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Abstract
The time-dependent isothermal fully developed rarefied gas flow in a circular tube driven by harmonically oscillating pres-
sure gradient is investigated, based on the linearized unsteady BGK kinetic model equation. The flow is characterized by 
the gas rarefaction parameter, which is proportional to the inverse Knudsen number and the oscillation parameter, defined as 
the ratio of the collision frequency over the pressure gradient oscillation frequency. Computational results of the amplitude 
and the phase angle of the flow rates and the velocity distributions, as well as of the periodic time evolution of these mac-
roscopic quantities, are provided, covering the whole range of the two parameters. The kinetic results properly recover the 
limiting solutions in the slip and free molecular regimes for low- and high-speed oscillations. At low frequencies, the time-
dependent flow becomes quasi-steady and gradually tends to the corresponding steady-steady one, which is reached faster 
when the flow is more rarefied. As the frequency is increased, the amplitude of the macroscopic quantities is decreased and 
their phase angle lag with respect to the pressure gradient is increased approaching asymptotically the limiting value of �∕2 . 
In terms of the gas rarefaction, there is a non-monotonic behavior and the maximum flow rate amplitude may be observed 
at some intermediate value of the gas rarefaction parameter depending upon the oscillation parameter. At high frequencies, 
the flow consists of an inviscid piston flow in the core and the frictional Stokes wall layer with a velocity overshoot. These 
effects, well known in the viscous regime, are also present here in the transition regime and depend on both the gas rarefac-
tion and oscillation parameters. As the gas rarefaction is increased, higher oscillation frequencies are needed to trigger these 
phenomena. Oscillatory rarefied flows are of main interest in sensors, controllers and resonators, which may be present in 
various microfluidic applications (e.g., microcooling, microseparators and micropropulsion).
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1 Introduction

Time-dependent fully developed rarefied gas flows driven by 
harmonically oscillating boundaries have attracted consider-
able attention mainly due to their applicability in a variety of 
microelectromechanical systems (MEMS) and particularly in 
resonating filters, sensors and actuators (Ho and Tai 1998; Vei-
jola and Turowski 2001; Kandlikar 2006; Frangi et al. 2007). 
The research work includes shear driven flows and sound prop-
agation in half space (Sharipov and Kalempa 2007), between 
parallel plates (Park et al. 2004; Hadjiconstantinou 2005; 
Sharipov and Kalempa 2008; Kalempa and Sharipov 2009; 

Manela and Pogorelyuk 2014) and in rectangular cavities (Wu 
et al. 2014), as well as in nonplanar geometries (Emerson et al. 
2007). The accurate computation of the damping forces in the 
narrow gaps between moving microstructures is of major 
importance in order to control the resolution and sensitivity 
of the signal and to enhance the acoustic transduction or even 
to achieve “acoustic cloaking” (Manela and Pogorelyuk 2014).

The flow parameters characterizing oscillatory rarefied 
gas flows include the level of gas rarefaction and the oscilla-
tion frequency. To have reliable solutions in the whole range 
of gas rarefaction with arbitrary oscillation frequencies, a 
kinetic type approach must be applied (Cercignani 1988). 
Since the direct solution of the Boltzmann equation (BE) is 
computationally expensive, the flow is modeled stochasti-
cally via the direct simulation Monte Carlo (DSMC) method 
(Bird 1994) or deterministically by introducing kinetic 
model equations (Βhatnagar et  al. 1954; Holway 1966; 
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Shakhov 1968), which are numerically solved in an efficient 
and accurate manner (Sharipov 2016). Both approaches have 
been successfully applied. More specifically, the DSMC 
approach is applied in (Park et al. 2004; Hadjiconstanti-
nou 2005; Manela and Pogorelyuk 2014; Emerson et al. 
2007) and the linearized Bhatnagar–Gross–Krook (BGK) 
model in (Frangi et al. 2007; Sharipov and Kalempa 2007; 
Sharipov and Kalempa 2008; Kalempa and Sharipov 2009) 
(in (Wu et al. 2014), the linearized BE is solved). In the latter 
approach, the velocity amplitude of the oscillating plate is 
assumed to be adequately small so that the governing equa-
tions can be linearized. No restriction is applied to the oscil-
lation frequency which may be arbitrary. Also, in most cases 
first- and second-order slip results are reported validating the 
kinetic solutions at the hydrodynamic limit.

The corresponding time-dependent fully developed rare-
fied gas flow driven by harmonically oscillating or pulsating 
pressure, which may be realized by a periodically moving 
piston or membrane, has received much less attention. The 
available work is very limited, and simulations have been 
presented only in the slip regime in an effort to model pneu-
matic actuators for pressure sensors (Caen and Colin 1992; 
Colin et al. 1998) and boundary layer flow controllers in 
order to improve vehicle stability (Batikh et al. 2008; Wang 
et al. 2014). This Poiseuille-type oscillatory flow may be 
also introduced in other applications related to fluidic reso-
nators and oscillators including microcooling, measuring 
devices, microseparators and micropropulsion.

Of course, in the hydrodynamic limit, this is a classi-
cal problem and may be analytically solved by applying the 
unsteady Stokes equation subject to no-slip boundary condi-
tions (oscillatory Poiseuille flow in channels and pipes) (Schli-
chting and Gersten 2017; White 1974; Zamir 2000). In spite 
of its simplicity however, interesting findings for the velocity 
field in terms of the oscillation speed have been reported. For 
small oscillation frequencies, the velocity distribution has the 
same phase as the pressure gradient, while for large oscilla-
tion frequencies the velocity lags the pressure gradient by 90°. 
Furthermore, in the latter case the flow consists of the inviscid 
piston flow core layer and the viscous Stokes wall layer. In 
addition, the time average of the velocity square exhibits its 
maximum within the Stokes layer and not, as expected, in the 
center of the core, which is well known as the “Richardson 
annular effect” (Schlichting and Gersten 2017; White 1974; 
Zamir 2000). Oscillating and pulsating pressure gradient flows, 
due to their theoretical and technological interest, remain an 
active area of research even in the hydrodynamic regime using 
continuum-based flow models (Tsangaris and Vlachakis 2003; 
Majdalani 2008; Blythman et al. 2016). However, it is clear 
that the continuum approach is valid under the provisions 
that both the mean free path and time are much smaller than 
the distance between the plates and the reference oscillating 
time, respectively. If either of these restrictions is violated, the 

problem must be tackled via kinetic theory [e.g., in low-pres-
sure chemical vapor deposition, the Richardson annular effect 
may cause anomalous solid formation (Abreu et al. 1994)].

In this context, the present work is devoted to the kinetic 
solution of the rarefied gas flow in a circular tube due to har-
monically oscillating pressure gradient imposed in the longitu-
dinal direction. The periodic flow is investigated by numerically 
solving the time-dependent linearized Bhatnagar–Gross–Krook 
(BGK) kinetic equation subject to diffuse boundary conditions. 
Detailed results of the amplitude and the phase of the bulk veloc-
ity and the flow rate are provided in terms of the reference gas 
rarefaction parameter and the ratio of the intermolecular colli-
sion frequency over the externally imposed oscillation frequency 
of the pressure gradient. The time evolution of the macroscopic 
quantities over an oscillation period is presented. The limiting 
solutions in the free molecular and hydrodynamic limits for very 
low and high oscillation frequencies are also discussed.

2  Flow configuration

Consider the isothermal flow of a monatomic rarefied gas 
through an infinite long circular tube of radius R . Let z′ be 
the coordinate along the tube axis and r� ∈ [0,R] the radial 
distance from the center. The flow is caused by an externally 
imposed oscillatory pressure gradient of the form

where ℝ denotes the real part of a complex expression, 
i =

√
−1 , t′ is the time independent variable, dP

(
z�
)
∕dz� is 

the amplitude of the oscillating pressure gradient and � is 
the oscillation (cyclic) frequency. The flow is assumed fully 
developed, and therefore, the pressure distribution P̃

(
z′, t′

)
 is 

independent of r′ , i.e., spatially varies only in the flow direc-
tion. The oscillatory pressure gradient yields an unsteady 
gas flow in the z�− direction, which depends harmonically 
on time, and it is characterized by its bulk velocity given by

where U
(
r′
)
 is a complex function completely determining 

the oscillatory pressure driven flow. For � = 0 , the well-
known stationary cylindrical Poiseuille flow is deduced. It 
is clear from Eqs. (1) and (2) that in general the pressure 
gradient and velocity are not in phase with each other.

The flow parameters defining the problem are the gas 
rarefaction parameter � and the dimensionless oscillation 
frequency � (Sharipov and Kalempa 2008). The first one is 
the same as in steady-state configurations, and it is given by

(1)

dP̃
(
z�, t�

)
dz�

=
dP

(
z�
)

dz�
cos

(
𝜔t�

)
= ℝ

[
dP

(
z�
)

dz�
exp

(
−i𝜔t�

)]
,

(2)̃U
(
t�, r�

)
= ℝ

[
U
(
r�
)
exp

(
−i𝜔t�

)]
,

(3)� =
PR

��

,
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where � is the gas viscosity at some reference temperature 
T  and � =

√
2RgT  is the most probable molecular speed 

( Rg = kB∕m , with kB denoting the Boltzmann constant and 
m the molecular mass, is the gas constant). The rarefaction 
parameter is proportional to the inverse Knudsen number. 
The second one is the ratio of the intermolecular collision 
frequency � = P∕� , over the oscillation frequency �:

Hence, small and large values of � correspond to high- and 
low-pressure gradient oscillation, respectively. The two 
parameters are independent of each other.

At this point, it may be useful to point out that the Strou-
hal number (also known as the ballistic Stokes number), 
which is commonly applied in oscillatory flows, is related 
to the � and � parameters as follows: St = (�R)∕� = �∕� . 
Also, it is readily found that the Stokes number � (or the 
kinetic Reynolds number �2 ), which is a measure of viscous 
versus unsteady effects in oscillatory flow, may be written 
as � = R

√
��∕� = �∕

√
2� . For the purposes of the present 

work however, it is more convenient parametrizing the prob-
lem in terms of � and � , instead of replacing both of them 
with one of these classical fluid mechanics numbers, because 
it is easier to uncouple and separately investigate the effects 
due to gas rarefaction and oscillation frequencies. Also, the 
limiting solutions are identified more clearly.

Here, the flow is solved in the whole range of the two 
parameters, which may vary from zero to infinity. The flow 
is in the hydrodynamic and slip regimes when both 𝛿 ≫ 1 
and 𝜃 ≫ 1 , i.e., when both the equivalent mean free path 
is small compared to the tube radius R and the collision 
frequency is much higher than the oscillation frequency � 
(Sharipov and Kalempa 2008). In these regimes, the solution 
is based on the unsteady Stokes equation with either no-
slip or slip boundary conditions. In all other cases including 
the limiting regimes for 𝛿 ≪ 1 (free molecular regime) and 
𝜃 ≪ 1 (high-speed oscillation regime), the solution is based 
on the linearized BGK kinetic model equation.

Next, it is convenient to introduce the dimensionless inde-
pendent variables

as well as the dimensionless amplitude of the local pressure 
gradient defined as

with the assumption of XP << 1 . This assumption is typi-
cal in fully developed flows (also in steady-state setups), 
in order to permit the linearization of the governing kinetic 
equation (Sharipov 2016).

The dimensionless complex velocity distribution

(4)� =
P

��

.

(5)x = x�∕R, z = z�∕R and t = t��,

(6)XP =
R

P

dP

dz�

is also introduced. The subscripts Re and Im denote the real 
and imaginary parts, while the subscripts A and P denote 
the amplitude and the phase of the complex velocity. Then, 
the dimensionless time-dependent velocity distribution is 
accordingly defined as

It is evident that both uA(r) and uP(r) are of main importance 
in determining the flow behavior and they will be computed 
in terms of the two main parameters, � and � , fully defining 
the flow.

In addition, the mass flow rate is also of major practical 
importance. It is defined as

where

with � denoting the mass density. Introducing the dimen-
sionless quantities defined in Eqs. (6–8) in Eq. (10) and 
implementing the equation of state P = ��

2∕2 result in 
Ṁ = 𝜋R2PXPG∕𝜐 , where

The dimensionless flow rate G may be written in com-
plex notation as

where its real GRe and imaginary GIm parts, as well as its 
amplitude GA and phase GP , may be computed by integrating 
the corresponding velocity distributions in Eq. (7). The time-
dependent form of the dimensionless flow rate is given by

It is expected that as � → 0 (or � → ∞ ), the imaginary 
parts of the macroscopic quantities are gradually dimin-
ishing and the solution tends toward the steady-state one.

(7)u(r) =
U
(
r�
)

XP�
= uRe(r) + iuIm(r) = uA exp

(
iuP

)

(8)

ũ(r, t) =
Ũ
(
r�, t�

)
XP𝜐

= ℝ
[
u(r) exp (−it)

]

= ℝ
[
uA(r) exp

[
i
(
uP(r) − t

)]]
= uA(r) cos

[
t − uP(r)

]

(9)̃̇M
(
t�
)
= ℝ

[
̇M exp

(
−i𝜔t�

)]

(10)Ṁ = 2𝜋𝜌

R

∫
0

U
(
r�
)
r�dr�

(11)G = 4

1

∫
0

u(r)r dr.

(12)
G(�, �) = GRe(�, �) + iGIm(�, �) = GA(�, �) exp

[
iGP(�, �)

]
,

(13)
G̃(t, 𝛿, 𝜃) = ℝ

[
G exp (−it)

]
= ℝ

[
GA exp

[
i
(
G

P
− t

)]]
= GA(𝛿, 𝜃) cos

[
t − GP(𝛿, 𝜃)

]
.
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3  Kinetic formulation and numerical scheme

For arbitrary values of the parameters � and � , the flow may 
be simulated at the kinetic level by the time-dependent BGK 
kinetic model equation (Bird 1994; Sharipov 2016), which 
for the present axisymmetric 

(
r′, z′

)
 setup may be written as 

(Sharipov 2016; Pantazis and Valougeorgis 2013) 

Here, f̃ = f̃
(
t�, r�, �

)
 is the unknown distribution function, 

� =
(
�r, ��, �z

)
 is the molecular velocity vector, � ∈ (0, 2�) 

is the corresponding angle in the r� − � plane, P∕� is the 
collision frequency, and

is the local Maxwellian distribution. Due to the assumption 
of isothermal fully developed flow, the temperature T is con-
stant and the number density n varies only in z�− direction. 
Also, the macroscopic velocity Ũ

(
t′, r′

)
 is defined by Eq. (2) 

and may be obtained by the first moment of the distribution 
function according to

Due to the condition of very small local pressure gradient 
( XP ≪ 1 ), the unknown distribution function is linearized as

where � = �∕�, f0 =
n

�
3∕2

�
3
exp

[
−c2

]
 is the absolute Max-

wellian and h̃(t, r, c) is unknown perturbed distribution func-
tion. Substituting expression (17) into Eq. (14) and introduc-
ing the dimensionless variables as defined in Eqs. (5) and 
(6) yields the time-dependent linearized BGK kinetic model 
equation

Here, � and � are defined by Eqs. (3) and (4), respectively, 
while ũ(r, t) is the dimensionless time-dependent velocity dis-
tribution given in Eq. (8).

Next, it is convenient to introduce the complex distribution 
function h(r, c) so that

Also, the molecular velocity vector � =
(
cr, c�, cz

)
 is trans-

formed as � =
(
� ,�, cz

)
 , where cr = � cos� and c

�
= � sin� . 

Then, Eq. (18) is rewritten in terms of h as

(14)
𝜕
̃f

𝜕t�
+ 𝜉r

𝜕
̃f

𝜕r�
−

𝜉
𝜑

r�
𝜕
̃f

𝜕𝜑

+ 𝜉z

𝜕
̃f

𝜕z�
=

P

𝜇

(
f M − ̃f

)
.

(15)f M = n
(

m

2𝜋kT

)3∕2

exp
[
−m

[
� − Ũ

(
t�, r�

)]2/
(2kT)

]

(16)Ũ
(
t�, r�

)
=

1

n ∫ 𝜉zf̃
(
t�, r�, �

)
d�.

(17)̃f
(
t�, r�, �

)
= f0

[
1 + XP

̃h(t, r, c) + XPz exp (−it)
]
,

(18)
𝛿

𝜃

𝜕
̃h

𝜕t
+ cr

𝜕
̃h

𝜕r
−

c
𝜑

r

𝜕
̃h

𝜕𝜑

+ cze
−it = 𝛿

(
2czℝ(ũ) − h̃

)
.

(19)̃h(t, r, c) = ℝ
[
h(r, c) exp (−it)

]
.

(20)� cos�
�h

�r
−

� sin�

r

�h

��

+ h
(
� −

�

�

i
)
+ cz = 2�czu,

where the macroscopic velocity is given by

At this stage, the z− component of the molecular veloc-
ity vector may be eliminated by applying the so-called pro-
jection procedure and introducing the reduced distribution 
function

Equation (20) is multiplied by cz exp
�
−c2

z

�
∕
√
� , and the 

resulting equation is integrated over cz to deduce

where u(r) is defined by Eq. (7) and it is computed from the 
reduced distribution function according to

It is noted that Y = YRe + iYIm is complex and obviously 
and the same applies for u (see Eq. (7)). Equation (23) is 
the governing kinetic equation, and it is valid in the whole 
range of � and �.

Turning now to the boundary conditions, it is noted that 
purely diffuse scattering is assumed at the wall, i.e., f + = f M

w
 , 

where the superscript (+) denotes particles departing from 
the wall and f M

w
 is the Maxwellian distribution defined by 

the wall conditions. Based on the above and following the 
linearization and projection procedures, it is readily deduced 
that the wall boundary ( r = 1 ) is given by

At the symmetry axis ( r = 0 ), molecules are reflected 
specularly, i.e.,

The flow setup is now properly defined by Eq. (23) with 
the associated condition (24) subject to boundary conditions 
(25) and (26). For each pair of input parameters � and � , the 
complex velocity u(r) and the corresponding complex flow 
rate G , given by Eq. (11), are computed.

The numerical solution is deterministic. The discretiza-
tion in the molecular velocity space is performed using 
the discrete velocity method. The continuum spectrum 
� ∈ [0,∞) is substituted by a discrete set �m,m = 1, 2,… ,M , 
which is taken to be the roots of the Legendre polynomial of 

(21)u(r) =
1

�

∞

∫
−∞

2�

∫
0

∞

∫
0

czhe
−c2d�d�dcz.

(22)Y(r, � ,�) =
1

�

∞

∫
−∞

h
(
r, � ,�, cz

)
exp

[
−c2

z

]
dcz.

(23)� cos�
�Y

�r
−

� sin�

r

�Y

��

+
(
� − i

�

�

)
Y = �u +

1

2
,

(24)u(r) =
1

�

2�

∫
0

∞

∫
0

Ye−�
2

�d�d�.

(25)Y(1, 𝜁 ,𝜑) = 0,𝜋∕2 < 𝜑 < 3𝜋∕2.

(26)
Y(0, 𝜁 ,𝜑) = Y(0, 𝜁 ,𝜑 − 𝜋), 0 < 𝜑 < 𝜋∕2, 3𝜋∕2 < 𝜑 < 2𝜋.
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order M , accordingly mapped from [−1, 1] to [0,∞) . Also, a 
set of discrete angles �n, n = 1, 2,… ,N , equally spaced in 
[0, 2�] , is defined. The discretization in the physical space is 
based on a second-order central difference scheme by divid-
ing the distance r ∈ [0, 1] into L segments. The discretized 
equations are solved in an iterative manner. The iteration 
map is concluded when the following criteria are fulfilled:

Here, the superscript k denotes the iteration index, uRe,i 
and uIm,i are the real and imaginary part of macroscopic 
velocity, respectively, at each node i , and � is the tolerance 
parameter. This numerical scheme has been extensively 
applied in steady-state and time-dependent flow configura-
tions with considerable success (Pantazis and Valougeor-
gis 2013; Lihnaropoulos and Valougeorgis 2011; Buchina 
and Valougeorgis 2012). In general, the number of itera-
tions required for convergence is increased as either � or 
� are increased. The most computationally intensive cases 
are when both flow parameters are large and the flow is in 
the slip and hydrodynamic regimes. The numerical param-
eters have been gradually refined to ensure grid independent 
results up to at least three significant figures.

Closing this section, it is interesting to comment on the 
behavior of Eq. (23) at limiting values of � or � . As � → ∞ 
( � = 0 ) and 𝛿 << 𝜃 (finite values of � ), Eq. (23) is reduced 
to the one describing the steady-state cylindrical Poiseuille 
rarefied gas flow at the corresponding � . In the specific case 
of � = 0 with 𝜃 > 0 , the kinetic equation for steady-state 
flow at the free molecular limit is recovered. At the other 
end, as � → 0 ( � → ∞ ), Eq. (23) yields Y → 0 , i.e., the solu-
tion tends to vanish at very high frequencies due to fluid 
inertia. It is expected this behavior at the limiting conditions 
to be also present in the numerical solution.

4  Hydrodynamic and slip regimes

At the hydrodynamic and slip regimes, the oscillatory fully 
developed flow is defined by the z− momentum equation 
(White 1974; Zamir 2000) 

where the pressure gradient dP̃
(
z�, t�

)
∕dz� is defined by 

Eq.  (1) and the bulk velocity Ũ(j)
(
t�, r�

)
 , with j = H, S , 

denoting the hydrodynamic and slip solutions, is defined 
by Eq. (2).

Introducing the dimensionless quantities (5–8), along 
with the definitions (3) and (4), Eq. (28) is rewritten in 
dimensionless form in terms of the present notation as

(27)|||u
(k+1)

Re,i
− u

(k)

Re,i

||| < 𝜀 and
|||u

(k+1)

Im,i
− u

(k)

Im,i

||| < 𝜀, i = 1, 2,… , L + 1.

(28)𝜌

𝜕Ũ(j)

𝜕t
�

= −
dP̃

dz
�
+ 𝜇

(
𝜕
2Ũ(j)

𝜕r
�2

+
1

r
�

𝜕Ũ(j)

𝜕r
�

)
,

Here, u(j) = u(j)(r) is the complex hydrodynamic or slip 
velocity, and it may be written in the form of Eq. (7), as 
u(j)(r) = u

(j)

Re
(r) + iu

(j)

Im
(r) = u

(j)

A
(r) exp

[
iu

(j)

P
(r)

]
 ,  j = H, S  . 

Then, integrating the velocity distribution over the cross sec-
tion, according to Eq.  (11), the complex flow rate, 
G(j) = G

(j)

Re
+ iG

(j)

Im
= G

(j)

A
exp

(
iG

(j)

P

)
 , j = H, S , is recovered. 

Equation (29) is valid in the hydrodynamic and slip regimes, 
and in practice, it may be applied for large values of � and �.

In the hydrodynamic regime ( j = H ), the associated 
boundary conditions include the axi-symmetry condition at 
r� = 0 and the no-slip condition at r� = R , written as

Equation (29) subject to boundary conditions (30) is ana-
lytically solved to yield the velocity distribution and the flow 
rate in the hydrodynamic regime (White 1974; Zamir 2000):

Here, J0 and J1 are the Bessel functions of the first kind of 
zero and first order, respectively.

In the slip regime ( j = S ), the axi-symmetry boundary 
condition at r� = 0 remains the same, while at the wall the 
slip boundary condition is introduced (Sharipov 2016):

The viscous slip coefficient �P = 1.016 is known, and it is 
computed by solving the corresponding half-space viscous 
slip flow setup (or Kramers problem) based on the linearized 
BGK model equation (Sharipov 2016). Equation (29) subject 
to boundary conditions (33) is analytically solved to yield 
the velocity distribution and flow rate in the slip regime:

(29)
�
2u(j)

�r2
+

1

r

�u(j)

�r
+ 2i

�
2

�

u(j) = −�.

(30)
du(H)(r)

dr

|||||r=0
= 0, u(1) = 0.

(31)
u(H)(r) = i

�

2�

⎡⎢⎢⎢⎣
1 −

J0

�
r
√
2i�∕

√
�

�

J0

�√
2i�∕

√
�

�
⎤⎥⎥⎥⎦
,

(32)
G(H) = i

�

�

⎡⎢⎢⎢⎣
1 − 2

√
�√
2i�

J1

�√
2i�∕
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.

(33)
du(S)(r)

dr

|||||r=0
= 0, u(S)(1) = −

�P

�

du(S)

dr

||||r=1.

(34)

u(S)(r) = i
�
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J0

�√
2i
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�
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�√
�

�
−
√
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�P√
�
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�√
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�√
�

�
⎤⎥⎥⎥⎦
,
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These analytical solutions are implemented to check the 
accuracy of the numerical scheme at large values of � and �.

In both the hydrodynamic and slip regimes, two limiting 
solutions may be considered based on the quantity �∕

√
� , 

which is proportional to the ballistic Stokes number and 
measures viscous versus unsteady effects in oscillatory 
flows. The analysis is applied only in the flow rate expres-
sions. First, assuming 1 ≪ 𝛿 ≪

√
𝜃 , i.e., that the oscilla-

tion frequency is very slow ( � → 0 or � → ∞ ), Eqs. (32) 
and (35) are manipulated by expanding the Bessel functions 
for small arguments 𝛿∕

√
𝜃 ≪ 1 . By keeping only the main 

terms, the well-known flow rates of the stationary cylindri-
cal Poiseuille flow subject to constant pressure gradient are 
recovered in the hydrodynamic and slip regimes (Sharipov 
2016):

Secondly, assuming 𝛿 ≫

√
𝜃 ≫ 1 , the Bessel functions 

in Eqs. (32) and (35) are now expanded for large arguments 
𝛿∕

√
𝜃 >> 1 and, following some manipulation, the follow-

ing expressions are obtained:

The closed-form expressions (36–38) are also applied to 
examine the accuracy of the kinetic solutions at these limits 
provided that the corresponding restrictions in terms of � 
and � are fulfilled.

5  Results and discussion

The fully developed rarefied gas flow in a cylindrical tube 
due to an imposed oscillatory pressure gradient has been 
simulated in a wide range of the gas rarefaction and oscil-
lation parameters. The computed dimensionless complex 
velocity distributions and flow rates are based on the 
kinetic formulation, while some complimentary analyti-
cal results in the slip regime are also reported. The results 

(35)

G(S) = i
�

�

⎡
⎢⎢⎢⎣
1 − 2

√
�√
2i�

J1

�√
2i

�√
�

�

J0

�√
2i

�√
�

�
−
√
2i

�P√
�

J1

�√
2i

�√
�

�
⎤
⎥⎥⎥⎦
.

(36)G(H) =
�

4
,G(S) =

�

4
+ �P.

(37)G(H) =
�
3∕2

�
2

+ i
�

�

�
1 −

√
�

�

�
,

(38)G(S) =
�
3∕2

�
2

+ i
�

�

⎡⎢⎢⎣
1 −

√
�

�

�
1 +

2�P√
�

�−1⎤⎥⎥⎦
.

include the amplitude and the phase angle, as well as the 
periodic time evolution of the macroscopic quantities.

In Table 1, the flow rate amplitude GA(�, �) is presented in 
terms of the gas rarefaction � ∈

[
10−4, 102

]
 and the oscillation 

parameter � =
[
0.1, 1, 10, 50, 102

]
 . In addition, the flow rate 

amplitude in the slip regime G(S)

A
(�, �) , based on the analytical 

expression (35), is provided in the seventh and eighth column 
of Table 1 for � = 50 and � = 102 , respectively, and for � ≥ 1 . 
In the last column of Table 1, the well-known flow rates of 
the steady-state cylindrical Poiseuille flow with constant pres-
sure gradient ( � → ∞ ), denoted by GSS(�) , for � ≤ 10 are also 
included (Sharipov 2016).

By comparing GA(�, �) with the corresponding G(S)

A
(�, �) , 

it is readily seen that the agreement is, in general, good 
and more important that it is improved as both � and � are 
increased. On the contrary, even for these two relatively 
large values of � , the discrepancies are gradually increased 
as � is decreased. This comparison demonstrates the effi-
ciency of the kinetic results to properly recover the ana-
lytical slip solution, as well as the range of validity of the 
slip solution depending on the required accuracy. Next, the 
values GA(�, �) for the large oscillation parameter � = 102 
(or very small oscillation frequency � ) are compared to the 
corresponding steady-state flow rates GSS(�) . It is seen that 
the agreement is very good in small and intermediate values 
of � (free molecular and part of transition regimes), and then, 
as � is further increased, the discrepancies also increase. It 
is evident that in order to recover the steady-state solution, 
it requires: a) the oscillation parameter to be large (which it 
is, since � = 102 ) and b) 𝛿 << 𝜃 (which is not, when 𝛿 > 10 ). 
This is in agreement with the reported behavior of kinetic 
Eq. (33) as � → ∞ approaching the stationary solution (last 
paragraph in Sect. 3), as well as with the analytical results in 
the hydrodynamic and slip regimes, where it has been shown 
that the steady-state solution is recovered as � → ∞ , with 
𝛿 ≪

√
𝜃 (Sect. 4). In general, steady-state conditions may be 

reached faster as the flow becomes more rarefied (or as � is 
decreased) provided of course that the oscillation parameter 
is adequately large ( � adequately small).

The discussion in Table 1 is continued by analyzing the 
behavior of the flow rate amplitude GA(�, �) in the whole 
range of � and � . For any given � , GA(�, �) is monotonically 
increased as � is increased, with GA(�, �) being always less 
than the corresponding stationary solution GSS(�) . The 
dependency of GA(�, �) on � is more complex. For � ≤ 1 , as 
� is increased, GA(�, �) is monotonically decreased, while 
for � ≥ 10 it is initially decreased until � = 0.5 , where a local 
minimum is observed, then it is increased up to some � , 
which depends on � , and finally as � is further increased, it 
is again decreased. It is noted that for all � , as � → 0 , the 
well-known analytical steady-state free molecular flow rate 
equal to 8∕

�
3
√
�

�
= 1.504 (Sharipov 2016) is properly 
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recovered. Also, for small values of � and adequately dense 
atmosphere (large values of � ), GA(�, �) tends to diminish. 
This behavior, which appears in high oscillation frequencies 
(small � ), is due to inertia forces (the fluid has great 

difficulty to reach a peak flow) and will be further analyzed, 
later on, by examining the velocity distributions.

In Table 2, the dimensionless flow rate phase GP(�, �) is 
presented in terms of the same parameters as in Table 1. The 

Table 1  Flow rate amplitude G
A
(�, �) in terms of gas rarefaction parameter � and oscillation parameter �

� G
A
(�, �) G

(S)

A
(�, �) G

SS
(�)

� = 0.1 � = 1 � = 10 � = 50 � = 100 � = 50 � = 100 � → ∞

0.0001 1.502 1.504 1.504 1.504 1.504 1.504
0.001 1.488 1.499 1.499 1.499 1.499 1.499
0.01 1.381 1.472 1.476 1.476 1.476 1.476
0.05 1.073 1.413 1.430 1.430 1.430 1.430
0.1 8.151 (− 1) 1.369 1.404 1.404 1.404 1.404
0.5 2.014 (− 1) 1.142 1.383 1.386 1.387 1.387
1 1.002 (− 1) 8.512 (− 1) 1.444 1.458 1.458 1.266 1.266 1.458
2 4.999 (− 2) 4.837 (− 1) 1.575 1.654 1.657 1.513 1.515 1.658
4 2.500 (− 2) 2.457 (− 1) 1.570 2.078 2.103 1.985 2.008 2.111
6 1.667 (− 2) 1.646 (− 1) 1.300 2.444 2.550 2.380 2.480 2.588
8 1.250 (− 2) 1.238 (− 1) 1.046 2.670 2.956 2.627 2.903 3.074
10 1.000 (− 2) 9.919 (− 2) 8.649 (− 1) 2.723 3.282 2.695 3.242 3.564
15 6.667 (− 3) 6.630 (− 2) 6.034 (− 1) 2.383 3.594 2.372 3.576
20 5.000 (− 3) 4.979 (− 2) 4.635 (− 1) 1.953 3.342 1.946 3.333
30 3.334 (− 3) 3.323 (− 2) 3.167 (− 1) 1.407 2.575 1.404 2.570
40 2.500 (− 3) 2.494 (− 2) 2.405 (− 1) 1.100 2.052 1.098 2.050
50 2.000 (− 3) 1.996 (− 2) 1.939 (− 1) 9.022 (− 1) 1.706 9.009 (− 1) 1.704
100 1.000 (− 3) 1.009 (− 2) 1.058 (− 1) 4.747 (− 1) 9.228 (− 1) 4.743 (− 1) 9.223 (− 1)

Table 2  Flow rate phase 
G

P
(�, �) (rad) in terms of gas 

rarefaction parameter � and 
oscillation parameter �

� G
P
(�, �) G

(S)

P
(�, �)

� = 0.1 � = 1 � = 10 � = 50 � = 100 � = 50 � = 100

0.0001 4.646 (− 3) 5.632 (− 4) 5.767 (− 5) 1.156 (− 5) 5.780 (− 6)
0.001 3.254 (− 2) 4.088 (− 3) 4.200 (− 4) 8.415 (− 5) 4.208 (− 5)
0.01 1.905 (− 1) 2.709 (− 2) 2.793 (− 3) 5.588 (− 4) 2.794 (− 4)
0.05 5.774 (− 1) 9.447 (− 2) 9.857 (− 3) 1.972 (− 3) 9.862 (− 4)
0.1 8.730 (− 1) 1.613 (− 1) 1.699 (− 2) 3.399 (− 3) 1.700 (− 3)
0.5 1.461 5.837 (− 1) 6.797 (− 2) 1.362 (− 2) 6.810 (− 3)
1 1.512 9.535 (− 1) 1.395 (− 1) 2.807 (− 2) 1.404 (− 2) 2.564 (− 2) 1.282 (− 2)
2 1.542 1.278 3.173 (− 1) 6.557 (− 2) 3.282 (− 2) 6.276 (− 2) 3.141 (− 2)
4 1.557 1.434 7.217 (− 1) 1.762 (− 1) 8.883 (− 2) 1.727 (− 1) 8.702 (− 2)
6 1.561 1.480 1.015 3.287 (− 1) 1.692 (− 1) 3.250 (− 1) 1.672 (− 1)
8 1.564 1.503 1.175 5.053 (− 1) 2.715 (− 1) 5.022 (− 1) 2.694 (− 1)
10 1.565 1.517 1.263 6.809 (− 1) 3.901 (− 1) 6.790 (− 1) 3.882 (− 1)
15 1.567 1.535 1.371 1.008 7.012 (− 1) 1.009 7.004 (− 1)
20 1.568 1.544 1.423 1.177 9.451 (− 1) 1.179 9.456 (− 1)
30 1.569 1.553 1.473 1.321 1.194 1.322 1.195
40 1.569 1.557 1.498 1.387 1.299 1.388 1.300
50 1.570 1.560 1.513 1.426 1.357 1.426 1.358
100 1.570 1.565 1.542 1.500 1.468 1.500 1.468
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phase angles vary between zero and �∕2 = 1.571 , which cor-
respond to no phase and maximum phase difference, respec-
tively, between the flow rate and the pressure gradient. The 
dimensionless flow rate phase in the slip regime G(S)

P
(�, �) , 

based on the analytical expression (35), is also provided in 
the last two columns of Table 2 for � = 50 and � = 102 with 
� ≥ 1 . The comparison between the corresponding GP(�, �) 
and G(S)

A
(�, �) supports all remarks previously made for the 

flow rate amplitudes and also establishes more confidence to 
the kinetic solution, which is in very good agreement with 
the slip analytical solution, provided that the oscillatory flow 
is in the slip regime.

Furthermore, it is seen from Table 2 that, as expected, for 
any given � , the phase difference GP(�, �) is increased as � is 
decreased, i.e., as the oscillation frequency is increased. Tak-
ing into consideration the corresponding values of GA(�, �) 
in Table 1, it is concluded that as the oscillation frequency 
is increased, the flow rate amplitude is decreased, while 
the phase shift is increased. At very high frequencies and 
adequately large � , this may result to almost zero amplitude 
with �∕2 phase difference. Also, for any given � , GP(�, �) 
is monotonically increased with � , i.e., the phase difference 
is almost zero in the free molecular regime, and then, it 
is increased as the oscillatory flow becomes less rarefied, 
reaching the maximum phase angle lag in the hydrodynamic 
limit.

A view, in graphical form, of the flow rate amplitude 
GA(�, �) and phase GP(�, �) is provided in Fig. 1, where these 
quantities are plotted versus �∕� for � =

[
0.1, 1, 10, 50, 102

]
 . 

The behavior of GA(�, �) in terms of the ratio �∕� is quali-
tatively similar to the one observed in Table 1 in terms of 
� . Three regimes may be identified in terms of �∕� : the first 
one for �∕� ≤ 10−2 , the second one for 10−2 < 𝛿∕𝜃 < 1 and 
the third one for �∕� ≥ 1 . In the first and third regimes, the 
results of GA(�, �) depend only on the ratio �∕� and they 
almost coincide for all � , while in the second regime they 
depend on �∕� and � . Furthermore, for � = [0.1, 1] , GA(�, �) 
is monotonically reduced, while for � =

[
10, 50, 102

]
 it is 

initially slightly decreased; then, it is increased up to some 
�∕� ∈ [0.1, 1] , and finally, it is decreased. This behavior 
is justified by the fact that when the oscillation frequency 
is adequately high ( � = [0.1, 1] ), GA(�, �) is significantly 
affected and it is monotonically reduced, while when the 
oscillation frequency is not high enough 

(
� =

[
10, 50, 102

])
 , 

GA(�, �) has some resemblance with the steady-state flow 
rate profile including the Knudsen minimum, as long 
as �∕� is sufficiently small to ensure 𝛿 << 𝜃 (as reported 
above steady-state conditions are reached as � → ∞ , with 
𝛿 << 𝜃 ). Then, as �∕� is further increased, the inequality 
condition does not hold and GA(�, �) is decreased. Next, 
with regard to the phase difference, GP(�, �) is monotoni-
cally increased with �∕� . At very small values of �∕� (free 
molecular regime), it is almost zero; then at moderate values 
of �∕� (transition regime), it is rapidly increased, and finally 
at large values of �∕� (slip and hydrodynamic regimes), it 
is asymptotically increased reaching the limiting value of 
�∕2 . An interesting and useful outcome of Fig. 1 may be 
the determination of the optimal gas rarefaction level for a 
given oscillation frequency to induce the maximum flow rate 
amplitude GA(�, �).

In Fig. 2, the time evolution of the dimensionless flow 
rate, defined in Eq. (13) as G̃(t, 𝛿, 𝜃) = GA cos

(
t − GP

)
 , is 

plotted over one period of oscillation t ∈ [0, 2�] for typical 
values of � and � . The time evolution of the dimensionless 
pressure gradient is equal to cos t , and it is also plotted to 
facilitate the phase shift observation between pressure gra-
dient and dimensionless flow rate. It is seen that G̃(t, 𝛿, 𝜃) 
depends heavily on both the gas rarefaction parameter and 
the oscillation frequency. When � = 0.1 , the G̃(t, 𝛿, 𝜃) pro-
files for � =

[
1, 10, 102

]
 (low and moderate oscillation fre-

quencies) are very close to each and in phase with the pres-
sure gradient, while for � = 0.1 (high oscillation frequency) 
G̃(t, 𝛿, 𝜃) has a significantly smaller amplitude and a lag-
ging phase angle. As � is increased, the effect of � becomes 
more dominant. At � = 1 , the G̃(t, 𝛿, 𝜃) profiles only for 
� =

[
10, 102

]
 are close to each other and in phase, while for 

Fig. 1  Flow rate amplitude 
GA(�, �) and phase GP(�, �) 
(rad) in terms of the ratio of the 
gas rarefaction parameter � over 
the oscillation parameter � , with 
� =

[
0.1, 1, 10, 50, 102

]
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� = [0.1, 1] the amplitude is reduced and the phase lag is 
increased. Actually now, for � = 0.1 the amplitude is very 
small and the phase lag is almost �∕2 . This behavior is fur-
ther enhanced at � = 10 , where the effect of the oscillation 
frequency is very significant for � = [0.1, 1, 10] and remains 

not important only for � = 102 . As expected, these results are 
in very good agreement with the remarks made in Tables 1 
and 2. It is also concluded that the peak of the flow rate 
amplitude always falls short of reaching the corresponding 
flow rate of the steady-state Poiseuille flow with constant 
pressure gradient. This is clearly contributed to the inertia 
of the fluid, which must be accelerated in each cycle, and 
therefore, this effect is intensified as the flow becomes more 
viscous and the oscillation frequency is increased.

Next, the behavior of the velocity distributions in terms of 
� and � is investigated. In Fig. 3, the amplitude uA(r) and the 
phase angle uP(r) of the velocity distribution are plotted for 
� = [0.1, 1, 10] and � =

[
10−2, 10−1, 1, 10

]
 covering a wide 

range of the flow parameters. As the oscillation parameter 
is decreased, i.e., the oscillation frequency is increased, the 
amplitude is reduced and the phase angle lag is increased. 
This behavior is expected, and it is in accordance with the 
flow rate results studied above. Here, it is more interesting 
to focus on the radial variation of the velocity amplitude 
and phase angle with regard to � and � . Starting with uA(r) , 
it is seen that for some � and � (e.g., � = 0.1 and � ≥ 0.1 ) 
the velocity amplitudes have the expected shape with their 
maximum at r = 0 , while the corresponding phase angles are 
small and almost constant in the radial direction. However, 
as � is increased and � is reduced, uA(r) remains constant 
from the center of the tube until close to the wall, where 
it rapidly changes. In these cases (e.g., � = 1 and � ≤ 0.1 
or � = 10 and � ≤ 1 ) near the wall, there is a region where 
the velocity amplitude is higher than in the center of the 
flow. The corresponding values of uP(r) are large, resulting 
in phase lags up to 900 with regard to the pressure gradi-
ent, and also, they are constant from the center of the tube 
until this region close to the wall, where they change signifi-
cantly in an oscillatory manner. The thickness of this region 
is decreased as � is increased and � is reduced. Therefore, in 
high or even moderate frequencies (it depends on � ), the flow 
consists of two layers: the inviscid piston flow in the core, 
dominated by inertia forces, and the frictional Stokes wall 
layer dominated by viscous forces. This flow description, 
including the velocity overshoot, which is known as “annu-
lar effect” or “Richardson effect,” is well known in classi-
cal hydrodynamics (Schlichting and Gersten 2017; White 
1974; Zamir 2000). It is interesting, however, to see that 
these effects are also present in oscillatory rarefied flows. Of 
course as the gas rarefaction is increased, higher oscillation 
frequencies are needed to trigger these flow patterns.

In Fig. 4, the time evolution of the dimensionless veloc-
ity distribution, defined in Eq. (8) as ũ(r, t) = uA cos

(
t − uP

)
 , 

is plotted versus the radial distance r at certain times 
t ∈ [0, 2�] covering one period of oscillation for � = 1 with 
� =

[
10−2, 10−1, 1, 10

]
 . The observed radial variation of the 

velocity distribution at these timeframes is the typical one 

Fig. 2  Time evolution of flow rate G̃(t, 𝛿, 𝜃) over one period of oscil-
lation for � = [0.1, 1, 10] and � =

[
0.1, 1, 10, 102

]
 ; the time evolution 

of the dimensionless pressure gradient equal to cos t is also included
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expected, as the oscillation parameter is increased, i.e., as 
the oscillation frequency is decreased. The two layers flow 
pattern with the core oscillating in a plug-flow mode and 
the velocity maximum (or minimum) inside the thin Stokes 
layer plus the small amplitude and large phase lag are all 
clear at � = 10−2 , and then, as � is increased, these effects are 
reduced, and finally, they are diminishing at � = 10 , where the 
velocity profile has an amplitude close to the corresponding 
steady-state one and the phase lag with the pressure gradient 
is small. Furthermore, it is interesting to note that at high 
frequencies ( � = 10−2, 0.1 ) and at times t = 0 and t = � the 

velocity distribution along the radial direction changes sign 
and may be either positive or negative. This velocity reversal 
does not show up at low frequencies (large � ). In addition, 
the position of the maximum or the minimum of the velocity 
distribution is moving with time in the radial direction inside 
the Stokes layer. This is clearly shown in the case of � = 0.1 
where the overshoot is carried away from the wall (Panton 
1996). Although this motion is due to viscous diffusion, it 
does have some resemblance with transverse decaying waves 
from the boundary toward the centerline of the pipe.

Fig. 3  Velocity distribution 
amplitude uA(r) and phase 
angle uP(r) versus radial dis-
tance r for � = [0.1, 1, 10] and 
� =

[
10−2, 10−1, 1, 10

]
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Closing this section, a remark with regard to the 
Strouhal number, defined as St = �∕� , is made. In Fig. 5, 
ũ(r, t) is plotted versus the radial distance r at certain 
times t ∈ [0, 2�] covering one period of oscillation for 
� = � = 0.1 and � = � = 10 . In both setups, St = 1 . It is 
readily seen that the radial variation of ũ(r, t) in the two 
setups at the same time steps, although the Strouhal num-
ber is the same, is completely different. This is a clear indi-
cation that the St number is not adequate, only by itself, to 
characterize the flow. Furthermore, according to previous 

observations, for � = 0.1 the flow is highly rarefied, and 
even with � = 0.1 , it behaves like a low oscillation flow, 
while for � = 10 , the flow is dense enough, and even with 
� = 10 , it starts to behave like a moderate- to high-fre-
quency flow. In this latter case, the Stokes layer is thick 
and affects the whole velocity profile. The correspond-
ing time-dependent flow rates obtained by integrating the 
velocity profiles presented in Figs. 4 and 5 may be found, 
in most cases, in Fig. 3.

Fig. 4  Time evolution of veloc-
ity distribution ũ(r, t) versus 
radial distance r at certain times 
t ∈ [0, 2�] over one period 
of oscillation for � = 1 with 
� =

[
10−2, 10−1, 1, 10

]
 (dashed 

lines refer to t ∈ [0,�) and solid 
lines to t ∈ (�, 2�])

Fig. 5  Time evolution of veloc-
ity distribution ũ(r, t) versus 
radial distance r at certain times 
t ∈ [0, 2�] over one period of 
oscillation for � = � = 0.1 (left) 
and � = � = 10 (right); the 
Strouhal number in both cases 
is equal to 1 (dashed lines refer 
to t ∈ [0,�) and solid lines to 
t ∈ (�, 2�])
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6  Concluding remarks

The time-dependent isothermal fully developed rarefied 
gas flow in a cylindrical tube driven by harmonically oscil-
lating pressure gradient is investigated based on the lin-
earized unsteady BGK kinetic model equation. The two 
parameters characterizing the flow are the gas rarefaction 
and the oscillation parameters. The former is propor-
tional to the inverse Knudsen number, and the latter one 
is defined as the ratio of the collision over the oscillation 
frequency. Computational results for the amplitude and 
the phase angle of the flow rates and the velocity distri-
butions have been provided in a wide range of these two 
parameters in tabulated and graphical form. In addition, 
the time evolution of the macroscopic quantities over a 
cycle is also reported. The limiting flow rates in the slip 
and free molecular regimes for very low and high speed 
oscillations are properly recovered by the kinetic solution, 
and very good agreement with analytical solutions in these 
regimes has been obtained.

The flow rate amplitude is decreased as the oscilla-
tion frequency is increased. However, in terms of the 
gas rarefaction the dependency is not monotonic and it 
is found that for a given oscillation parameter, there is 
an optimum gas rarefaction level to obtain the maximum 
flow rate amplitude. The phase shift of the flow rate is 
monotonically increased as the oscillation frequency is 
increased and the gas rarefaction is decreased. At low 
oscillation frequencies, the flow rate and velocity distri-
bution are in phase with the pressure gradient, while as 
the frequency is increased the amplitude of the macro-
scopic quantities is decreased and the phase angle lag is 
increased. At high frequencies, the flow consists of the 
core oscillating in a plug-flow mode and the Stokes layer 
with a velocity overshoot. These effects, which are well 
known in classical hydrodynamics, are also present in 
oscillatory rarefied flows. Of course as the gas rarefac-
tion is increased, it is more difficult for energy to be 
transferred from the initial oscillation to the bulk flow, 
and therefore, higher oscillation frequencies are needed 
to observe these phenomena.

Overall, it is hoped that the present work may be useful 
in experimental work related to oscillatory microflows as 
well to support the design of microfluidic devices (sensors, 
controllers, resonators). Future work area may include pul-
satile flows in long orthogonal microchannels and short 
microtubes.
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