non-intuitive velocity gradient singularity (Lilley and 
Sader 2007) have not been predicted accurately by exist-
ing macroscopic hydrodynamic methods (Lockerby et al. 
2005), which seem to be a challenging task. For example, 
Burnett-type equations that originate from the second-order 
Chapman–Enskog expansion (Chapman and Cowling 1953) 
and Grad’s moment equations (Grad 1949) have manifested 
their defective capacity in capturing high-speed and low-
density flow physics (Grad 1952; Rosenau 1989). Thankfully 
continuum description of microscale flows has seen many 
new recent advancements including regularization of Grad 
equations (Gu and Emerson 2009; Torrilhon 2016; Torrilhon 
and Struchtrup 2008) and Onsager–Burnett equations (Singh 
and Agrawal 2016; Singh et al. 2017). Moreover, a set of 
generalized hydrodynamic equations (GHE) proposed by 
Eu (1980, 1992, 2002; Eu and Ohr 2001; Mazen Al-Ghoul 
and Eu 1997) also seems to provide a feasible solution in 
non-equilibrium transport problem. On the basis of GHE, 
an efficient non-Newton–Fourier computational model (non-
linear coupled constitutive relations, NCCR) was proposed 
by Myong (1999, 2001, 2004, 2009) and has attained well-
pleasing results in 1-D shock wave structures and multidi-
mensional hypersonic rarefied flows (Jiang et al. 2016, 2017; 
Zhao et al. 2016). In Myong’s recent work (Myong 2016, 
2011a), analytical solutions of the Couette flow have been 
derived for acquiring better understanding of non-equilib-
rium effects inside the Knudsen layer.

Moreover, gas–surface molecular interaction also plays 
a dominant role in guaranteeing the accuracy of solutions 
in the micro-Couette flow. Nonslip boundary conditions are 
no longer valid because of the existence of a tiny gap of 
velocity and temperature between the near-wall gas and sur-
face. Slip boundary conditions should be implemented under 

rarefied conditions. For 13 moment equations and Burnett-
type equations, a complete theory of boundary conditions is 
still lacking (Struchtrup and Taheri 2011), which is also true 
for Eu’s GHE. The number of boundary conditions needs to 
be figured out firstly in all high-order boundary value prob-
lems for Burnett equations, R13 equations (Gu and Emerson 
2007; Torrilhon 2016; Torrilhon and Struchtrup 2008) or 
R26 equations (Gu and Emerson 2009). As a contrast, the 
NCCR method is indeed a reduced model which shares a 
similar feature with NSF constitutive relations as a closure 
of stress and heat flux, since it doesn’t necessarily consider 
the substantial derivative of non-conserved variables and 
higher-order moments in Eu’s GHE on the basis of adiabatic 
approximation. To some extent, we don’t have to consider 
the solution of a hyperbolic system of non-conserved vari-
ables as aforementioned 13 moment methods. Therefore, 
the NCCR model does not require additional numerical 
boundary conditions theoretically and all non-conserved 
variables on the wall can be evaluated from conserved vari-
ables during the solution. However, it is worthwhile not-
ing that enhanced boundary conditions suitable for NCCR 
model with more accuracy can be achieved probably if based 
on a more precise physical description of the gas–surface 
interaction.

In present wok, we intend to apply the NCCR model 
to confined flows and investigate this set of non-New-
ton–Fourier constitutive relations’ capability by numerical 
approaches. Considering the complex solution of the NCCR 
model, an unusual numerical strategy has been adopted in 
our approach with reserving the velocity component perpen-
dicular to the wall as a dummy unknown variable and using 
an unsteady time-marching numerical scheme with a cou-
pled iterative method for approaching final steady solution. 
This numerical strategy provides a convenient framework 
for adopting different kinds of wall boundary conditions. 
With regard to the investigation on a variety of existing 
boundary conditions and seeking for a well-posed one for 
NCCR model, emphasis is also placed on the derivation of 
a new form of enhanced boundary conditions on the basis 
of Maxwell wall boundary theory and nonlinear stress/strain 
rate relationship. Finally, the accuracy and effectiveness of 
combining the NCCR model and enhanced boundary condi-
tions for investigating the micro-Couette flow are assessed 
extensively.

2 � Generalized hydrodynamics

2.1 � Conventional hydrodynamic model: the Navier–
Stokes–Fourier constitutive relations

Conservation laws, namely mass, momentum and energy 
conservation laws could be derived from the Boltzmann 
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equation directly. By differentiating the conserved invariants 
of density � , momentum �� and internal energy density �e 
with time, there follows a set of evolution equations without 
external force for the lowest order conserved moments:

where � , Δ , � and p denote the shear stress, excess nor-
mal stress, heat flux and gas pressure, respectively. Obvi-
ously, these non-conserved variables given in (2) and (3) 
are higher-order moments and this set of equations need 
additional relations to close. One of the classical methods is 
through linear viscosity and heat conduct laws.

However, the conventional Navier–Stokes–Fourier 
constitutive relations do not take the excess normal stress 
Δ into account under Stokes’ hypothesis that the bulk 
viscosity for the excess normal stress Δ vanishes. The 
Navier–Stokes–Fourier (NSF) constitutive relations can 
also be obtained through Chapman–Enskog expansion of 
distribution function in terms of Knudsen number around the 
Maxwellian distribution. The zeroth-order approximation 
yields Euler equations and the first-order expansion gives 
the NSF constitutive relations as

in which �b denotes the bulk viscosity. The bracket sym-
bol [ ](2) represents the traceless symmetric part of the sec-
ond-rank symmetric tensor. For instance, [�](2) is equal to 
(� + �t)∕2 − �Tr�∕3 . Finally, the NSF model (4) could be 
substituted into the evolution Eqs. (1)–(3) to yield traditional 
hydrodynamic equations, i.e., the NSF equations, which are 
applicable in continuum regime.

2.2 � Generalized hydrodynamic equations: the Eu’s 
modified moment method

As Knudsen number increases, the NSF constitutive rela-
tions would fail in description of the gas flows removed far 
away from equilibrium due to insufficient molecular colli-
sions. Therefore, high-order moments should be involved to 
get an accurate physical description of the non-equilibrium 
flows. A general velocity moment of order l can be defined 
as

(1)
��

�t
+ ∇ ⋅ �� = 0,

(2)
���

�t
+ ∇ ⋅ ��� + ∇ ⋅� = −∇(p + Δ),

(3)
��e

�t
+ ∇ ⋅ �e� + ∇ ⋅� = −(p + Δ)∇ ⋅ � −� ∶ ∇�,

(4)
�0 = −2�[∇�](2), Δ0 = −�b∇ ⋅ � = 0, �0 = −�∇T ,

(5)�(abc…l) = ⟨mCaCbCc …Clf (�, �, t)⟩,

where C represents the peculiar velocity. Differentiating the 
general moment (5) with time and substituting it into the 
Boltzmann equation for the time derivative of distribution 
function gives the evolution equation for the general velocity 
moment �(abc…l):

where the dissipation term is expressed as

And the subscript and superscript dot (⋅) in the formula, 
such as �(⋅bc…l) = ⟨C

⋅
CbCc …Clf ⟩ , designates contraction 

with ∇ by a scalar product.
Eu (1992, 2002) truncated the infinite non-conserved 

moments to the second- and third-order set which can be 
denoted by a unified symbol as

where �(1) denotes the shear stress � , �(2) the excess normal 
stress Δ , �(3) the heat flux � and their microscopic expres-
sions are correspond to

In above expressions, n represents the number density of 
molecules and ĥ is the enthalpy density per unit mass. Hrot 
denotes the rotational Hamiltonian of molecular. Substitut-
ing the stress and heat flux expressions into Eq. (6), a set 
of evolution equations for the non-conserved moments of 
interest could be derived as

where

In formula (13), � (�) represents the flux of higher-order 
moments, namely � (�) =

⟨
Ch(�)f

⟩
 . Explicit forms for the 

kinematic term Z(�) are summarized in literature (Eu 2002), 
which can be listed below as

(6)

�

�t
�(abc…kl) = −∇ ⋅

(
�

(⋅ab…l)

i
+ ��

(ab…l)

i

)

−
∑

all terms

(
d�

dt

)
a

�
(bc…l)

i

−
∑

all terms

�
(⋅bc…l)

i
⋅ ∇u

a

+
∑

all terms

F
ia
�

(bc…l)

i
+ �

(�)(abc…kl)

i
,

(7)�(�)(abc…kl) = ⟨mCaCbCc …Clℜ(f )⟩.

(8)�(k) =
⟨
h(k)f (�, �, t)

⟩
,

(9)
h(1) = [m��](2), h(2) =

1

3
mC2 − p∕n,

h(3) =
(
1

2
mC2 + Hrot − ĥm

)
�.

(10)𝜌
d

dt
𝛷̂(𝛼) = Z(𝛼) + 𝛬(𝛼),

(11)𝛷̂(𝛼) = 𝛷(𝛼)∕𝜌,

(12)�(�) =
⟨
h(�)ℜ(f )

⟩
,

(13)Z(�) = −∇ ⋅ � (�) +
⟨
f
(
dt + C ⋅ ∇ + � ⋅ ∇�

)
h(�)

⟩
.
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Combination of the formulas (10), (14), (16), (18) and 
(20) yields Eu’s generalized hydrodynamic equations finally.

2.3 � A generalized hydrodynamic model: nonlinear 
coupled constitutive relations

However, the set of generalized hydrodynamic equations is 
still an open system of partial differential equations involv-
ing higher-order moments. Before any attempt of using it to 
describe non-equilibrium gas transport mechanism, a closure 
should be taken into account firstly. Eu et al. (Bhattacharya and 
Eu 1987; Eu and Ohr 2001; Mazen Al-Ghoul and Eu 1997) 
took a basic closure tenet that only a few moments are suffi-
cient for the description of gas transport mechanism of inter-
est and the higher-order moments should not be calculated in 
terms of lower-order moments to reduce the computational 
cost. Since there exists no single closure theory founded on a 
firm theoretical justification, Eu proposed the following clo-
sure different from Grad’s:

Furthermore, Eu (2002) also observed that the higher-order 
moments decay faster than the conserved variables in experi-
ments, which backed up the closure tenet. It means that the 
non-conserved variables have already attained steady state 
when the conserved variables no longer change. Compared 
with the evolution timescale of conserved variables, the time-
scale of non-conserved variables are negligible. This approxi-
mation is named as adiabatic approximation by Eu, which is 
similar with the center manifold approximation (Knobloch and 
Wiesenfeld 1983) used in nonlinear dynamics. Note that the 
term related to a third-rank tensor �(3) in Eq. (16) has also been 
omitted in accordance with 13 moment methods. Therefore, on 
basis of the adiabatic approximation, the steady form of gen-
eralized hydrodynamic equations, which is nonlinear coupled 
constitutive relations (NCCR) called by Myong (2009, 2011a, 
2016), are obtained as

(21)
� =

�
mkB

�1∕ 4
√
2d

T1∕ 4

p

�
� ∶ �

2�
+ � �

Δ2

�b
+

� ⋅�

�T

�1∕ 2
.

(22)� (1) = � (2) = � (3) = 0.

(23)−2[� ⋅ ∇�](2) −
p

�
�q(�) − 2(p + Δ)[∇�](2) = 0,

(24)−2� �(Δ� +�) ∶ ∇� −
2

3
� �p∇ ⋅ � −

2

3
� �

p

�b
Δq(�) = 0,

(25)

−� ⋅ cp∇T −� ⋅ ∇� −
pcp

�
�q(�) − (p + Δ)cpT∇ ln T = 0,

where the higher-order moment �(3) is defined as ⟨m���f ⟩ 
and � is the vorticity tensor defined by

It forms an antisymmetric tensor with � by

Note that these formulas (10)–(16) are still an open set 
of evolution equations because the dissipation terms are 
still unknown. In Eu’s modified moment method (Eu 1980, 
1992), a distribution function is expressed by

In above expression, f (0) denotes the local equilibrium 
distribution function as exp

[
−�

(
H − �0

)]
 where � = 1∕kBT  

and the normalization factors �0 in local equilibrium can be 
obtained by exp

(
��0

)
= n0(m�∕2�)3∕ 2 . And the factor � 

comes from

where H = 1∕2mC2 and H(1) =
∑∞

k=1
Xkh

(k) represents the 
non-equilibrium contribution. The Xk are underdetermined 
functions in implicit forms of macroscopic variables, which 
evolve by the constraint of the Boltzmann equation and the 
second law of thermodynamics. By Substitution of this dis-
tribution function (17) into the dissipation term (12) with 
the introduction of cumulant expansion (Kubo 1962), the 
dissipation terms can be obtained in a nonlinear form as

where � is given by the Rayleigh–Onsager dissipation 
function

(14)

Z
(1) = −� ⋅ � (1) − 2

[
� ⋅ [∇�](2)

](2)
+ [�,�]

− 2(p + Δ)[∇�](2) −
2

3
�∇ ⋅ �,

(15)

Z(2) = −� ⋅ � (2) −
2

3
� ∶ [∇�](2) −

2

3
Δ∇ ⋅ � − pdt ln

(
p

�5∕ 3

)
,

(16)

Z(3) = −∇ ⋅ 𝜓 (3) − dt� ⋅ (� − pI) +� ⋅

(
−[∇�](2) − � −

1

3
I∇ ⋅ �

)

+ 𝜑(3) ∶
(
−[∇�](2) − � −

1

3
I∇ ⋅ �

)
−� ⋅ �ĥ,

� =
1

2

[
∇� − (∇�)t

]
.

[�,�] = � ⋅ � − � ⋅�.

(17)f = f (0) exp
[
−�

(
H(1) − � + �0

)]
.

exp (−��) =
(
n0
)−1⟨

exp
[
−�

(
H + H(1)

)]⟩
,

(18)�(1) = −(p∕�)�sinh �∕�,

(19)�(2) = −
(
2p

/
3�b

)
Δsinh �∕�,

(20)𝛬(3) = −
(
pĥ

/
𝜆T

)
�sinh 𝜅∕𝜅,
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where q(�) denotes sinh �∕� and � ′ is equal to (5 − 3�)∕2 in 
which � represents the specific heat ratio.

3 � Wall boundary conditions

3.1 � Langmuir slip and Maxwell–Smoluchowski 
models

Before the investigation for the NCCR model in micro-Cou-
ette flows, wall boundary conditions need to be elucidated 
theoretically. There are two common gas–surface molecular 
interaction models available in literatures (Langmuir 1916; 
Maxwell 1879): one is Langmuir’s surface adsorption theory 
and the other is Maxwell’s scattering theory. The former 
mainly focuses on the processes of adsorption and desorp-
tion and the latter considers the processes of incidence and 
reflection.

Following the basic idea of Langmuir (1916), a practica-
ble slip model was firstly developed by Eu et al. (Bhattacha-
rya and Eu 1987; Eu et al. 1987) and Myong et al. (Myong 
2001, 2003; Myong et al. 2005) and has been extensively 
used in LBM (Chen and Tian 2010; Kim et al. 2007). In this 
model, the velocity and temperature of the fluid adjacent to 
the wall could be expressed as a weighted mean between the 
value of the wall and the gas at a mean free path away from 
the wall or at the free-stream as follows in dimensional form:

where the fraction � is equal to �p∕(1 + �p) for monatomic 
gases and 

√
�p

�
1 +

√
�p for diatomic gases. � can be cal-

culated by Al̄ exp
(
De

/
kBTw

)/
kBTw , where these coeffi-

cients A , De , l̄ have specific definitions in literatures (Bhat-
tacharya and Eu 1987; Myong 2004). Eu et al. (1987) took 
L∕2 as the value of l̄ for the case of sufficiently rarefied 
gases in the micro-Couette flow. Considering the cases we 
intend to investigate, we take l̄ = l∕2 for the low-Knudsen 
number cases and switch to L∕2 for Kn ≥ 0.5 cases in our 
research.

Comparing with Langmuir slip model, Maxwell–Smolu-
chowski (M/S) model is more common to estimate the slip 
effect on the wall under rarefied conditions (Gad-el-Hak 
1999):

(26)u = �uw + (1 − �)ug,

(27)T = �Tw + (1 − �)Tg,

(28)u − uwall = Cml

(
�u

�y

)

w

+ Cs

�

�T

(
�T

�x

)
w
,

(29)T − Twall = Ctl

(
�T

�y

)

w

,

where the coefficient Cm can be expressed by 
(
2 − �u

)/
�u , 

Ct by 
(
2 − �T

)/
�T ⋅ 2�∕(� + 1)Pr . Here, �u and �T are the 

accommodation coefficients. The slip velocity calculated by 
DSMC in the Couette flow is proved to be close to l�u∕�y 
(Bird 1994), which attracted various researchers to inves-
tigate these slip and thermal creep coefficients Cm , Ct , Cs 
through molecule dynamics, DSMC or experiments. How-
ever, how to choose these free coefficients is still an open 
question (Zhang et al. 2012).

Another route for capturing the slip velocity and jump tem-
perature phenomenon accurately at large Knudsen numbers is 
to propose higher-order theoretical models or modifications. 
Beskok and Karniadakis (1999) attempted to expand the first-
order M/S model into higher orders by using Taylor series 
expansion:

The second-order approximation of M/S model could be 
truncated so straightforwardly that the second-order M/S-type 
boundary conditions should yield better results than the first-
order one. However, the fact is opposite against the original 
intuition (Bao et al. 2007; Lockerby and Reese 2003; Zhao 
2014), which indicates the physical inaccuracy in the second-
order M/S-type model.

Hsia and Domoto (1983) proposed another high-order 
expansion through experimental investigation, which contains 
negative even-order derivatives compared with the positive 
ones in Eqs. (30) and (31):

Similar derivations are made for the temperature jump 
boundary condition,

The second-order Hsia–Domoto (H/D) boundary condi-
tions has been adopted successfully in Burnett-type equations 
and proves its accuracy in predicting wall shear stress and heat 
flux in the Couette flow (Bao et al. 2007; Zhao 2014). The 
distinction between the second-order M/S and H/D models 
reflects that the positive second-order term may overcorrect 
the slip velocity and jump temperature values. The second-
order H/D boundary conditions can be written as

(30)

u − uwall = Cm

[
l

(
�u

�y

)

w

+
l2

2!

(
�2u

�y2

)

w

+
l3

3!

(
�3u

�y3

)

w

+ ⋅ ⋅ ⋅

]
,

(31)

T − Twall = Ct

[
l

(
�T

�y

)

w

+
l2

2!

(
�2T

�y2

)

w

+
l3

3!

(
�3T

�y3

)

w

+ ⋅ ⋅ ⋅

]
.

(32)

u − uwall = Cm

[
l

(
�u

�y

)

w

−
l2

2!

(
�2u

�y2

)

w

+
l3

3!

(
�3u

�y3

)

w

−⋯

]
.

(33)

T − Twall = Ct

[
l

(
�T

�y

)

w

−
l2

2!

(
�2T

�y2

)

w

+
l3

3!

(
�3T

�y3

)

w

−⋯

]
.
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3.2 � Enhanced NCCR‑based boundary conditions

Comparing above gas–surface molecular interaction mod-
els, the Maxwell–Smoluchowski model and the Langmuir 
slip model, they both depend on the concept of accommo-
dation or adjustable coefficients to describe the slip phe-
nomenon on the wall accurately. Since there is no special 
superiority between these two models, we will propose a set 
of enhanced boundary conditions from the high-order M/S 
model in present work.

The NCCR model reduced from the generalized hydrody-
namic equations ought to be a higher-order approximation 
(Rana et al. 2016) than the NSF constitutive relations for 
the Boltzmann equation. The Maxwell-type boundary condi-
tions based on the linear stress/strain rate relation, which are 
suitable for the NSF equations, may be short of reflecting the 
second-order characteristics in the NCCR model. Lockerby 
and Reese (Lockerby and Reese 2008) mentioned that one 
of the main shortcomings of the Maxwell-type boundary 
conditions is that they did not consider the nonlinear stress/
strain rate relationship when being applied for high-order 
constitutive relations. They (Lockerby et al. 2004) clarified 
and brought back the general form of the first-order Maxwell 
slip expression, which should be expressed in terms of stress 
rather than strain rate:

where � and Qx denote the tangential shear stress and the 
heat flux along the surface, respectively, p is the gas pressure 
nearest to the wall. Similar derivations for the temperature 
jump boundary condition can be shown in the following 
expression:

where � is the coefficient of heat conduction and Qy is the 
heat flux perpendicular to the surface. Note that the sig-
nificant distinction and relationship between these two sets 
of boundary conditions (28), (29) and (36), (37) would be 
the substitution of the linear Newton–Fourier constitutive 
relations (4) into the latter. It means that the boundary con-
ditions (36) and (37) are more general than the common 
scalar forms (28) and (29) which match with linear consti-
tutive relations’ accuracy. Lockerby et al. (2004) proposed 

(34)u − uwall = Cm

[
l

(
�u

�y

)

w

−
l2

2!

(
�2u

�y2

)

w

]
,

(35)T − Twall = Ct

[
l

(
�T

�y

)

w

−
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2!

(
�2T
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)

w

]
.

(36)u − uwall = −Cm

l

�
� − Cs

� − 1

�

Pr

p
Qx,

(37)T − Twall = −Ct

l

�
Qy,

Maxwell–Burnett boundary conditions based on above gen-
eral forms and Burnett constitutive relations. Reasonable 
agreement with experimental data for the Poiseuille flow 
was also achieved.

Based on the first-order Maxwell’s general boundary 
conditions (36) and (37), a set of nonlinear velocity slip 
and temperature jump boundary conditions has been pro-
posed to manifest nonlinear characteristics with the NCCR 
model on the wall (Myong 2011b, 2016). However, the 
effect of the second-order terms on the velocity slip and 
temperature jump components should be both taken into 
account when the flows are removed far away from equilib-
rium (Hsia and Domoto 1983; Lockerby and Reese 2008). 
Although the exact effect due to the second-order terms is 
not easy to assess, the ratio between the second-order and 
the first-order dimensionless terms may give preliminary 
evaluation of the relative magnitude, i.e.,

For the purpose of comparison only, the analytical 
NSF solutions to the constant-viscosity Couette flow can 
be used. For simplicity, take temperature profile (62) of 
Couette flow with the same wall temperature to deduce 
the ratio on the wall. The ratio defined by (38) becomes 
as follows:

It could be found that the ratio on the wall is nothing 
but the local Knudsen number, and the second-order effect 
on temperature component can no longer be neglected 
without justification especially when the local Knudsen 
number approaches unity. Furthermore, the second-order 
effect on velocity component is also kept to be examined 
in our present work.

Therefore, since the second-order H/D boundary condi-
tions are more physical than the second-order MS one, we 
propose a new enhanced form of the second-order NCCR-
based boundary conditions based on the former one:

Considering strong rarefaction effect would give rise to 
the heat flux along the solid surface in the micro-Couette 
flow, the thermal creep term is also taken into account in 
present work. The thermal creep coefficient Cs is recom-
mended to be 0.75 in general. All stress and heat flux at 
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Kn2
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/
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/
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.
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/
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(40)

u − uwall = Cm

[
l

−�
�NCCR +

l2

2�

��NCCR

�y

]
+ Cs

� − 1

�

Pr
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(
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)
,

(41)T − Twall = Ct

[
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−�
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2�

�QyNCCR

�y

]
.
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the right-hand side of Eqs. (40) and (41) are resolved itera-
tively from the nonlinear coupled constitutive relations 
(NCCR) near the wall.

4 � Numerical method

4.1 � Control equations for Couette flow

A schematic for the Couette flow is illustrated in Fig. 1, 
where two infinite solid walls with constant wall tempera-
tures TL and T0 are moving parallel to the x-direction with 
constant opposite speeds uL and u0 . The distance between the 
two plates is L and the degree of rarefaction effect is defined 
by the global Knudsen number as Kn = l∕L.

Actually, the micro-Couette flow is quasi-one-dimen-
sional for the linear NSF model, but includes multidimen-
sional effect on the stress tensor and heat flux in the NCCR 
model. Therefore, it could be considered as a two-dimen-
sional shear flow which is homogeneous in z-direction and 
its reserved non-conserved variables are given by

Note that a special motion feature induced by two infinite 
parallel plates in x-direction can lead to no variation of flow 
parameters along this direction under no pressure gradient, 
namely �∕�x = 0 . By combining the conservation law of 
mass, a simple relation v = 0 can be obtained. However, the 
velocity component v is still reserved in present work as a 
dummy unknown variable for the solution of the coupled 
system. Moreover, different from conventional steady meth-
ods solving the Couette flow, an unsteady time-marching 
strategy is established by introducing the time derivatives 
of conserved variables into the governing equations. The 
final convergent solution will approach to the steady result 

� =

⎡⎢⎢⎣

�xx �xy 0

�xy �yy 0

0 0 −�xx −�yy

⎤⎥⎥⎦
, � =

�
Qx, Qy, 0

�
.

after a long enough evolution time. The control equations 
can be summarized as

Actually, this numerical strategy avoids handling extra inte-
gration conditions, such as �yx = c1 and �yy + Δ + p = c2 , 
where c1 and c2 are unknown integration constants. Lockerby 
and Xue (Lockerby and Reese 2003; Xue et al. 2001) assumed 
that the constant is independent of the Kn number and had to 
take the pressure pNS at Kn = 0 as an approximated value of 
c2 in the study for the Burnett equations.

In present work, the dimensionless flow variables and prop-
erties are utilized as follows:

where the subscript L represents the gas property evaluated 
at the upper plate of the microchannel. � , �b and � denote 
the coefficients of viscosity, bulk viscosity and heat conduc-
tion. The asterisks denote dimensionless parameters and will 
be omitted below for notational brevity. Here, a composite 
number N� is defined as

After inserting the ideal gas equation of state into Eq. (42), 
unsteady-state evolution equations can be expressed in the fol-
lowing dimensionless form:

where

(42)
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.
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+ N��

��v

�y
= 0,

Fig. 1   Schematic of the micro-Couette flow
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A similar process for the simplification of the constitutive 
relations is conducted by reserving all terms including the 
velocity component v . As a result, the NCCR model for the 
micro-Couette flow is reduced to the following system of seven 
algebraic equations:

where

The nonlinear factor q
(
cR̂

)
 , defined as sinh

(
cR̂

)/
cR̂ , 

represents the physical effect of nonlinear energy dissipation 
occurring through molecular collisions. fb is the ratio of bulk 
viscosity to shear viscosity. If the inverse power law (46) is 
adopted for gaseous viscosity,

� =

⎡
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⎤
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(46)� =
5
(
mkBT∕�

)1∕ 2
8A2(�)�

[
4 − 2∕(� − 1)

] 1

d2
,

the constant c , given by

reduces to a function of the exponent � as

where �  is the gamma function and the values of function 
A2(�) can be obtained from Table 1.

Similarly we also do the scaling for our enhanced NCCR-
based boundary conditions. The dimensionless forms are 
divided into three parts of slip velocity and two parts of jump 
temperature so that the contribution of each term will be ana-
lyzed easily later, which can be rewritten as follows,

4.2 � Numerical solutions

In present work, the MacCormack method is adopted to discre-
tize Eq. (44) by forward differencing in a prediction step and 
backward differencing in a correcting step. Viscous term is 
recommended to be discretized by central difference schemes 
in both steps. A prediction step yields

The time derivative terms in Eq. (50) are utilized to com-
pute the estimated values of conserved variables at t + Δt as 
follows

And then a correcting step is taken by using the estimated 
values to calculate the values of time derivatives at t + Δt as
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Table 1   Values of A2(�) for the 
inverse power laws

� 5 7 9 11 15 21 25 ∞

A2(�) 0.436 0.357 0.332 0.319 0.309 0.307 0.306 0.333
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And then, all values of the stress and heat flux terms at 
n + 1 time step are updated through the interim parameter.

The whole iterative process is considered to be con-
verged according to the criteria |||R̂n+1 − R̂n

||| ≤ 10−5 . Before 

the iteration, the linear values of the non-conserved vari-
ables from the NSF model are assigned as the initial values 
for the stress and heat flux terms in Eqs. (58) and (59):

In order to accelerate above numerical convergence pro-
cess further, the analytical solutions of the linear NSF model 
to the conventional constant-viscosity and nonslip-jump 
Couette flow are adopted to provide initial conditions for 
the numerical computation

where the Mach numbers of the moving plates are defined as 
MaL = uL∕a , Ma0 = u0

/
a and a denotes the sound speed. 

Furthermore, to avoid the drastic change of the veloc-
ity slip and temperature jump values during the iterative 
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The average values of time derivatives can be obtained by

Finally, the values of conserved variables at t + Δt can be 
acquired by

The traditional time step in the NS equations is turned out 
to be stable and available for the NCCR model in the Couette 
flows as

At every time step of marching, an additional process is 
required to solve the nonlinear algebraic Eqs. (45) to obtain 
the stress and heat flux in the NCCR model. Note that 
there is a strong coupled relationship among these non-
conserved variables in Eq. (45). A computational strategy 
is utilized to merge the nonlinear coupled Eqs. (45) into 
one formulation through the Rayleigh–Onsager dissipation 
function R̂ which serves as an interim parameter below

where

An iterative method is adopted to solve the algebraic 
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computational process, a relaxation method (Bao et al. 2007; 
Lockerby and Reese 2003; Zhao 2014) is utilized for the wall 
boundary conditions as follows

where the relaxation factor Rf  is recommended as 2 × 10−6 
for all cases.

(63)urelaxation
s

= un
s
+ Rf

(
un+1
s

− un
s

)
,

(64)T relaxation
j

= Tn
j
+ Rf

(
Tn+1
j

− Tn
j

)
,

4.3 � Convergence and grid independence

Figure  2 shows convergence process of the computed 
temperature, velocities in x- or y-direction, density and 
pressure profiles by the NCCR model as time advances. It 
can be seen that all profiles converge to final steady result 
after 8n times the evolution time step. The deviation of 
temperature and velocity in x-direction profiles from linear 
NSF’s analytical solution implies that nonslip boundary 
conditions are no longer suitable for the micro-Couette 
flow at Kn = 0.1 . Notice that after a big perturbation at 
the beginning, the profile of velocity v finally converges 
to zero as theoretical deduction predicts. It proves that 

Fig. 2   Evolution of different variable profiles with time for the Couette flow ( Ma0 = − 0.74 , MaL = 0.74 , Kn = 0.1 , T0 = TL = 273 K , diatomic 
nitrogen gas). a Temperature, b velocity in x-direction, c velocity in y-direction, d density, e pressure
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the strategy of keeping velocity component v as a dummy 
unknown variable is practicable and reliable.

In present work, grid independence study is carried out 
before taking any investigations. Figure 3 shows the den-
sity and temperature profiles predicted by uniform Grid 
1 (20 grid points in y-direction), Grid 2 (100 grid points) 
and Grid 3 (500 grid points) across the domain. Notice that 

the Grid 2 and 3 give almost the same results while the 
Grid 1 yields obvious deviation for all profiles. It means 
that 100 grid points will be enough for the resolution of 
the current flow and could be used for the rest cases.

5 � Results and discussion

In this section, an important emphasis is placed on seeking 
for a well-posed wall boundary condition suitable for the 
NCCR model in confined flows. DSMC results are always 
used to assess the capability of hydrodynamic models as a 
canonical substitute due to the lack of reliable experimen-
tal data in microfluidics. The utility of three different wall 
boundary conditions, such as the Langmuir (LM) slip con-
ditions (26)–(27), the first-order Maxwell–Smoluchowski 
(M/S) slip conditions (28)–(29) and the enhanced NCCR-
based boundary conditions (40)–(41), is investigated firstly 
in this section. Figure 4 shows the comparison of velocity 
slip and temperature jump values obtained by the DSMC 
(Ejtehadi et al. 2013) and NCCR method using different 
boundary conditions for diatomic nitrogen gas. The viscos-
ity of gas is evaluated as

(65)� = �ref

(
T

Tref

)s

,

Fig. 3   Grid independence study test ( Ma0 = −0.74 , MaL = 0.74 , Kn = 0.1 , T0 = TL = 273K , diatomic nitrogen gas). a Density profile, b tem-
perature profile

Fig. 4   Variation of velocity slip and temperature jump nearest to 
the wall predicted by DSMC (dots) and NCCR model (lines) over a 
range of Knudsen numbers for the Couette flow ( u0 = −250 m∕ s , 
uL = 250 m∕ s , T0 = TL = 273 K , diatomic nitrogen)

Table 2   Physical gas properties 
of Nitrogen

� Pr R (J∕kg K) c fb Tref (K) �ref (Pa s) s

1.4 0.72 297 1.02029 0.8 273 1.656 × 10−5 0.74
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where s = 1∕2 + 2∕(� − 1) and � is the exponent of the 
inverse power laws. The gas properties of nitrogen used in 
computations are given in Table 2.

Fully diffuse reflection has been assumed on the wall with 
the tangential/thermal accommodation coefficient �u and �T 
equal to unity for diatomic cases. In Fig. 4, the values of veloc-
ity slip and temperature jump increase rapidly for Kn up to 
about 0.4, but the increase rate slows down as the Kn con-
tinues to increase. The solutions of the Langmuir (LM) slip 
conditions have weak agreement with the DSMC data while 
the other two show better quantitative approximation to some 
extent. Note that although Langmuir’s adsorption theory gives 
nice adsorption isothermal of the gas–surface interaction, it 
does not necessarily give good predication of the slip velocity 
and jump temperature. Comparing the detail profiles of the 
first-order M/S and our enhanced conditions, both of them 
provide good prediction for the slip across the full range of 
Knudsen numbers. However, the 1st-order M/S conditions will 
diverge rapidly from the temperature jump values predicted by 
DSMC after Kn = 0.25 , while our enhanced conditions still 
continue to provide close agreement with DSMC up to Kn = 1.

Furthermore, a noteworthy phenomenon can be seen in 
Fig. 4 that the first-order M/S for NCCR solution underpredict 
the jump temperature and overpredict the slip velocity while 
the enhanced boundary conditions slightly overestimate both 
the values. It is therefore much desirable to examine what part 
contributes most. A deep analysis has been done in Fig. 5 to 
see the specific contributions from these different parts in our 

enhanced NCCR-based boundary conditions (48)–(49). As is 
shown in Fig. 5, the 2nd-order term UB

slip
 and the thermal creep 

term UC
slip

 do not give too much influence on the slip compared 

to the 1st-order term UA
slip

 . But the 2nd-order term TB
jump

 in 

temperature jump starts making difference from the beginning 
of transition regime at Kn = 0.1 and reaches to the same order 
of magnitude of the 1st-order part TA

jump
 at about Kn = 0.9 . The 

2nd-order term TB
jump

 drives our enhanced temperature jump 

values move from the 1st-order M/S toward the DSMC solu-
tions, as is depicted in Fig. 4. This may be used to account for 
the reason why the change is more pronounced in temperature 
jump due to the enhanced BC and less in velocity slip com-
pared to the 1st-order M/S for such a simple flow. But on the 
whole, our enhanced NCCR-based boundary conditions dem-
onstrate better capability than the first-order M/S and LM 
boundary conditions, particularly for capturing the tempera-
ture jump on the solid surface over a large range of transition 
regime.

In order to demonstrate the capability of above wall bound-
ary conditions again in the monatomic NCCR model, the flow 
profiles of macroscopic variables along the y-direction are also 
compared in argon gas flows. The viscosity of argon is com-
puted by Sutherland’s law as

(66)� = �ref

(
T

Tref

)1.5
Tref + Ts

T + Ts
.

Fig. 5   Comparison of the contributions from different parts of the enhanced boundary conditions with the 1st-order M/S over a range of Knud-
sen numbers for the Couette flow ( u0 = − 250 m∕ s , uL = 250 m∕ s , T0 = TL = 273 K , diatomic nitrogen)

Table 3   Physical gas properties 
of Argon

� Pr R (J∕kg K) c fb Tref (K) �ref (Pa s) T
s
(K)

1.667 0.667 208 1.0179 – 273 2.125 × 10−5 144
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The other properties of argon used in computations are 
given in Table 3.

Attention should be paid on the variation of the general 
NCCR model (45) for monatomic gases with the excess nor-
mal stress Δ = 0 , which is given by

(67)

q
�
cR̂

�
⎡⎢⎢⎢⎢⎢⎢⎣

𝛱̂xx

𝛱̂yy

𝛱̂zz

𝛱̂xy

Q̂x

Q̂y

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
1 + 𝛱̂yy

�
𝛱̂

vy

xx0
+ (4∕3)𝛱̂xy𝛱̂

uy

xy0�
1 + 𝛱̂yy

�
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�
Pr

�
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�
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Fig. 6   Temperature profiles over a range of Knudsen numbers in the micro-Couette flow ( u0 = −50 m∕ s , uL = 50 m∕ s , T0 = TL = 273 K , mon-
atomic argon gas)
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and the related bulk viscosity is no longer considered. Over-
all, the computation of the monatomic NCCR model (67) 
shares similar process with the formulas (56)–(60).

Figure 6 shows the predicted temperature profiles of 
the argon gas flows for Kn = 0.012, 0.1, 0.25, 0.5, 0.75 
and 1.0 . The DSMC and R13 results used as comparisons 
are obtained from Gu and Emerson’s simulations (Gu and 
Emerson 2007, 2009). The NCCR solutions are acquired by 
employing above three different wall boundary conditions, 

and the linear NSF equations are also solved with the 1st-
order M/S conditions. Comparing their influence on the 
monatomic NCCR model, the LM boundary conditions 
consistently underestimate the temperature jump in the tran-
sition regime except the continuum regime at Kn = 0.012 . 
It should also be pointed out that subject to the low-order 
characteristics, the 1st-order M/S conditions do not dis-
tinguish the nonlinear high-order capability of the NCCR 
model from the linear NSF model for Kn above 0.25 , as 

Fig. 7   Velocity profiles over a range of Knudsen numbers in the micro-Couette flow ( u0 = − 50 m∕ s , uL = 50 m∕ s , T0 = TL = 273 K , mona-
tomic argon)
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shown in Fig. 6c–f. The enhanced NCCR-based condi-
tions yield good results in better agreement with tempera-
ture jump values on the wall predicted by DSMC than the 
other two wall boundary conditions. Moreover, the R13 and 
NCCR profiles are closer to the DSMC data than the linear 
NSF results, although their results start to diverge from the 
DSMC profiles at Kn = 0.25 with the R13 overestimating 
and the NCCR underestimating the temperature in the cen-
tral region of the Couette flow.

Since the improvement of the NCCR results by the 
enhanced boundary conditions is pronounced in above 
results, the capability still deserves to be investigated more 
carefully. The computed profiles of tangential velocity, nor-
mal heat flux and shear stress by DSMC, R13, NSF and 
NCCR models are presented in Figs. 7 and 8. Considering 
the symmetry characteristic, only upper-half distributions of 
the heat flux and shear stress in the flow is plotted in Fig. 8. 

At Kn = 0.012 and 0.1 , Figs. 7a, b and 8a show that the 
R13, NCCR and NSF models all yield tangential velocity, 
normal heat flux and shear stress in excellent agreement with 
the DSMC results. However, as the degree of rarefaction is 
increased, some non-negligible discrepancies turn up with 
all three models underestimating the normal heat flux and 
overestimating the velocity slip as well as the shear stress. 
In the transition regime, the predicted velocity profiles from 
the DSMC approach indicate an underlying non-equilibrium 
phenomenon (nonlinear velocity profile) in the micro-Cou-
ette flow, as illustrated in Fig. 7d–f. Unfortunately, all three 
models including the R13, NCCR and NSF fail to capture 
this special feature of the velocity profile. But on the whole, 
the values including the velocity and heat flux predicted 
by the R13 and NCCR models are closer to DSMC results 
than those by NSF model. It is also worthwhile mentioned 
that the NCCR yields close results with the R13 for these 

Fig. 8   Predicted profiles of normal heat flux and shear stress in the micro-Couette flow ( u0 = − 50 m∕ s , uL = 50 m∕ s , T0 = TL = 273 K , mona-
tomic argon)
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profiles. Remembering that NCCR serves as similar consti-
tutive relations to close the original five conserved moments 
rather than the evolution equations of 13 moments as the 
R13 equations, it is acceptable and admired to obtain the 

consistent capability with R13 from the NCCR model under 
the limit of less degree of freedom. Figure 8 also presents 
constant shear stresses across the domain for the planar Cou-
ette flow. The deviation between the three continuum-based 
hydrodynamic models and the DSMC method is enlarging 
as the flow departures from the thermal equilibrium with 
about 7% overestimation at Kn = 0.25, 0.5 and 9% overes-
timation at Kn = 1.0 . Because the current NCCR model is 
reduced from Eu’s generalized hydrodynamic equations with 
simplifications, it indicates the necessity for improving this 
model further, which has been our ongoing research content.

Moreover, hard-sphere and Maxwell gas flows are also 
investigated in order to further pry into the potential of 
the combination of the 2nd-order non-Newton–Fourier 
model (NCCR) with our enhanced NCCR-based conditions 
on the description of the underlying mechanisms in the 
Knudsen layer. The viscosities of the hard-sphere ( s = 0.5 , 
c = 1.1908 ) and Maxwell molecules ( s = 1.0 , c = 1.0138 ) 
are evaluated by the inverse power laws (65). And other ref-
erence properties used in computations are given in Table 4. 
In Figs. 9 and 11, the slip and jump coefficients are adjusta-
ble to be assumed as Cm = 0.8 , Ct = 2.25 for both continuum 
theories as the best fit to the DSMC solutions (Bird 1994) 
with diffusive wall conditions.

As shown in Fig. 9, the tangential heat flux without the 
presence of temperature gradient, namely non-gradient-
transport mechanism, turns up for the hard-sphere gas in 
the micro-Couette flow. The NCCR model is able to capture 
this significant non-equilibrium phenomenon in quantitative 
agreement with the DSMC results (Marques and Kremer 
2001; Myong 2016), even although both the linear NSF and 
the nonlinear model (NCCR) could predict the normal heat 
flux quite well. Similar phenomena can also be found for the 

Table 4   Physical gas properties of the hard-sphere and Maxwell 
gases

� Pr R (J∕kg K) fb Tref (K) �ref (Pa s)

1.667 0.667 208.16 – 300 2.272 × 10−5

Fig. 9   Predicted profiles of tangential and normal heat fluxes 
Qx,y

/
pL∕ 2uL in the micro-Couette flow ( Ma0 = − 1.0 , MaL = 1.0 , 

T0 = TL = 273 K , Kn = 0.25 , hard-sphere molecule)

Fig. 10   Predicted profiles of tangential and normal heat fluxes Qx,y

/
pL∕ 2uL in the micro-Couette flow ( Ma0 = − 0.8 , MaL = 0.8 , 

T0 = TL = 273K , Kn = 0.1 , 1.0 , Maxwellian molecules)
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Maxwellian gas at the upper limit of slip regime ( Kn = 0.1 ) 
and in transition regime ( Kn = 1.0 ), as illustrated in Fig. 10. 
Myong’s analytical solutions (Myong 2016) to NCCR model 
are also presented in comparison with our numerical solu-
tions in Figs. 10 and 11. It could be found that our solutions 
are in qualitative agreement with those from Myong’s, which 
indicates that our numerical strategy could provide another 
practicable and efficient option of resolving the NCCR 
model. The slight difference in normal and shear stresses 
implies a significant improvement, which can be explained 
by the different wall boundary conditions adopted. It also 
means that the enhanced boundary conditions are well-fit 
to the NCCR model. It is also worthwhile mentioning that 
another significant non-equilibrium feature highlighted in 
Fig. 11 is the nonzero values of the normal components of 
stress �xx and �yy for the planar Couette flow in the states 
away from thermal equilibrium. The NCCR model is capable 
of predicting this characteristic of the non-equilibrium flow, 

while the linear NSF model describes none of the abnor-
mal non-equilibrium properties. In contrast, the shear stress 
predicted by the NCCR model is closer to that from DSMC 
solution than that by the linear NSF laws, as illustrated 
in Fig. 11. Overall, all the behavior of the NCCR model 
in conjunction with the enhanced boundary conditions in 
depicting the underlying mechanism of the Knudsen layer 
demonstrates its outstanding capability and indicates a bet-
ter choice than the linear NSF model with the 1st-order M/S 
conditions for non-equilibrium flows.

Last but not least, a quick comparison of our self-con-
tained numerical solution by NCCR model with the analyti-
cal solutions (Singh et al. 2014) by other well-known non-
Newton–Fourier models such as Augmented Burnett, Super 
Burnett and R13 equations, is done in Fig. 12, where the 
zoomed view in velocity profiles in Knudsen layer near the 
wall has been plotted. These analytical solutions for kn = 0.3 
start deviating from the beginning of Knudsen layer at the 

Fig. 11   Predicted profiles of normal and shear stresses �xx,yy,xy

/
pL∕ 2 in the micro-Couette flow ( Ma0 = − 0.8 , MaL = 0.8 , T0 = TL = 273 K , 

Kn = 0.1 , 1.0 , Maxwellian molecules)
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location Y∕L = 0.7 , while the NCCR solution follows the 
DSMC data up to about Y∕L = 0.93 . The maximum devia-
tion among these models is found to be nearly 18% in Aug-
mented Burnett profile. In general, NCCR model performs 
better compared to these models.

6 � Conclusions

The paper has presented a numerical strategy of the NCCR 
model reduced from Eu’s generalized hydrodynamic equa-
tions for the micro-Couette flow and the contrastive analy-
sis of the influence of three wall boundary conditions (the 
1st-order M/S, Langmuir slip and NCCR-based model) 
employed for this model. It is clear from the contrastive 
results that both the 1st-order M/S boundary conditions and 
the Langmuir slip conditions fail to keep the same accuracy 
with the 2nd-order NCCR model. Subject to their low-order 
accuracy, the NCCR model’s potential in the confined flows 
fails to be expressed near the wall. However, the utiliza-
tion of the enhanced NCCR-based boundary conditions has 
brought significant improvements for both diatomic and 
monatomic gases, particularly in describing the temperature 
profiles across the domain and the exact value of tempera-
ture jump on the wall. Furthermore, the significance of the 
2nd-order temperature jump term in boundary conditions is 
manifested, while the 2nd-order slip term and the thermal 
creep term are less important in micro-Couette flow.

The capability of the combination of this non-New-
ton–Fourier model with the enhanced NCCR-based bound-
ary conditions has also been investigated further for both 

Maxwell and hard-sphere gas. The computational results of 
the micro-Couette flow show that the combination can not 
only recover the linear NSF solution in continuum regime, 
but also performed much better than the NSF model, even 
some Burnett-type equations for the prediction of the Knud-
sen layer in transition regimes at large Knudsen numbers 
above 0.1. Overall, the present NCCR model is capable of 
capturing the nonzero normal stress and tangential heat flux 
phenomena of the Knudsen layer in transition regimes in 
qualitative agreement with DSMC and higher-order moment 
methods such as R13 equations. Notice that the present 
numerical solutions of the NCCR model are self-contained 
in the sense that there is no need for adjustment to obtain 
reasonable results by using external results from DSMC or 
experiments, which is founded in many previous studies (Gu 
and Emerson 2007; Lockerby and Reese 2003; Xue and Ji 
2003). Therefore, the present results obtained by the NCCR 
model are fairly practical under the consideration of com-
putational efficiency.

Certainly, some limitations are also observed in the cur-
rent model during the analysis because it does not contain 
the evolutional terms of the higher-order non-conserved 
moments as other moment methods do. Regardless of the 
well-pleasing results that have been obtained, improving 
research is still necessary in our further work.
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