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Abstract Many studies have reported that the material

properties of carbon nanotubes (CNTs) show a wide range

and exhibit a great of uncertainties. The uncertainty, in

turn, will affect the physical behaviors of CNTs. In this

paper, an iterative algorithm-based interval analysis

method is proposed to deal with the flexural wave propa-

gation characteristics of fluid-conveying CNTs with system

uncertainties. To make the conclusion more objective, the

properties of the material and fluid are all considered as

uncertain-but-bounded parameters, which can effectively

describe the uncertainties where few data are available to

perform the probabilistic analysis. The upper and lower

bounds of the wave dispersion curves are predicted to

clarify the influences of the uncertain material and fluid

properties on the wave propagation behaviors of fluid-

conveying CNTs. It is demonstrated that the widths of the

wave frequency and phase velocity behave different at

different wavelengths. Besides, the bounds predicted by the

probabilistic model are given to verify the present model,

and the present model is also validated by comparing with

the Monte Carlo simulation. The present model provides

some useful guides for using CNTs to convey fluid flows.

Keywords Wave propagation � Fluid-conveying � Carbon
nanotubes � Uncertainty � Interval analysis

1 Introduction

Carbon nanotubes (CNTs), discovered by Iijima (1991),

have exhibited outstanding application prospects in nan-

odevice, nanoelectronics, and nanocomposite due to their

remarkable physical, mechanical, electrical, thermal, and

optical properties (Mattia and Gogotsi 2008). It is essential

to understand the physical and mechanical behaviors of

CNTs for better guiding its applications in engineering.

However, the small size effect of CNTs brings two chal-

lenges to the research.

One problem is that the traditional theories and methods

will lose effectiveness. Although the molecular dynamic

(MD) simulation is widely accepted as an effective method

to reflect the size-dependent mechanical behaviors of

CNTs, this method is limited to structures with a small

number of atoms, and it is also time consuming. In this

case, an efficient continuum theory is needed to account

for the size-dependent effect of CNTs. Unfortunately, the

classical continuum theory is no longer applicable to

capture the small-scale effects of CNTs due to the lack of

size-scale parameter (Ansari et al. 2015; Li et al. 2016).

Recently, the nonlocal continuum theory, which assumes

that the stress tensor at any point is dependent on the

whole strain field of the continuum, is widely used to

characterize the small-scale effects of CNTs. This theory

was firstly proposed by Eringen (1972) and was success-

fully used in solving the vibration (De Rosa and Lippiello

2017; Deng and Yang 2014; Ebrahimi and Nasirzadeh

2015; Hu et al. 2012; Kiani 2013a, b; Xia and Wang 2010;

Zhen et al. 2011), wave propagation (Aydogdu 2014;

Huang et al. 2013; Narendar and Gopalakrishnan 2010;

Narendar et al. 2012; Wang et al. 2006, 2013, 2015), and

buckling (Adali 2008; Amara et al. 2010; Khademolhos-

seini et al. 2010; Robinson and Adali 2016; Setoodeh et al.
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2011) problems of CNTs. Several different nonlocal con-

tinuum theories, such as the nonlocal Euler–Bernoulli

beam (Setoodeh et al. 2011; Wang et al. 2015; Zhen et al.

2011), nonlocal Timoshenko beam (De Rosa and Lippiello

2017; Narendar and Gopalakrishnan 2010; Xia and Wang

2010), and nonlocal shell (Khademolhosseini et al. 2010)

theory, were adopted to study the mechanical behaviors of

CNTs, in particular, because the CNT comprises a sheet of

carbon atoms, which makes it perfect a candidate for

nanocontainers to store gases and for nanotubes to convey

fluids (Ansari et al. 2016; Bahaadini and Hosseini 2016; Li

et al. 2016; SafarPour and Ghadiri 2017). Several different

types of fluids such as water (Hanasaki and Nakatani 2006;

Mattia and Calabrò 2012; Zhang et al. 2010), methane,

ethane, and ethylene molecules (Mao and Sinnott 2000)

and light gases (Skoulidas et al. 2002) were reported by

many researchers. In this case, the effects of the conveying

fluids on mechanical behaviors of CNTs have aroused

worldwide academic interests (Mattia and Gogotsi 2008).

For instance, Narendar and Gopalakrishnan (2010) pro-

posed a nonlocal Timoshenko beam model to investigate

the terahertz wave propagation behavior in fluid-convey-

ing single-walled CNTs. Based on nonlocal Euler–Ber-

noulli beam theory, Bahaadini and Hosseini (2016)

analyzed the divergence and flutter instability of fluid-

conveying CNTs under combined effect of elastic foun-

dation and magnetic field. Kiani (2013b) studied the

vibration behavior of CNTs subjected to an inside viscous

fluid flow by using Eringen’s nonlocal elasticity theory.

Other similar analyses also can be found in Refs. (Ab-

basnejad et al. 2015; Amiri et al. 2016; Chang 2013a, b;

Deng and Yang 2014; Wang et al. 2013; Xia and Wang

2010).

The other problem induced by the small size effect is

that the uncertainties during the nanoscale system will

become much more serious. The model inaccuracies,

physical imperfections, material defects, and system com-

plexities are unavoidable, and they both would introduce

system uncertainties. Many experimental results have

indicated that the Young’s modulus of CNTs has a wide

range and shows a great of uncertainties. For instance,

Salvetat et al. (1999) used an atomic force microscope

experiment to measure the flexural Young’s modulus and

shear modulus of CNTs, and 50% of error was found in

their test results. Krishnan et al. (1998) measured 27 CNTs

and found that the Young’s modulus was in a wide range of

1.3–0.4/?0.6 TPa. Tu and Ou-Yang (2002) summarized

several different results presented by different authors and

a large varying range of 0.5–5.5 TPa of Young’s modulus

was found. Several other experiments, theoretical models

and MD simulations, were also carried out to predict the

elastic properties of CNTs, and similar phenomena were

also reported (Cagliero et al. 2015; Liew et al. 2004; Meo

and Rossi 2006; Treacy et al. 1996; Bao et al. 2004; Wong

et al. 1997).

Following the available references, it can be easily

found that the material properties of CNTs are affected by

many factors, and it cannot be set as certain values. Under

many circumstances, they should be considered as uncer-

tain parameters with a range. To the authors’ knowledge,

the material parameters are sometimes treated as random

variables in a few studies. For example, Scarpa and

Adhikari (2008) established a stochastic reduced order

model to analyze the natural frequencies of CNT terahertz

oscillators. In their work, both the thickness and the mass

density were defined as random variables, and the predic-

tions calculated by the analytical models were also vali-

dated by comparing with FE models. Chang (2013a, b)

proposed a stochastic finite element (FE) method to study

the nonlinear vibration of the fluid-conveying double-

walled CNTs. In his studies, the Young’s modulus of the

CNTs was characterized as random parameters. In fact, the

influence of uncertain system parameters on the mechani-

cal behaviors of fluid-conveying pipes has aroused widely

concern in recent years. For instance, Ritto et al.(2014)

studied the stochastic stability and reliability behaviors of

the fluid-conveying pipe system by using a probabilistic

model with consideration of the modeling errors. Gan

et al.(2014) presented a random uncertainty modeling

procedure to study the vibration characteristics of a straight

pipe conveying fluid. Alizadeh et al.(2016) discussed the

vibration and stability of fluid-conveying pipes by con-

sidering the structural and fluid parameters as random

variables.

Probabilistic model can be used to describe the uncertain

parameters. However, a large number of information

should be offered to build a precise probability distribution

function (PDF) for the uncertain parameters in the proba-

bilistic model (Lv and Qiu 2016). Unfortunately, due to the

small size effect, it is often too difficult to collect enough

information about the uncertainty of nanostructures. To

overcome the weaknesses of the probabilistic model, an

interval analysis method is proposed in the present paper.

In the interval model, the uncertain parameters can be

defined as interval variables with deterministic bounds

(Impollonia and Muscolino 2011). Because only the upper

and lower bounds of the uncertain parameter are needed,

the interval model can be effectively used to represent the

uncertain parameters where the sample points are limited.

As a matter of fact, the uncertain-but-bounded parameters

are widely used in many engineering problems such as

vibration, bulking, and static and dynamic characteristics

of engineering structures (Impollonia and Muscolino 2011;

Koyluoglu and Elishakoff 1998; Neumaier 1990; Rao and

Berke 1997; Sofi and Muscolino 2015; Sofi et al. 2015a, b).

However, an interval analysis model incorporating the
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small-scale and uncertain-but-bounded parameters of

CNTs has not been reported yet.

The wave dispersion behavior of CNTs has gained

extensive attention from scientific communities because

many crucial physical characteristics such as optical transi-

tion and electrical conductance andmany dynamic behaviors

of CNTs are directly related to the presence of waves. As far

as the authors’ awareness, many works have been reported

on deterministic analysis of wave propagation characteris-

tics of fluid-conveying CNTs, such as (Dong et al.

2007, 2008; Li and Hu 2016; Narendar and Gopalakrishnan

2010; Wang et al. 2013). However, no previous work is

available in the literature to accomplish the wave propaga-

tion analysis of fluid-conveying CNTs with uncertain-but-

boundedmaterial and fluid properties. Themain objective of

this paper is to set up a theoretical model to investigate the

influence of the uncertain-but-bounded parameters on wave

propagation characteristics of fluid-conveying CNTs.

The paper is organized as follows. In the next section, a

theoretical model is presented to characterize the wave

propagation behavior of CNTs, and the small-scale effect is

also taken into account by using the nonlocal elasticity the-

ory. Besides, an iterative algorithm-based interval analysis

method is proposed to account for the uncertain-but-bounded

properties of the material and fluid. In Sect. 3, the presented

interval analysis method is validated by comparing with the

Monte Carlo simulation and the probabilistic model. In

Sect. 4, the influence of the uncertain-but-bounded param-

eters of the material and fluid on wave dispersion behaviors

of fluid-conveying CNTs is investigated in detail. Finally,

conclusions are drawn in Sect. 5.

2 Problem formulation

2.1 Nonlocal continuum theory

Nonlocal continuum theory has been widely applied to

CNTs because it can reflect the small-scale effect of CNTs.

This theory assumes that the stress tensor at a reference

points x is related to the whole strain field of the object

under study. The nonlocal elasticity constitutive relation

can be expressed in the differential form as (Eringen 1972)

1� ðe0aÞ2r2
� �

rðxÞ ¼ TðxÞ; TðxÞ ¼ CðxÞ :eðxÞ; ð1Þ

where rðxÞ and TðxÞ denote the nonlocal and local stress

tensor components, respectively, and C(x) represents the

fourth-order elasticity tensor, the symbol ‘‘:’’ denotes the

‘‘double-dot product,’’ eðxÞ denotes the strain tensor com-

ponent, e0a denotes the small-scale coefficient, and r2 is

the Laplacian operator. Note that the classical (local)

elasticity theory can be recovered from e0a = 0.

In the special case of Euler–Bernoulli beams, Eq. (1)

reduces to

rxx � e0að Þ2d
2rxx
dx2

¼ Eexx ð2Þ

where E represents Young’s modulus of CNTs, rxx and exx
are axial stress and strain of CNTs, respectively.

2.2 Governing equations

To understand the wave propagation in fluid-conveying

CNTs, a CNT with Young’s modulus E, mass density qc,
outer radius Ro, inner radius Ri, and cross-sectional area A

is considered. The conveying fluid is modeled as a steady

flow of mass density qf, and flowing with an axial uniform

velocity Vf, as depicted in Fig. 1. Based on Euler–Bernoulli

beam theory, the deformation fields of CNTs are denoted as

uðx; tÞ ¼ �z
ow

ox
ð3Þ

wðx; tÞ ¼ wðx; tÞ: ð4Þ

According to the small deformation assumption, the

only nonzero strain of the CNT is

exx ¼
ou

ox
¼ �z

o2w

ox2
: ð5Þ

The Euler–Bernoulli beam theory with considering the

rotary inertia and nonlocal effects of the CNT is used to

derive the governing equation of fluid-conveying CNTs,

which have been presented by Li and Hu (2016).

Neglecting the fluid viscosity and strain gradient effects in

their study or based on the Hamilton’s principle derived in

‘‘Appendix’’, the differential equation of motion of the

fluid-conveying CNTs can be given by

1� e0að Þ2 o
2

ox2

� �
qcA

o2w

ot2
� qcI

o4w

ox2ot2

�

þ mf

o2w

ot2
þ 2Vf

o2w

oxot
þ V2

f

o2w

ox2

� ��
þ EI

o4w

ox4
¼ 0:

ð6Þ

where mf and I are, respectively, the mass per unit length of

the fluid and the moment of inertia of the CNT, which can

be determined by

Fig. 1 Schematic of flexural wave propagation in a fluid-conveying

CNT
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mf ¼ qf Ai; I ¼
Z

A

z2dA; ð7Þ

where Ai ¼ pR2
i denotes the inner internal cross-sectional

area of the CNT.

In the wave propagation analysis, the transverse dis-

placement of the fluid-conveying CNT is supposed to have

the form as follows:

w ¼ W exp �jðkx� xtÞ½ � ð8Þ

where W is the wave amplitude, k and x are the wave

number and the circular frequency, respectively, and

j ¼
ffiffiffiffiffiffiffi
�1

p
. Substituting Eqs. (8) into (6) leads to

1þ e0að Þ2k2
� �

�qcAx
2 � qcIx

2k2
	

�mf x2 � 2Vfxk þ V2
f k

2
� �i

þ EIk4 ¼ 0:
ð9Þ

Then, the frequency can be calculated by

x ¼ c2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ 4c1c3

p
2c1

ð10Þ

where the parameters c1, c2, and c3 are, respectively, given

as

c1 ¼ 1þ e0að Þ2k2
h i

qcAþqcIk
2þmf


 �
ð11aÞ

c2 ¼ 2mfVf k 1þ e0að Þ2k2
h i

ð11bÞ

c3 ¼ EIk4 � 1þ e0að Þ2k2
h i

mfV
2
f k

2: ð11cÞ

The phase velocity can be derived by using the fol-

lowing equation

cp ¼
x
k
: ð12Þ

2.3 Interval analysis method

In the above section, the deterministic analysis for the

wave propagation characteristics of fluid-conveying CNTs

is presented. However, the system uncertainties caused by

the manufacturing errors, physical imperfections, and

material defects are unavoidable, and many experimental

results have shown that the material properties of CNTs

have a great of uncertainties. To overcome the massive

information needed to build a precise PDF for the uncertain

parameters to conduct the probabilistic analysis, the

uncertain parameters are defined as interval variables with

known bounds in this section. The material and fluid

parameters, i.e., the mass density qc, Young’s modulus E of

the CNT and the small-scale coefficient e0a, and the

velocity Vf and mass density qf of the conveying fluid, are

all defined as interval parameters. These uncertain param-

eters can be denoted by an interval vector as follows

z 2 zI ¼ z; z½ � ¼ zc � Dz; zc þ Dz½ � ¼ zIi

 �

; ð13aÞ

or zi 2 zIi ¼ zi; �zi
	 �

¼ zci � Dzi; z
c
i þ Dzi

	 �
i ¼ 1; 2; . . .; 5

ð13bÞ

where z ¼ zi

 �

and �z ¼ �zið Þ are, respectively, the lower and
upper bounds of the uncertain parameter vector

z ¼ E; qc; e0a;Vf ; qf

 �T

; zI ¼ EI ; qIc; e0a
I ;VI

f ; q
I
f

� �T
is a

five-dimensional interval vector including all uncertain

material and fluid parameters; zci ¼ zi þ �zi

 �

=2 and Dzi ¼
�zi � zi

 �

=2 represent the midpoint and the radius of the

interval parameters, respectively. For simplicity, the radius

of the uncertain-but-bounded parameter also can be rep-

resented by Dzi ¼ azci , where the parameter a stands for the

uncertain level. Accordingly, the interval parameter zIi can

be denoted as zIi ¼ zci ½1� a; 1þ a�.
An interval analysis method based on the iterative

algorithm is proposed to capture the lower and upper

bounds of the wave dispersion curve. For the sake of

generality, the interval extension of the wave dispersion

relation expressed in Eq. (9) takes the form as follows:

Fðx; zIÞ ¼ 1þ e0a
I


 �2
k2

� �
�qIcAx

2 � qIcIx
2k2

	

�qIf Ai x2 � 2VI
fxk þ VI

f k
� �2� ��

þ EIIk4 ¼ 0
ð14Þ

where F(�) denotes a nonlinear function of the wave fre-

quency x, F x; zIð Þ is the natural interval extension of

F x; zð Þ.
The solution of Eq. (14) can be defined as a set

K ¼ xðzIÞ ¼ x 2 R : Fðx; zÞ ¼ 0; z 2 zI

 �

ð15Þ

where R denotes the real domain. One can notice that a

direct solution to the above equation cannot be fulfilled due

to the strong nonlinearity. Here, an iterative algorithm-

based interval analysis method is proposed to solve the

bounds of the wave frequency.

Firstly, we introduce two functions as follows

/ xð Þ ¼ �F x; zI

 �

¼ max
z2zI

F x; zð Þ ð16Þ

u xð Þ ¼ F x; zI

 �

¼ min
z2zI

F x; zð Þ ð17Þ

where / xð Þ and u xð Þ both can be treated as nonlinear

functions of the wave frequency x.
The first-order derivative of Eqs. (16) and (17) can be

separately given as

d/ xð Þ
dx

¼ d

dx
max
z2zI

F x; zð Þ
� �

¼ max
z2zI

oF x; zð Þ
ox

ð18Þ
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du xð Þ
dx

¼ d

dx
min
z2zI

F x; zð Þ
� �

¼ min
z2zI

oF x; zð Þ
ox

: ð19Þ

Supposing x ¼ xa as the solution of oF x; zð Þ=ox¼0,

from Eq. (14), one has oFðx; zIÞ
�
ox\0 when x[xa,

and then, it can be arrived at:

du xð Þ
dx

¼ d

dx
min
z2zI

F x; zð Þ
� �

\
d/ xð Þ
dx

¼ d

dx
max
z2zI

F x; zð Þ
� �

\0: ð20Þ

Hence, it can be concluded that both / xð Þ and u xð Þ are
monotonically decreasing function with respect to the wave

frequency x when x[xa.

Assuming that x ¼ x� is the solution of equation

F x; zð Þ ¼ 0 and by using monotonicity, one has

F x�; zð Þ 2 F x�; z
I


 �
ð21Þ

where F x�; z
Ið Þ is an interval extension of F x�; zð Þ.

Combining F x�; zð Þ ¼ 0 with Eqs. (16), (17), and (21),

the following inequality can be derived as

u x�ð Þ ¼ F x�; z
I


 �
� 0� �F x�; z

I

 �

¼ / x�ð Þ: ð22Þ

The above relationship is clearly found in Fig. 2. From

this figure, the following two equations also can be

obtained

/ �xð Þ ¼ lim
x�! �x

/ x�ð Þ ¼ 0 ð23Þ

u xð Þ ¼ lim
x�!x

u x�ð Þ ¼ 0 ð24Þ

where x ¼ min
z2zI

x zð Þ and �x ¼ max
z2zI

x zð Þ are the lower and

upper bounds of the wave frequency, respectively.

Introducing three interval vectors as follows

xI
S ¼ xS; �xS½ �; xS �x� �x� �xS ð25Þ

xI
U ¼ xU ; �xU½ �; xU � �x� �xU ð26Þ

xI
L ¼ xL; �xL½ �; xL �x� �xL ð27Þ

where xI
S denotes an initial interval involving all possible

values of the wave frequency set xI ; xI
U and xI

L are iter-

ative intervals of the upper and lower bounds of the wave

frequency, respectively. xb and �xb (b = S, U and L) de-

note the lower and upper bounds of the corresponding

intervals, respectively.

In Eq. (23), the first-order Taylor series expansion at

x ¼ x� can be expressed as

/ �xð Þ ¼ / x�ð Þ þ d/ nð Þ
dx

�x� x�ð Þ ð28Þ

where x� � n� �x. By combining Eqs. (18), (25), and (26),

and using monotonicity, and considering n 2 xI
S and

�x 2 xI
U , one has

/ �xð Þ 2 / xI
U


 �
� / x�ð Þ þ d/ nð Þ

dx
xI

U � x�

 �

ð29Þ

d/ nð Þ
dx

2
d/ xI

S


 �
dx

�
oF xI

S; z
I


 �
ox

ð30Þ

where d/ xI
S


 ��
dx and oF xI

S; z
I


 ��
ox represent the

interval extensions of d/ xð Þ=dx and oF x; zð Þ=ox,
respectively.

Inserting Eqs. (23) and (30) into Eq. (29), the following

equation can be obtained

0 2 / x�ð Þ þ
oF xI

S; z
I


 �
ox

xI
U � x�


 �
: ð31Þ

Based on the interval mathematics, it is clear that the

width of right-hand side interval given in Eq. (31) depends

only on xI
U because the widths of both xI

S and zI are

constants. Then there exists a constant kc satisfying (Ale-

feld and Mayer 2000; Moore 1979)

Wid / x�ð Þ þ
oF xI

S; z
I


 �
ox

xI
U � x�


 �� �
� kcWid xI

U


 �
:

ð32Þ

where Wid(�) represents the width of interval vector. Our

goal is to obtain the upper bound of the wave frequency

�x 2 xI
U whose width is zero. Based on the interval analysis

theory proposed by Moore (1979), if the interval arithmetic

evaluation exists, then the width of xI
U is approaching zero.

Correspondingly, the width of the interval arithmetic

evaluation will go linearly to zero (Alefeld and Mayer

2000), i.e.,

Wid / x�ð Þ þ
oF xI

S; z
I


 �
ox

xI
U � x�


 �� �
! 0: ð33Þ

*

*

*

;F z

0

Upper  bound

Lower  bound

Nominal value

Upper  bound

Lower  bound

Fig. 2 Illustration of interval analysis method based on the iterative

algorithm
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Equation (33) provides an available method to identify

the upper bound of frequency by an iterative algorithm to

reduce the width of xI
U . The iterative algorithm can be

established via the following equation

/ x�ð Þ þ
oF xI

S; z
I


 �
ox

xI
U � x�


 �
¼ 0: ð34Þ

Because / x�ð Þ � 0 and oF xI
S; z

I

 ��

ox\0, the iterative

interval xI
U can be obtained by Eq. (34), which can be

further expressed as

xI
U ¼ xU ; �xU½ � ¼ x� �

/ x�ð Þ
d

; x� �
/ x�ð Þ

�d

� �
ð35Þ

where

d ¼ min
x2xI

S
;z2zI

oF x; zð Þ
ox

; �d ¼ max
x2xI

S
;z2zI

oF x; zð Þ
ox

: ð36Þ

Substituting �x 2 xI
U into Eq. (35) leads to

x� �
/ x�ð Þ

d
� �x�x� �

/ x�ð Þ
�d

: ð37Þ

Because / x�ð Þ=d� 0, one can also have

x� �x� �
/ x�ð Þ

d
� �x: ð38Þ

Based on the above inequality, the iterative algorithm

for the upper bound of the wave frequency can be deter-

mined by

�xpþ1 ¼ �xp �
/ �xp


 �
d

ð39Þ

where �xp is the iterative wave frequency of the pth com-

putational cycle during the iterative procedure. The con-

vergent condition is given as follows

�xpþ1 � �xp

�� ��� h: ð40Þ

The upper bound of the wave frequency can be deter-

mined at the point when the above convergent condition is

satisfied. The algorithm flowchart for the interval analysis

is shown in Fig. 3.

Similarly, following the steps presented in Eqs. (28)–

(39), the iterative algorithm for the lower bound of the

wave frequency also can be calculated by

xqþ1 ¼ xq �
u xq


 �

d
ð41Þ

where xq denotes the iterative frequency of the qth com-

putational cycle during the iterative procedure. Combining

with the convergent condition, the lower bound of the wave

frequency can be obtained. The bounds of the phase

velocity also can be calculated in the same way.

2.4 Probabilistic analysis method

In this section, a probabilistic model is presented to vali-

date the interval analysis method proposed in the above

section. Assume that the uncertain material and fluid

parameter vector z ¼ E; qc; e0a;Vf ; qf

 �T

is random vari-

able. Denote the wave frequency expressed in Eq. (10) as a

function x(z). Then, the wave frequency x(z) is also ran-

dom. The mean value of the random parameter vector z can

be given as

EðzÞ ¼ EðziÞð Þ ¼ zE ¼ zEi

 �

: ð42Þ

Using first-order Taylor series expansion, the wave

frequency x(z) about the mean value zE is developed as

xðzÞ ¼ xðzE þ dÞ ¼ xðzEÞ þ
Xn
i¼1

ox zEð Þ
ozi

zi � zEi

 �

: ð43Þ

The mean value of the wave frequency can be obtained

by taking the expected value of both sides of Eq. (43). One

can arrive at
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propagation in fluid-conveying CNTs
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E xðzÞð Þ ¼ E xðzEÞ

 �

þ E
Xn
i¼1

ox zEð Þ
ozi

zi � zEi

 � !

¼ xðzEÞ þ
Xn
i¼1

ox zEð Þ
ozi

E zi � zEi

 �

ð44Þ

It is noted that Eðzi � zEi Þ is zero, and thus, one has

E xðzÞð Þ ¼ xðzEÞ: ð45Þ

In a similar way, the variance of the wave frequency can

be calculated as follows:

D xðzÞð Þ ¼
Xn
i¼1

ox zEð Þ
ozi

� �2

D zið Þ

þ
Xn
i¼1

Xn
l¼1

ox zEð Þ
ozi

ox zEð Þ
ozl

Cov zi; zlð Þ: ð46Þ

where Cov zi; zlð Þ is the covariance of the random parameter

variables. When the random parameters are independent,

one has Cov zi; zlð Þ ¼ 0, and then Eq. (46) is reduced as

D xðzÞð Þ ¼
Xn
i¼1

ox zEð Þ
ozi

� �2

D zið Þ ¼
Xn
i¼1

ox zEð Þ
ozi

r zið Þ
� �2

¼
Xn
i¼1

ox zEð Þ
ozi

ri

� �2

ð47Þ

where r zð Þ ¼ r zið Þð Þ is the standard deviation of the ran-

dom parameter vector z = (zi), and then, the standard

deviation of the wave frequency can be derived as

r xðzÞð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xðzÞð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ox zEð Þ
ozi

ri

� �2

vuut : ð48Þ

The probabilistic range of g times standard deviations of

the mean value of the wave frequency can be denoted as

xI ¼ x zð Þ; �x zð Þ½ �
¼ xðzEÞ � gr x zð Þð Þ;xðzEÞ þ gr x zð Þð Þ
	 �

ð49Þ

where xðzÞ and �xðzÞ are, respectively, the probabilistic

lower and upper bounds of the wave frequency obtained by

the probabilistic method; g is a positive integer and can be

determined by the intervals of the uncertain-but-bounded

parameters. Similarly, the probabilistic lower and upper

bounds of the phase velocity also can be obtained.

3 Model verification

In this section, the Monte Carlo simulation and the prob-

abilistic model are employed to verify the present interval

analysis method. The inner and outer radiuses of the CNT

are defined as Ri = 3.4 nm and Ro = 3.74 nm, respec-

tively (Zhen et al. 2011). The material parameters

(including the Young’s modulus E, mass density qc, and
the small-scale coefficient e0a of the CNTs) and the fluid

parameters (including the velocity Vf and the mass density

qf of the fluid) are all treated as uncertain-but-bounded

parameters. The midpoints of these interval parameters are,

respectively, defined as (Zhen et al. 2011) Ec = 1 TPa,

qcc = 2300 kg/m3, e0a
c = 0.5 nm, Vc

f = 1000 m/s, and

qcf = 1000 kg/m3, while the radiuses of these parameters

are expressed as DE ¼ aEc, Dqc ¼ aqcc, De0a ¼ a � e0ac,
DVf ¼ aVc

f and Dqf ¼ aqcf , respectively, where the vari-

able a represents the uncertainty level.

3.1 Comparison with Monte Carlo simulation

The lower bound (LB) and upper bound (UB) of the wave

dispersion curves calculated by the present interval analy-

sis method (IAM) and Monte Carlo simulation (MCS) are

compared and shown in Fig. 4. Here, the MCS with

3.2 9 106 sample points is introduced as a referenced

method, and it can be performed in the following steps.

Firstly, we choose 20 equal incremental values for each

uncertain parameter from its LB to UB. Then a large

number of deterministic wave frequency and phase veloc-

ity responses can be obtained by using Eqs. (10) and (12),

from which the maximum and minimum of the wave dis-

persion curves with respect to the interval parameters can

be easily obtained. As depicted in Fig. 4, the UB of the

wave frequency and the phase velocity predicted by the

IAM is a little lower than that predicted by the MCS, while

the LB of the frequency and the phase velocity obtained by

the IAM is a little larger than that obtained by the MCS. In

other words, the wave dispersion curves predicted by the

present IAM is completely reliable and can extensively

reduce the computational cost for huge samples of MCS.

3.2 Comparison with probabilistic analysis method

The probabilistic analysis method (PAM) is presented to

validate the IAM. We assume that the Young’s modulus E,

mass density qc, and the small-scale coefficient e0a of the

CNTs, and the velocity Vf and mass density qf of the fluid

all have normal distributions with the mean values

lE = 1 TPa, lqc = 2300 kg/m3, le0a = 0.5 nm,

lVf
= 1000 m/s and lqf = 1000 kg/m3, respectively.

Based on 3r principle, the standard deviations of these

uncertain variables are set as rE = 0.03 TPa, rqc = 69 kg/

m3, re0a = 0.015 nm, rVf
= 30 m/s and rqf = 30 kg/m3,

respectively, which corresponds to the uncertain-but-

bounded parameters with uncertainty level a = 0.09. The

comparison between IAM and PAM for the wave disper-

sion curves is depicted in Fig. 5. It is clear that the ranges

of the wave frequency and phase velocity yielded by IAM
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are basically in well agreement with those predicted by

PAM, but the former encloses the latter, which means the

present IAM provides more conservative results than PAM.

4 Results and discussion

4.1 Parameter sensitivity studies

To identify the most important uncertain parameters which

have the highest contributions to the wave propagation

behaviors of fluid-conveying CNTs, the parameter sensitivity

study is carried out in this section.The sensitivities of thewave

frequency to uncertainty can be studied by using the relative

sensitivity indices S(zi) defined as follows (Isukapalli 1999)

SðziÞ ¼
oxðzÞ
ozi

����
����

zci
�� ��
xcðzÞ

ð50Þ

where xc(z) denotes the normal value of the wave fre-

quency. The sensitivities of the wave frequency with

respect to the uncertain variables at several different wave

numbers are compared in Table 1. It is observed that SðEÞ,
SðqcÞ, and Sðe0aÞ monotonically increase, and Sðqf Þ and

SðVf Þ monotonically decrease with increasing the wave

number. The wave frequency is more sensitive to the

small-scale coefficient e0a than other uncertain parameters.

At small wave numbers, the contribution of the small-scale

coefficient e0a is the lowest, while it shows the largest

contribution to the wave frequency when the wave number

becomes large. The Young’s modulus E has the largest

influence on the wave frequency when the wave number is

small, while for larger wave numbers, the sensitivity of the

mass density of the fluid is the lowest.

4.2 Effect of conveying fluid

The influences of the conveying fluid on the upper and

lower bounds of the wave dispersion behaviors for the

classical and nonlocal continuum models are depicted in

Figs. 6 and 7, respectively. One can find that the conveying
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fluid will primarily affect the bounds of the wave frequency

and phase velocity at small wave numbers both for the

classical and nonlocal continuum models, while the bounds

of the frequency and phase velocity are insignificant to the

conveying fluid as the wave number is getting larger.

As depicted in Fig. 6a, the upper and lower bounds

of the frequency always increase with increasing the

wave number when the nonlocal effect is ignored.

While from Fig. 7a, the bounds of the frequency

increase firstly and then trend to constant values with

increasing the wave number once the nonlocal effect is

taken into account. Figure 7b gives the phase velocity

versus the wave number with considering the small size

effect, which shows that the conveying fluid will reduce

both the upper and lower bounds of the phase velocity

when k\ 3 nm-1, while the influence of the conveying

fluid on the phase velocity dispersion curve is not much

prominent when k[ 3 nm-1. The phase velocity has

the widest range when the wave number k approaches

to 1 nm-1. However, as shown in Fig. 6b, when the

small size effect is ignored, the range of the phase

velocity will trend to constant values as k[ 4 nm-1.

The significant deviation shown in Figs. 6 and 7

demonstrates that the small size scale has much effect

on the bounds of the wave frequency and phase

velocity, and its effect should not be neglected for the

wave propagation analysis of the size-dependent fluid-

conveying CNTs.

4.3 Effect of size-scale parameter

The bounds of the frequency dispersion curve for CNTs

with several different size scales are illustrated in Fig. 8a.

Here, e0a = 0 nm represents the classical continuum

model with no size-scale effect, e0a
c = 0.5 nm, 1.0 and

2.0 nm denote three different midpoints of the small-scale

coefficient. It is clear that the frequency increases dra-

matically all along the wave number as e0a = 0 nm, while

the wave frequency increases firstly and then tends to

constant values when the size-scale effect is taken into

account. The extensive deviation indicates the classical

continuum model cannot be used to reflect the physical

behavior of nanoscale CNTs. It is also shown that for a

fixed e0a
c, the range of the frequency increases firstly and

then remains unchanged with respect to the wave number.

As the parameters e0a
c increases, the range of the fre-

quency will become much narrower.

Figure 8b plots the upper and lower bounds of phase

velocity dispersion curves for CNTs with uncertain vari-

ables at different size scales. The phase velocity is not

sensitive to the midpoint of the small-scale coefficient e0a
c

when the wavelength is large (low wave numbers). How-

ever, once the wavelength is small (large wave numbers),

the parameter e0a
c will become important. The range of the

phase velocity always increases with the wave number as

the wavelength is large. However, if the wavelength is

small, the bound of the phase velocity will remain

Table 1 Relative sensitivity of

wave frequency with respect to

uncertain variables at different

wave numbers

Sensitivity SðEÞ SðqcÞ Sðe0aÞ SðVf Þ Sðqf Þ

k = 0.1 nm-1 0.4188 0.2079 2.088 9 10-3 0.1625 0.2108

k = 1 nm-1 0.4933 0.3961 0.1973 0.0134 0.0972

k = 10 nm-1 0.4997 0.4988 0.9610 5.972 9 10-4 9.203 9 10-4

k = 100 nm-1 0.5000 0.5000 0.9997 1.087 9 10-4 3.170 9 10-5
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unchanged when the size-dependent effect is ignored

(e0a = 0 nm), while it decreases dramatically when the

size-scale effect is taken into consideration. The observed

deviation also confirms that the size-scale effect should not

be neglected in analysis of CNTs conveying fluids.

4.4 Effect of uncertainty level

The uncertainty level which governs the uncertain-but-

bounded variables is discussed in this section. The bounds

of the wave frequency and the phase velocity as a function

of the uncertain level are presented in Fig. 9. For the

classical continuum model, the small-scale coefficient is

defined as e0a = 0 nm, while the midpoint of small-scale

coefficient e0a
c = 0.5 nm is used for the nonlocal contin-

uum model. It is evident that the UB of the wave frequency

and the phase velocity increases with increasing the

uncertainty level both for the classical and nonlocal con-

tinuum models, while the LB of these characteristic vari-

ables shows an opposite tendency. Due to this fact, the

range of the wave frequency and the phase velocity will

become larger as the uncertainty level increases. Compared

with the classical continuum model, the upper and lower

bounds of the wave frequency and the phase velocity both

will reduce significantly when the size-scale effect is taken

into consideration, which indicates the size-scale effect

should not be neglected to analyze the wave propagation

behaviors of fluid-conveying CNTs.

5 Conclusion

In this paper, an iterative algorithm-based interval analysis

method is proposed to study the flexural wave propagation

characteristics of fluid-conveying CNTs with system

uncertainties. To deal with the uncertainties where few data

are available to establish a precise PDF for probabilistic

analysis, both the material properties of CNTs and the

properties of the conveying fluid are all set as uncertain-

but-bounded parameters. The governing equations are
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derived on the basis of nonlocal Euler–Bernoulli beam

theory. Moreover, the upper and lower bounds of the wave

dispersion curves are captured by using the proposed

interval analysis method.

It can be concluded that both the fluid and the size-scale

parameter will affect the upper and upper bounds of the

wave frequency and phase velocity significantly. The

uncertain level also has considerable influences on the

upper and upper bounds of the wave frequency and the

phase velocity. The proposed method is also verified by

comparing with the Monte Carlo method and probabilistic

method, and good agreements are achieved. Comparing

with these two traditional uncertain analysis methods, the

proposed interval method can reduce the large computa-

tional cost of Monte Carlo simulations and can overcome

the large prior information needed in probabilistic analyses.

The presented interval analysis method presents one useful

way to investigate the uncertain effect in small-scale CNTs

and also can be used in other nanostructures with uncertain

system properties.
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Appendix

The Hamilton’s principle is used to obtain the governing

equations of CNTs, which reads
Z t2

t1

d U � Tf � Tc

 �

dt ¼ 0 ð51Þ

where U, Tf, and Tc denote potential energy, kinetic energy

of fluid and CNT, respectively.

The first variation of potential energy of the CNT can be

expressed as

dU ¼
Z

V

rxxdexxdV ¼ �
Z

V

rxxd z
o2w

ox2

� �
dV

¼ �
Z L

0

o2M

ox2
dwdx ð52Þ

where M represents the bending moment, which satisfies

M ¼
Z

A

zrxxdA: ð53Þ

The first variation of the kinetic energy of the CNT and

the conveying fluid can be separately expressed as

dTc ¼
Z L

0

Z

A

qc
ow

ot
d

ow

ot

� �
þ z

o2w

otox

� �
d z

o2w

otox

� �� �� �
dAdx

¼
Z L

0

�qcA
o2w

ot2
þ qcI

o4w

ot2ox2

� �
dwdx

ð54Þ

dTf ¼ mf

Z L

0

ow

ot
d

ow

ot

� �
þ Vf d

ow

ot

ow

ox

� �
þ V2

f

ow

ox
d

ow

ox

� �� �
dx

¼ �mf

Z L

0

o2w

ot2
þ 2Vf

o2w

otox
þ V2

f

o2w

ox2

� �
dwdx

ð55Þ

where mf = qf 9 Ai is the mass of fluid per unit length, I is

the moment of inertia of the CNT, which can be deter-

mined by

I ¼
Z

A

z2dA: ð56Þ

Substituting Eqs. (52), (54), and (55) into Eq. (51), and

setting the coefficient of dw to zero, the governing equa-

tions of motion can be obtained as

o2M

ox2
¼ qcA

o2w

ot2
� qcI

o4w

ox2ot2

þ mf

o2w

ot2
þ 2Vf

o2w

oxot
þ V2

f

o2w

ox2

� �
: ð57Þ
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number is fixed as k = 2 nm-1
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Multiplying Eq. (2) by z and integrating the corre-

sponding equation over the cross-sectional area A leads to

M � e0að Þ2o
2M

ox2
¼ E

Z

A

�z2w;xx


 �
dA ¼ �EI

o2w

ox2
: ð58Þ

By introducing Eqs. (57) to (58), the bending moment

can be given as

M ¼ e0að Þ2 qcA
o2w

ot2
� qcI

o4w

ox2ot2

�

þmf

o2w

ot2
þ 2Vf

o2w

oxot
þ V2

f

o2w

ox2

� ��
� EI

o2w

ox2
:

ð59Þ

Substituting Eqs. (59) into (57), the differential equation

of motion of fluid-conveying CNTs can be expressed as

1� e0að Þ2 o
2

ox2

� �
qcA

o2w

ot2
� qcI

o4w

ox2ot2

�

þmf

o2w

ot2
þ 2Vf

o2w

oxot
þ V2

f

o2w

ox2

� ��
þ EI

o4w

ox4
¼ 0:

ð60Þ
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