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1 Introduction

1.1  Application background and literature review

A clear understanding of the dynamics of miniaturized 
beams is important for the design of microelectromechanical 
systems (MEMS) (Younis 2011; Park and Gao 2006; Sedighi 
and Shirazi 2015; Ebrahimi and Hosseini 2017; Dai et al. 
2015b), resonators (Nayfeh and Younis 2005), sensors (Lun 
et al. 2006; McFarland and Colton 2005), microswitches 
(Ghayesh et al. 2013; Rahaeifard and Ahmadian 2015; Hu 
et al. 2004; Younis et al. 2003; Nayfeh et al. 2005), micro-
fluidic devices (Yin et al. 2011; Sparks et al. 2009; Zhang 
et al. 2016b; Kural and Özkaya 2015; Hu et al. 2016), energy 
harvester (Hu et al. 2011) and so on.

Due to the recent development in microengineering and 
micromechanics, microbeams coupled with various multi-
field actuations have received considerable attention from 
researchers around the world. One typical example of micro-
structures interacted with fluid field is the system of micro-
beams containing internal fluid flow, which becomes the key 
components in many microstructures and microsystems and 
has widespread applications, including fluid storage, drug 
delivery, microfluidic devices, micromachined fountain pen, 
biomolecular and nanoparticle detection and so forth (Wang 
et al. 2016; Sparks et al. 2009; Kural and Özkaya 2015; Lee 
et al. 2010; Olcum et al. 2015; Hanay et al. 2012; Burg et al. 
2007). Since the performance of the fluid-loaded microbeam 
is directly related to its dynamical behavior, it is not surpris-
ing that many studies have focused on the dynamics of the 
system of microbeams containing internal fluid flow.

The investigations of the static and dynamic behaviors 
of microbeams conveying fluid are based on either classi-
cal or non-classical size-dependent models. There exist a 
few studies utilizing the theories of conventional (classical) 

Abstract A nonlinear theoretical model for electrostati-
cally actuated microcantilevers containing internal fluid 
flow is developed in the present study, which takes into 
account the geometric and electrostatic nonlinearities. A 
four-degree-of-freedom and eight-dimensional analytical 
modeling is presented for investigating the stability mecha-
nism and nonlinear dynamic responses near and away from 
the instability boundaries of the fluid-loaded cantilevered 
microbeam system. Firstly, the reliability of the theoretical 
model is examined by comparing the present results with 
previous experimental and numerical results. It is found 
that, with the increase in flow velocity, flutter instability, 
pull-in instability and the combination of both can occur 
in this dynamical system. It is also found that the instabil-
ity boundary depends on the initial conditions significantly 
when the internal fluid is at low flow rate. Nextly, the phase 
portraits and time histories of the microbeam’s oscillations 
and bifurcation diagrams are established to show the exist-
ence of periodic, chaotic divergence and transient periodic-
like motions.

Keywords Electrostatically actuated microbeam · 
Flutter · Pull-in instability · Nonlinear dynamics · 
Microfluidic device · MEMS

 * Lin Wang 
 wanglindds@hust.edu.cn

1 Department of Mechanics, Huazhong University of Science 
and Technology, Wuhan 430074, China

2 Hubei Key Laboratory for Engineering, Structural Analysis 
and Safety Assessment, Wuhan 430074, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-017-1999-z&domain=pdf


 Microfluid Nanofluid (2017) 21:162

1 3

162 Page 2 of 13

continuum mechanics to predict the vibration character-
istics and stability of microbeams/micropipes conveying 
fluid. For instance, Rinaldi et al. (2010) conducted a theo-
retical analysis of microscale resonators containing internal 
fluid flow and investigated the effects of flow velocity on 
damping, stability and frequency shift of the system. Zhong 
et al. (2016) analyzed the thermoelastic damping in a fluid-
conveying microbeams for designing microresonators with 
high quality factor. Zhang et al. (2016a) studied the stability, 
frequency shift and energy dissipation of suspended micro-
channel resonators conveying fluid with opposite directions. 
Guo et al. (2010) considered the non-uniformity of the flow 
velocity distribution in fluid-conveying micropipes caused 
by the viscosity of internal fluid.

The first investigation of the size-dependent microbeams 
conveying fluid based on non-classical continuum mechan-
ics was carried out in 2010. Some of the remarkable con-
tributions in this area were made by Yang et al. (2014), 
Mashrouteh et al. (2016), Hosseini et al. (2016), Dehrouyeh-
Semnani et al. (2016), Li et al. (2016), Setoodeh and Afra-
him (2014), Arani et al. (2014), Wang and his co-workers 
(Wang et al. 2013; Wang 2010; Xia and Wang 2010). The 
dynamics of microbeams with supported or clamped-free 
ends, linear, nonlinear and chaotic dynamics, microbeams 
with straight or curved configuration, and size-dependent 
properties are some aspects of the considered issues.

In some cases, microbeams conveying fluid are piezo-
electrically (Abbasnejad et al. 2015), electromagnetically 
(Rhoads et al. 2013), electrochemically and/or electrostati-
cally actuated (Kim et al. 2016) in engineering applications. 
Several investigations have been carried out regarding the 
dynamic characteristics of microbeams coupling fluid flow 
and other field forces. For instance, Abbasnejad et al. (2015) 
presented the stability analysis of a fluid-conveying micro-
beam, which is axially loaded with a pair of piezoelectric 
layers locating at its top and bottom surfaces; they found that 
imposing voltage on the piezoelectric layers can significantly 
suppress the effect of fluid flow on the vibration character-
istics of the system. Kim et al. (2016) modeled electrostati-
cally actuated hollow microtube resonators as one kind of 
microbeams conveying fluid. Amiri et al. (2016) proposed 
a theoretical approach to investigate the stability of smart 
microbeams conveying fluid based on the magneto-thermo-
electro-elasticity theory; they showed that the stability of 
microbeams can be controlled by varying magnetoelectric 
potential. In addition, Dai et al. (2015a) and Yan et al. (2016) 
recently studied the dynamical characteristics of fluid-con-
veying microbeams actuated by electrostatic force, showing 
that both pull-in and flow-induced instabilities can occur in 
such dynamical system. Among these valuable studies, only 
few were devoted to the topic of dynamical behavior of elec-
trostatically actuated microbeams conveying fluid. If any, 
they mainly explored the stability rather than the dynamic 

oscillations of the microbeam, because they either neglect 
the geometric nonlinearities associated with the cantilever’s 
deformation or approximate the electrostatic force via Taylor 
series expansion which leads to insufficient results especially 
in the case of large deflections.

Indeed, the prediction of dynamic responses of electro-
statically actuated microbeams is also important for MEMS 
applications. For instance, if the microbeam is subjected to a 
time-varying voltage, the system may undergo dynamic pull-
in instability rather than static pull-in instability (see, e.g., 
Nayfeh and Younis 2005; Younis 2011). In such case, the 
displacements of the microbeam are generally time depend-
ent and the dynamic oscillations need to be considered.

In this study, the system under consideration is an elec-
trostatically actuated microbeam conveying fluid with 
clamped-free boundary conditions. The lateral motion of 
the microbeam is coupled with the internal fluid flow. Thus, 
this is a typical nonlinear fluid–structure interaction system. 
For a cantilevered microbeam conveying fluid, the system 
is nonconservative, and hence, flutter instability is possible, 
which is known as a dynamic form of instability. When the 
microbeam is undergoing flutter, the displacement of the 
microbeam is time dependent, and hence, the analysis of 
dynamic responses of the system is necessary.

1.2  Contributions of the present work

In the present study, for the first time, the fully nonlinear 
coupled equations of motion are proposed for exploring the 
instability mechanism and dynamic oscillations of a can-
tilevered microbeam conveying fluid under electrostatic 
actuation. The geometric nonlinearities associated with 
the possible large-amplitude motions of the microbeam are 
essentially included in the mathematical model. These geo-
metric nonlinearities have not been accounted for in previous 
studies on dynamical behaviors of electrostatically actuated 
microbeams conveying fluid. To ensure accurate and con-
verged results, a high-dimensional discretized model will be 
constructed while keeping the highly nonlinear electrostatic 
load term intact.

In addition, it will be shown that the internal fluid 
flow has a significant effect on the stability and dynamic 
responses of the microbeam under electrostatic actuation. 
Thus, the knowledge gained from this multi-field-coupled 
system can be potentially applied in controlling the elec-
tromechanical behaviors of microbeam-based MEMS via 
changing the fluidic parameters (e.g., flow velocity).

2  Analytical model

The dynamical system diagrammatically shown in Fig. 1 
is comprised of a cantilevered microbeam of length L, 
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subjected to internal fluid flow with a steady velocity U. 
In the derivation of the equation of motion of the coupled 
system, the internal fluid flow is characterized by a plug-flow 
regime first. Then, the obtained equation of motion will be 
extended to perform an analysis for microbeams containing 
laminar fluid flow.

In particular, a biased voltage V is applied to the micro-
beam, causing an electrostatic attraction between the micro-
beam and the substrate. Thus, the microbeam can be actu-
ated by the electrostatic interaction between the microbeam 
and the substrate underneath. Generally, the value of the 
electrostatic force is associated with the deflection of the 
microbeam.

To model the dynamics of the microbeam, a Hamilto-
nian derivation of the equation of motion is briefly presented 
here. According to the discussion by Paidoussis (1998) and 
Benjamin (1961), the Hamilton’s principle for this dynami-
cal system can be written as

where δ is the variational symbol; L0 is the Lagrangian of 
the system (L0 = Tb + Tf−Vb−Ve, Tb and Vb being the kinetic 
and potential energies associated with the microbeam, Tf 
the kinetic energy of the enclosed fluid and Ve the electric 
energy); rL and τL represent, respectively, the position vector 
and the tangential unit vector at the tip end of the micro-
beam; M is the mass of fluid per unit length; and t is the 
time.

The kinetic energy of the microbeam and the fluid may 
be, respectively, evaluated by (Paidoussis 1998)

(1)� ∫
t2

t1

L0dt = ∫
t2

t1

{
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[(
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)
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]

⋅ �rL

}

dt

where ( )· and ( )′ denote the derivative with respect to time, 
t, and the curvilinear coordinate along the centerline of the 
deformed microbeam, s, respectively; x is the axial coor-
dinate in the sense of Eulerian description; m is the mass 
of the microbeam per unit length; and W(s, t) is the lateral 
deflection of the microbeam.

The potential energy of the system consists of two com-
ponents: the strain energy Vb and the electric energy Ve; they 
are given by (Paidoussis 1998; Yan et al. 2016)

where EI is the flexural rigidity of the microbeam, κ is the 
curvature of the microbeam and can be expressed as 
� =
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√

1−W �2
 according to the inextensible condition, ε is the 

dielectric constant of the gap medium, d is the gap distance 
between the microbeam and the substrate and b0 is the out-
side cross-section width of the microbeam.

Finally, recalling that ẋ ∼ 0, and x� ≃ 1 −
1

2
W �2, substitut-

ing Eqs. (2) and (3) into (1) and making use of the standard 
variational techniques and the boundary conditions for a 
cantilever, after some manipulation, the nonlinear equation 
of motion is found to be
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Fig. 1  a Schematic of an elec-
trostatically actuated microbeam 
containing internal fluid flow; b 
cross-section view of the fluid-
loaded microbeam
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found to be 4/3 (Guo et al. 2010). By using the concepts of 
equivalent mean flow velocity and equivalent mass ratio, 
Eq. (7) is also valid for the system of a microbeam convey-
ing viscous (laminar) fluid flow.

It should be pointed out that several nonlinear inertial 
terms appear in Eq. (7). However, these nonlinear inertial 
terms can be converted to equivalent stiffness and velocity-
dependent terms via a perturbation technique (Paidoussis 
1998). In this way, Eq. (7) can be further written as

where the nonlinear terms N1(w) and N2(w) are given by

and
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√
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where q(W) is the electric force due to the applied voltage. In 
Eq. (4), the viscous damping effect has been included and c 
is the viscous damping coefficient. The nonlinear force q(W) 
exerted on the deformable microbeam is given by

Defining the following quantities

Equation (4) may be written in the following dimensionless 
form
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in which ( )· and ()′ are now derivatives with respect to non-
dimensional τ and ξ.

As discussed by Guo et al. (2010), for laminar internal 
fluid flow, either the mean flow velocity u or the mass ratio 
β in Eq. (7) should be viewed as the ‘equivalent’ value. The 
concepts of ‘equivalent mean flow velocity’ and ‘equivalent 
mass ratio’ were introduced firstly by Guo et al. (2010). The 
relationship between the equivalent parameters (ũ and 𝛽 ) 
and the usually used parameters (u and β) was defined by 
ũ =

√

𝛼∗u and 𝛽 = 𝛽∕𝛼∗(Guo et al. 2010), with α* being a 
coefficient related to the flow velocity profile representing 
the size effect of microflow. For laminar flows in a circular 
micropipe, the value of α* can be exactly calculated and was 

If we compare Eq. (8) to those given by Dai et al. (2015b) 
or Yan et al. (2016), it is clear that the former has accounted 
for geometric nonlinearities associated with the deformation 
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of the microbeam. In order to discretize the infinite-dimen-
sional system, the Galerkin’s method is introduced; thus, 
we have

where qr(τ) are the rth generalized coordinates and φr(ξ) are 
the corresponding dimensionless eigenfunctions of a canti-
levered beam. It is noted that the series in Eq. (10) may be 
truncated at a suitably large value of r = N. Upon substitut-
ing Eqs. (10) into (8), multiplying by φs(ξ) and integrating 
over the domain [0, 1], one obtains

where q is the generalized displacement vector and the ele-
ments of all coefficient matrices may be computed from 
the integrals of the eigenfunctions φi(ξ) and their deriva-
tives. Once q has been calculated from Eq. (11), the lateral 
deflection of the microbeam [w(ξ,τ)] can be expressed using 
Eq. (10).

3  Results

It has been reported that when N = 4 is taken, it is capable 
of obtaining convergent results for nonlinear oscillations of 
cantilevered beams\pipes conveying fluid (Paidoussis 1998). 
Therefore, in the following analysis, we will truncate the 
series of Eq. (10) at N = 4. In all cases, the maximum flow 
velocity considered is below u = 10; unless otherwise stated, 
several key system parameters were fixed to be: α = 3.9, 
σ = 0.0239 (Farokhi and Ghayesh 2016), ϕ = 0.25, and 
β = 0.2. Moreover, by converting Eq. (11) into the first-
order form, the transformed state equation can be solved 
by using a fourth-order Runge–Kutta integration algorithm. 
In all calculations, q1(0) is the only nonzero value of initial 
conditions.

To demonstrate the reliability of the theoretical model 
and the calculation procedure, some typical results are com-
pared with the measured data given by Hu et al. (2004) and 
the numerical results provided by Dai et al. (2015a). Then, 
a set of calculations will be made to explore the nonlinear 
dynamics of the electrostatically actuated microbeam con-
veying fluid, as described in the rest of this section.

3.1  Validation of the present results

To validate the reliability of the present model and calcula-
tion procedure, we firstly predict the static tip-end deflec-
tions of the electrostatically actuated microbeam without 
internal fluid flow. A set of experimental parameters were 

(10)w(�, �) =

∞
∑

r=1

�r(�)qr(�)

(11)�̈� + 𝐂�̇� +𝐊𝐪 + 𝐟 (𝐪, �̇�) = 𝟎
selected, which are given in Table 1. Based on these data, 
Hu et al. (2004) have experimentally examined the static 
defections of the microbeam.

As shown in Fig. 2a, the dashed line represents the result 
obtained using the full nonlinear model governed by Eq. (11) 
with N = 4 and q1(0) = −0.2, and the center symbols + rep-
resent the experimental results provided by Hu et al. (2004). 
It is observed that the results predicted by the present model 
agree well with the experimental data.

Table 1  The experimental parameters of a microbeam (Hu et  al. 
2004)

Parameters Values

Young’s modulus (E) (N/m2) 155.8 × 109

Density (ρ) (kg/m3) 2330
Length (L) (mm) 20
Width (b0) (mm) 5
Thickness (h) (μm) 57
Initial gap (d) (μm) 92
Permittivity of free space (ε) (F/m) 8.854 ×  10-12

(a)

(b)

Fig. 2  a Comparison between theoretical and experimental results 
for an electrostatically actuated microbeam defined by Hu et  al. 
(2004); the nonzero term of initial conditions is selected to be 
q1(0) = − 0.2. b Instability region in the (u, α1/2V) plane for an elec-
trostatically actuated microbeam conveying fluid with α  =  1.3119: 
comparison between the present results and Dai et al.’s GDQR results 
(2015a); the zero initial conditions were selected for calculations
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As another example, a microbeam system in the pres-
ence of internal fluid flow is considered. The microbeam 
under consideration is conveying fluid in the laminar flow 
regime. The same problem has been analyzed by Dai et al. 
(2015a) and by Yan et al. (2016). Some calculations were 
done with varying u and α0.5V, while keeping other system 
parameters in accordance with those utilized by Dai et al. 
(2015a). The results using zero initial conditions are plotted 
in Fig. 2b, showing the system to be stable below the insta-
bility boundaries, unless u or α0.5V is large enough to give 
rise to instability. Agreement between the present results and 
the GDQR (generalized differential quadrature rule) results 
(Dai et al. 2015a) is achieved.

3.2  Instability mechanism of electrostatically actuated 
microbeams conveying fluid

Although the mechanism of pull-in and flow-induced insta-
bilities of an electrostatically actuated microcantilever con-
veying fluid has been recently studied by Dai et al. (2015a) 
and Yan et al. (2016), a few words here will nevertheless 
be useful.

Based on Eq. (11), the critical voltage, Vcr, as a function 
of u is calculated and shown in Fig. 3, for q1(0) = 0. It is 
clear that Vcr strongly depends on u. Furthermore, the Vcr 
curve (instability boundary) displays an inverted V shape. 
In the range of 0 ≤ u ≤ 4.58, the expected form of instabil-
ity of the microbeam is the well-known ‘pull-in’ instability, 
which has been widely reported in the studies of electrostati-
cally actuated microbeams. In the range of 5.27 ≤ u ≤ 5.6, 
however, the preferred form of instability is flutter, which is 
a type of flow-induced instability. It should be stressed that, 
at u = 5.6, the flutter could occur even for zero voltage. It is 
then of interest to find that, in the range of 4.58 ≤ u ≤ 5.27, 
the pull-in and flutter instability would concurrently occur. 
Thus, in the region just above the dashed line shown in 

Fig. 3, one might have expected that the dynamic response 
of the microbeam may be interesting, as will be discussed 
in the later subsections.

Accordingly, the instability of the microbeam is related to 
both the electric force and the internal fluid flow. As shown 
in Fig. 3, the presence of applied voltage can destabilize the 
system of microbeams conveying fluid, while the occurrence 
of internal fluid with low flow velocity would stabilize the 
system of electrostatically actuated microbeams. It should be 
mentioned that pull-in and flow-induced instabilities could 
concurrently occur in a certain range of flow velocity, which 
has not been pointed out in previous studies.

Fig. 3  The critical voltage for pull-in and/or flutter instabilities, Vcr, 
of a cantilevered microbeam conveying fluid, as a function of flow 
velocity u, for q1(0) = 0

(a)

(b)

(c)

Fig. 4  The critical voltage for pull-in and/or flutter instabilities, Vcr, 
of a cantilevered microbeam conveying fluid, as a function of flow 
velocity u, for various initial conditions: a for a range of 0 ≤ u ≤6, b 
for a range of 0 ≤ u ≤2 and c for another range of 4.6 ≤ u ≤5.3



Microfluid Nanofluid (2017) 21:162 

1 3

Page 7 of 13 162

3.3  Effect of initial conditions on the instability 
boundaries

It is noted that for the electrostatically actuated microbeam 
conveying fluid, two types of instability are possible, as dis-
cussed in the above subsection. The results shown in Fig. 3 
correspond to the microbeam system with q1(0) = 0. It is 
of interest to examine the effect of initial conditions on 
the instability boundaries of the microbeam system in this 
subsection.

The various instability boundaries for four different initial 
conditions, namely q1(0) = −0.2, 0, 0.1 and 0.2, are plotted 
in Fig. 4. It is observed that the initial conditions have no 
obvious effect on the instability boundaries for two ranges 
of flow velocity (e.g., 2 ≤ u ≤ 4.7 and 5.3 ≤ u ≤ 5.6). As 
shown in Fig. 4b, however, in the range of 0 ≤ u ≤ 2 approxi-
mately, the initial conditions with negative value of q1(0) can 
increase the critical voltage, while those with positive value 
of q1(0) would decrease Vcr, comparing to that under initial 
condition of q1(0) = 0. Interestingly, as the flow velocity is 
successively increased in the range of 0 ≤ u ≤ 2, the differ-
ence among the results based on these four initial conditions 
becomes weak. Thus, the internal fluid flow seems to be able 
to eliminate the effect of initial conditions on the pull-in 
instability boundaries to some extent.

In another range of 4.7 < u < 5.3 approximately, it is 
observed from Fig. 4c that the initial conditions have a slight 

effect on the critical voltage. It is noted that, again, the ini-
tial conditions with negative q1(0) can increase the critical 
voltage, while those with positive q1(0) would decrease Vcr.

Therefore, within the flow velocity range of 0 ≤ u ≤ 2 or 
4.7 < u < 5.3, an initial perturbation of displacement may 
change the instability boundary. In other words, an origi-
nally stable (unstable) system may become unstable (stable) 
due to initial perturbations. This finding can enhance one’s 
understanding of the stability mechanism of electrostatically 
actuated microbeams conveying fluid.

3.4  Dynamic responses near the instability boundaries

The motivation for investigating the dynamic responses in 
the vicinity of the instability boundaries comes from two 
reasons. The first is to obtain theoretical results for com-
paring the dynamical behavior of a stable system to that 
of an unstable system in the region just beyond instability 
threshold. The second is provided by the findings shown in 
Fig. 3 for electrostatically actuated microbeam conveying 
fluid: The cantilevered system may lose stability via flutter 
and pull-in instabilities as well as the combination of both. 
Hence, it is of interest to discover the distinct of dynamic 
responses near the onset of instability for these three types 
of instability. Since the initial conditions do not qualitatively 
affect the instability mechanism of the system (see Fig. 4), 
in this subsection, the nonzero term of initial conditions is 

(a)

(b)

Fig. 5  Phase portraits and time trace diagrams near the pull-in instability boundary, for u = 0: a V = 0.47 and b V = 0.473
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Fig. 6  Phase portraits and 
time trace diagrams near the 
pull-in instability boundary, 
for u = 1.5: a V = 0.699 and b 
V = 0.700

(a)

(b)

(a)

(b)

Fig. 7  Phase portraits and time trace diagrams near the boundary associated with both flutter and pull-in instabilities, for u = 5.1: a V = 1.765 
and b V = 1.766
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defined by q1(0) = 0.2. Typical results are presented in the 
form of phase portraits and time trace diagrams in Figs. 5, 
6, 7 and 8.

The dynamic response of the system near the pull-in 
instability boundary for u = 0 is illustrated in Fig. 5. For 
V = 0.47, at which the microbeam system is stable, it is 
seen from Fig. 5a that the oscillation of the microbeam is 
slowly damped with time going on. It may be foreseen that 
the microbeam would become motionless after a long time. 
For V = 0.473, which is slightly larger than the critical volt-
age, the phase portrait and time trace diagram (see Fig. 5b) 
show that the microbeam occurs pull-in during a short time; 
the dimensionless tip-end displacement of the microbeam is 
one eventually.

Figure 6a, b shows examples of the dynamic responses 
of the microbeam system subjected to a low flow velocity 
(u = 1.5), for two slightly different values of applied volt-
age. Clearly, the microbeam is stable when V = 0.699 (see 
Fig. 6a) and unstable when V = 0.7 (see Fig. 6b). Comparing 
the results shown in Fig. 6a with that in Fig. 5a, it is immedi-
ately found that the oscillation of the former is damped more 
quickly and the microbeam is finally deflected at a static 
configuration. The quickly damped oscillation is attributed 
to the fact that, for u = 1.5, the internal fluid flow induces 
positive damping in all modes of the system, which acceler-
ates the decay of the oscillation.

Similar results for u = 5.1 are illustrated in Fig. 7a, 
b, for V = 1.765 and 1.766, respectively. By referring to 
Figs. 3 and 4, in the case of u = 5.1, the microbeam would 

be concurrently subjected to flutter and pull-in instabili-
ties at a critical voltage. When V = 1.765, the system is 
stable, as shown in Fig. 7a. For a slightly larger voltage, 
i.e., V = 1.766, the system becomes unstable (see Fig. 7b). 
The dynamic response of the microbeam shown in Fig. 7b 
is interesting. The microbeam experiences a periodic-like 
motion around a nonzero position during the transient 
response. This transient periodic-like motion, however, 
is amplified quickly and the pull-in behavior takes place 
thereafter.

The results for V = 0.6 and two different higher flow 
velocities are shown in Fig. 8, where u = 5.5 corresponds a 
stable system, while u = 5.62 is for a microbeam subjected 

Fig. 8  Phase portraits and 
time trace diagrams near the 
flutter instability boundary, 
for V = 0.6: a u = 5.5 and b 
u = 5.62

(a)

(b)

Fig. 9  Bifurcation diagram of the dimensionless tip-end displace-
ment versus u for V = 0.5
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to flutter instability. The phase portrait and time trace dia-
gram shown in Fig. 8b indicate that the oscillation of the 
microbeam is periodic (limit cycle motion), which is not 
amplified with time going on. This dynamic feature is clearly 
different from that shown in Fig. 7b.

3.5  Global dynamics of electrostatically actuated 
microbeams conveying fluid

In Sect. 3.4, the dynamical behavior of the microbeam near 
the instability boundaries has been discussed. In the fol-
lowing, it is of interest to explore the global dynamics of 
the electrostatically actuated microbeam conveying fluid, 
by examining the possible responses of the microbeam for 
several typical values of applied voltage and a wide range 
of flow velocity. For that purpose, we select q1(0) = 0 as the 
initial condition. Three different values of V will be chosen 
for calculations for the nonlinear equation of (11).

One of the efficient ways to understand the global dynam-
ics of the microbeam system is by looking at the bifurca-
tion diagrams, consisting of successive amplitudes of the 
oscillations. Such diagrams are shown in Figs. 9, 10 for 
the problem at hand, to clarify the essential behavior of the 
microbeam. The variable parameter is u, while the output 
utilized to display bifurcations is the tip-end displacement 
of the microbeam.

3.5.1  Nonlinear dynamics of microbeams conveying fluid 
with small voltage

The nonlinear dynamics of the electrostatically actuated 
microbeam conveying fluid will be examined first for small 
voltages. It is noted from the stability boundaries given in 
Fig. 3, for small voltages (e.g., V = 0.5), as the flow veloc-
ity increases, the system undergoes a Hopf bifurcation at a 
critical value, shown at the right side of Fig. 3.

The bifurcation diagram for V = 0.5 with various flow 
velocities is plotted in Fig. 9. It is seen that when the flow 
velocity is lower than 5.8, the microbeam is stable. Thus, it 
has a static deflection due to the presence of electric force. 
The static deflection of the microbeam decreases with 
increasing flow velocity, up to u = 5.8, indicating that the 
internal fluid flow has a stabilization effect on the system in 
this range of flow velocities. At u = 5.8, the occurrence of 
Hopf bifurcation yields a limit cycle motion, which is asym-
metric due to the biased electric force.

With the increase in flow velocity beyond the Hopf bifur-
cation, interestingly, the size of the limit cycle motion is 
amplified first and then decreased. The decrease trend of the 
oscillation amplitudes with increasing flow velocity can be 
related to the oscillation frequencies of the dynamic system: 
A higher oscillation frequency is always accompanied with 
a smaller amplitude. For instance, the oscillation frequency 
for u = 10 is about 1.67 times that for u = 8; however, the 
former size of limit cycle motion is much smaller than the 
latter one.

3.5.2  Nonlinear dynamics of microbeams conveying fluid 
with moderate voltage

A bifurcation diagram for V = 1.2 is shown in Fig. 10. It is 
noted that for such moderate value of V, there is an instabil-
ity–restabilization–instability sequence as the flow velocity 
increases from 0 to 10 (see Fig. 3). Indeed, the results shown 
in Fig. 10 indicate that the microbeam is subjected to a pull-
in instability with a final displacement of w(1,τ) = 1 in the 
range of 0 ≤ u ≤ 4. In the range of 4 ≤ u ≤ 5.47, the micro-
beam is stable with a static deflection, and the value of this 
deflection decreases with increasing flow velocity. At about 
u = 5.47, the Hopf bifurcation occurs and an asymmetric 
limit cycle motion is generated. Similarly, it is observed that 
the size of the limit cycle motion is decreased when the flow 
velocity is gradually increased in the range of 8 ≤ u ≤ 10.

Fig. 10  Bifurcation diagram of the dimensionless tip-end displace-
ment versus u for V = 1.2

Fig. 11  Bifurcation diagram of the dimensionless tip-end displace-
ment versus u for V = 1.8
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3.5.3  Nonlinear dynamics of microbeams conveying fluid 
with large voltage

More interesting dynamical behavior is obtained if the 
applied voltage is fairly large (e.g., V = 1.8). In this case, 
the microbeam is unstable for all flow velocities, as shown 
in Fig. 3.

A bifurcation diagram for V = 1.8 is shown in Fig. 11, 
where the amplitudes of steady displacement versus 
flow velocity are plotted. It is seen that in the range of 
0 ≤ u ≤ 9.15 approximately, the microbeam is pulled in, 
and hence, the tip-end displacement is equal to 1 eventually. 
With increasing flow velocity (u) to 9.16, the asymmetric 
limit cycle motion (period-1 motion) occurs. At this bifurca-
tion point, however, the size of the limit cycle motion is not 
zero but suddenly amplified. This is significantly different 
from that shown in Figs. 9 and 10, where the size of the limit 
cycle motion is close to zero at the Hopf bifurcation point.

Lastly, it is instructive to look at the phase portrait and 
time trace diagram in the vicinity of u = 9.15 and V = 1.8. 
Typical results for u = 9.15 and V = 1.8 are plotted in 
Fig. 12. From this figure, it is noted that the microbeam 
would be subjected to a transient motion of chaos. That is 
to say, the motion is chaotic-like for a time, but eventually 
become a divergent motion. Here, this transient chaos is 
termed as ‘chaotic divergence.’

4  Conclusions

In this paper, the theoretical modeling and nonlinear 
dynamics of an electrostatically actuated microbeam con-
veying fluid have been presented. The nonlinear governing 
equation of the cantilevered microbeam is derived with 
consideration of the nonlinearities associated with both 
large-amplitude oscillations and nonlinear electrostatic 
force. Due to the concurrent presence of internal fluid flow 

and electric field, either pull-in or flow-induced instability 
is possible. The dynamic responses near and away from 
the instability boundaries are analyzed based on extensive 
calculations.

Compared with previous studies, several new dynami-
cal features of this system have been found. The first new 
feature is that the combination of both pull-in and flow-
induced instabilities can occur in this dynamical system 
for moderate flow velocities. The second new feature is 
associated with the effect of initial conditions on the insta-
bility boundaries. Results show that the instability bounda-
ries can be affected by initial conditions for low and mod-
erate flow velocities. The third new feature displayed is 
that various motions may occur beyond the instability 
boundaries. It is found that the microbeam may be pulled 
in beyond the static pull-in instability boundaries. When 
the flow velocity is higher than the threshold of flutter 
instability, however, limit cycle motions would occur. Of 
particular interest is that the microbeam may undergo tran-
sient periodic-like and chaotic divergence motions when 
the flow velocity and applied voltage fall in the unstable 
parameter region, which is beyond the combined boundary 
of the pull-in and flutter instabilities.

Consequently, it is shown that the internal fluid flow 
plays an important role in such microfluidic system cou-
pling with electrostatic force, which demonstrates that the 
electromechanical behavior of the microbeam is sensitive 
to the internal fluid flow. Therefore, the knowledge gained 
from this study is also expected to offer potential appli-
cations in controlling the electromechanical behaviors of 
microbeam-based MEMS via changing the fluidic param-
eters (e.g., flow velocity).
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Fig. 12  Phase portraits and 
time trace diagram for u = 9.15 
and V = 1.8, showing a chaotic 
divergence motion
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