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1 Introduction

Emerging applications and implications of rotationally 
actuated microfluidic systems/devices, which include bio-
chemical processing and medical diagnostics in one side 
as well as the systematic interrogation of the complex flow 
physics on the other, have motivated humongous research 
interests to both the theoretical and experimental research 
communities (Stone et al. 2004; Madou et al. 2006; 
Chakraborty et al. 2009, 2011; Ng and Qi 2015). The appli-
cation of electrical forcing in realizing transport through 
microfluidic pathways, which is an experimentally proven 
phenomenon (Ramos et al. 1998, 2003; Green et al. 2000), 
has also received considerable attention owing to a few 
distinctive transport features such as on-chip integrability, 
removal of moving components, finer controllability, to 
name a few (Ajdari 1995; Squires and Bazant 2004; Bazant 
et al. 2004; Mondal et al. 2013; Goswami et al. 2015). As 
a consequence (Ng and Qi 2015; Abhimanyu et al. 2016; 
Kaushik et al. 2017a), microflow manipulations by exploit-
ing the rotation-induced forces in conjunction with electro-
kinetic influences are likely to enhance the functionality as 
well as the device performance. It may be mentioned here 
that the instabilities in electrokinetic flows have also been 
extensively studied in the literature for both the internal 
and free surface flows (Ray et al. 2011, 2012, 2013; Reddy 
et al. 2011; Bandyopadhyay et al. 2012). Introduction of 
non-Newtonian fluids, which mimics practical bio-micro-
fluidic applications, adds further complexity to the analysis 
of the physical problem (Xie and Jian 2014; Li et al. 2015; 
Abhimanyu et al. 2016).

A survey of the literature reveals that research in the 
context of the rotationally actuated microflows under 
the influence of the electrical forcing has been initiated 
by a number of groups in recent times (Ruo et al. 2010; 
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Chang and Wang 2011; Li et al. 2015; Ng and Qi 2015). 
It is important to mention here that the Coriolis force aris-
ing due to the rotational effect induces secondary flow in 
the channel, while the secondary flow, in the presence of 
electrical forcing, may lead to an enhancement in mixing 
in the fluidic pathways essentially by distracting the axial 
momentum developed due to the applied electrical field. 
Also, it should be highlighted in this context here that 
rotationally actuated microfluidic devices are commonly 
used for the transportation and analysis of DNA solutions, 
blood and bio-fluids, which are, in general, non-Newtonian 
in nature. In particular, the miniaturized devices involved 
with the application of these kinds require a proper mix-
ing and augmented flow rate, which, in turn, necessitates an 
apposite design of these devices (Chang and Wang 2011; 
Ng and Qi 2015). We would like to mention in this con-
text here that these augmented functionalities (an enhance-
ment in mixing to be precise) of rotational force-induced 
transport in narrow fluidic pathways can be realized only in 
the presence of lateral confinements, since the considera-
tion of the side wall effect of the channel will alter the flow 
dynamics, following the development of the induced flow 
across the channel.

Here, we attempt to address the underlying dynamical 
behavior of a power-law fluid in a rotation-induced flow 
environment, under the influence of the electrical double-
layer (EDL) effect. We bring out the development of sec-
ondary flow inside the microchannel, realized through the 
formation of vortexes in the field, arising due to complex 
coupling among the electrical forcing and the rotation-
induced forces as modulated by the rheological effect of 
the fluid. We demonstrate the formation of sister vortexes 
in the flow field and pinpoint its effects on the alteration 
in the overall rotational sense of the main vortexes. This 
effect leads to the possibility of significant enhancement in 
mixing in a rotating microfluidic channel. We further depict 
two distinct regimes showing the rotation-induced altera-
tion in flow rate for different rheological parameters. We 
believe that the inferences obtained from our investigations 
will be capable of providing fundamental physical basis, 
which may effectively be used to improve the design of the 
rotationally actuated microfluidic devices/systems, which 
are commonly used in medical diagnostics.

2  Problem description and governing equations

We schematically represent, in Fig. 1, the problem consid-
ered in this study. The flow of a non-Newtonian fluid is ini-
tiating along the x-direction of the channel under the com-
bined influences of applied electrical field E = (Ex, 0, 0) 
and rotation-induced forces. We here consider Ostwald–
de Waele power-law model to describe the constitutive 

behavior of the non-Newtonian fluid (Mondal et al. 2015). 
We assume that the fluid is initially at rest in the channel, 
while the channel is rotating about z-axis at a constant 
angular velocity � = (0, 0, Ω). We further assume that the 
coordinates are rotating with the channel itself (as depicted 
in Fig. 1), while the coordinate axes x, y and z are taken 
along the along the length (L), width (B) and height (2H) 
of the channel, respectively. We assume that the length of 
the channel is much larger than its width and height, i.e., 
L ≫ B ∼ 2H. Also, an incompressible flow is considered 
in the present analysis with no external pressure gradient 
acting to drive the flow except the pressure arising due to 
the centrifugal force. Note that the pressure due to centrif-
ugal force is maintaining the secondary flow in the y− z 
plane of the channel.

2.1  The velocity distribution in the flow field

The governing equations in the frame of reference rotating 
along with the channel may be written as (Chang and Wang 
2011; Xie and Jian 2014; Mondal et al. 2015; Ng and Qi 
2015):

where τ is the stress tensor and ρeE is the electroosmotic 
body force per unit volume, u is the velocity vector, r is the 

(1)∇ · u = 0

(2)

ρ

(

∂u

∂t
+ (u · ∇)u+ 2(�× u)+�× (�× r)

)

= −∇p+∇ · τ+ ρeE

Fig. 1  (Color online) Schematic diagram showing the problem under 
consideration in the present study. The channel is considered of rec-
tangular cross section. There is an applied electric field E = (Ex , 0, 0) 
in the x-direction. The channel is rotating in the z-direction at a con-
stant angular velocity � = (0, 0, Ω). Here the coordinate system is 
also considered to rotate along with the channel
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radial coordinate and � is the angular velocity vector. The 
stress tensor τ for a fluid described by the power-law con-
stitutive model equation is written as (Das and Chakraborty 
2006; Chakraborty 2007; Deng et al. 2012; Mondal et al. 
2015; Kaushik et al. 2017b):

where κ is the consistency parameter, n is the power-law 
index and the rate of deformation D is defined as:

In order to represent the stress tensor in a bit simplified 
form, we further consider the following expression in this 
analysis as:

Also, we define the modified pressure, which includes 
the term containing centrifugal force (Chandrasekhar 1961) 
and can be written as:

In that case, the momentum transport equation [Eq. (2)] 
further reduces to:

It is important to mention here that the assumption of 
L ≫ B ∼ 2H as employed in this study following the 
lead by Ng and Qi (Ng and Qi 2015) reduces to the fol-
lowing conditions in our analysis which can be given as: 
∂x() ≪ ∂y() ∼ ∂z(). Therefore, considering these imple-
mented features of this analysis, we drop out the terms con-
taining ∂x() and ∂xx() from the equations governing the flow 
dynamics in our subsequent discussions.

2.2  Electrostatic potential distribution in the channel

For a further simplification of the electroosmotic body 
force term ρeE appearing in Eq. (7), we need to know the 
spatial distribution of the potential in the electrical dou-
ble layer (EDL). In order to obtain the spatial distribution 
of the electrical potential distribution ψ within the EDL, 
we invoke the Poisson equation, which for the problem 

(3)T = κ

(

√

1

2
D : D

)n−1

D,

(4)D =
1

2

(

∇u+∇u
T
)

(5)η = κ

(

√

1

2
D : D

)n−1

(6)P = p−

(

ρ|�× r|2

2

)

(7)

ρ

(

∂u

∂t
+ (u · ∇)u+ 2(�× u)

)

= −∇P +∇ · (ηD)+ ρeE

considered in this study can be written as (Huter 1981; 
Masliyah and Bhattacharjee 2006):

where ρe is the total charge density of the ions present in 
the EDL and is given for a ζ : ζ symmetric electrolyte as: 
ρe = eζ

(

n+ − n−
)

, where e is the protonic charge, ζ corre-
sponds to the valence of the ions. We here mention that the 
number densities of the co-ion 

(

n+
)

 and counter-ion 
(

n−
)

 in 
the EDL are obtained by appealing to the Boltzmann dis-
tribution and can be written as: n± = n∞Exp

[

∓ez̃ψ/kBT
]

 , 
where n∞ is the bulk ionic concentration, kB is the Boltz-
mann constant and T  is the absolute temperature. Also, 
we here consider the surface potential (ψw) to be low 
(ψw < 25mV), leading to a validity of the Debye–Hückel 
approximation in the present study (Huter 1981; Masliyah 
and Bhattacharjee 2006; Mondal et al. 2014; Goswami 
et al. 2015). However, considering this assumption, we may 
further write Eq. (8) as given below (Huter 1981; Masliyah 
and Bhattacharjee 2006):

In Eq. (9), κ2 is the Debye–Hückel parameter and is 
given by κ2 =

(

2n∞e2ζ 2
)/

(εkBT). Note that the inverse 
of the Debye–Hückel parameter �

(

= κ−1
)

 is a representa-
tive measure of the EDL thickness. In order to obtain the 
solution of Eq. (9), we employ the following boundary 
conditions:

We next describe the transport equations coupled with 
electrical forcing for the problem under present considera-
tion. However, a further progress to this end leads to the 
following set of equations, which can be given as:

It should be mentioned here that, based on the assump-
tion L ≫ B ∼ 2H as taken in the present analysis, we 
may ignore the terms containing ∂x() in comparison with 
the terms containing ∂y() and ∂z() without sacrificing the 
essential physics of interest. Also, we consider that the 
fluid is initially at rest in the channel. Employing these 
considerations into the present analysis, we can simplify 

(8)
∂2ψ

∂y2
+

∂2ψ

∂z2
= −

ρe

ε

(9)
∂2ψ

∂y2
+

∂2ψ

∂z2
= ψref κ

2Sinh

(

eζψ

kBT

)

(10)ψ |y=±B = ψ1 and ψ |y=±H = ψ2

(11)∇ · u = 0

(12)

ρ

(

∂u

∂t
+ (u · ∇)u+ 2(�× u)

)

= −∇P +∇ · (ηD)+ εψrefκ
2
Sinh

(

eζψ

kBT

)

E
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the transport equation [Eqs. (11) and (12)] one step fur-
ther. Below we write the reduced equations as:

Also, we use the following set of the initial and bound-
ary conditions for Eqs. (13a)–(13d), which can be given 
as:

2.3  Non‑dimensionalization of the transport equations

We here take an effort to cast the transport equations and 
the associated boundary conditions into their dimension-
less counterparts. In an effort to do so, we use the chan-
nel half-height H, the Helmholtz–Smoluchowski (HS) 
velocity, uHS = −εExψref/ηeff,ref and Ω−1 as the charac-
teristic length, velocity and time scales, respectively. Note 
that the effective viscosity of the non-Newtonian fluid ηeff 
may be defined as: ηeff = −kp

(

uHS
/

H
)n−1. Therefore, 

the remaining dimensionless parameters are as follows: 
u∗ = u

(

εExψref/ηeff,ref
)−1, v∗ = v

(

εExψref/ηeff,ref
)−1 , 

z∗ = zH−1, y∗ = yH−1, t∗ = tuHS(H)−1, 
ReΩ = 2ρΩH2

/

ηeff,ref, Re = ρuHSH
/

ηpl,ref, k∗ = kH , 
Ψ ∗ = Ψ (ψref)

−1, η∗eff = η
(

ηeff,ref
)−1. We also define the 

(13a)
∂v

∂y
+

∂w

∂z
= 0

(13b)

ρ

(

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
+ 2Ωv

)

=
∂

∂y

(

η
∂u

∂y

)

+
∂

∂z

(

η
∂u

∂z

)

+ εψref κ
2
Sinh

(

eζψ

kBT

)

Ex

(13c)

ρ

(

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
− 2Ωu

)

= −
∂P

∂y
+

∂

∂y

(

η
∂v

∂y

)

+
∂

∂z

(

η
∂v

∂z

)

+
∂η

∂y

∂v

∂y
+

∂η

∂z

∂w

∂y

(13d)

ρ

(

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z

)

= −
∂P

∂z
+

∂

∂y

(

η
∂w

∂y

)

+
∂

∂z

(

η
∂w

∂z

)

+
∂η

∂y

∂v

∂z
+

∂η

∂z

∂w

∂z

(14a)Initial condition : t ≤ 0, u = 0, v = 0,w = 0 ∀ y, z

(14b)

Boundary conditions :
{

t > 0, u|z=±H = 0, v|z=±H = 0, w|z=±H = 0 ∀ y

t > 0, u|z=±B = 0, v|z=±B = 0, w|z=±B = 0 ∀ z

aspect ratio of the rectangular channel as B∗ = B
/

H . 
Using these parameters, we get the set of dimensionless 
transport equations, which are then read as:

2.3.1  Potential distribution equation in dimensionless form

Note that the dimensionless boundary conditions for 
above equation [Eq. (15)] are written as:

2.3.2  Continuity and momentum transport equation 
in dimensionless form

where η∗ =

[

(

∂u∗

∂y∗

)2

+
(

∂u∗

∂z∗

)2

+ 2

(

∂v∗

∂y∗

)2

+ 2

(

∂w∗

∂z∗

)2

+
(

∂v∗

∂z∗
+ ∂w∗

∂y∗

)2
]

n−1

2

.

It is important to note that, with the above method of 
non-dimensionalization, we can get a full electroosmotic 
flow equations if we set ReΩ = 0. The corresponding 
boundary conditions in their dimensionless take the follow-
ing form, which can be given as:

(15)
∂2ψ∗

∂y∗2
+

∂2ψ∗

∂z∗2
= κ∗2Sinh

(

ψ∗
)

(16)ψ∗
∣

∣

ȳ=±w
= ξ1 and ψ∗

∣

∣

z̄=±1
= ξ2

(17a)
∂v∗

∂y∗
+

∂w∗

∂z∗
= 0

(17b)

Re

(

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
+ w∗ ∂u

∗

∂z∗

)

+ ReΩv∗

=
∂

∂y∗

(

η∗
∂u∗

∂y∗

)

+
∂∗

∂z∗

(

η∗
∂u∗

∂z∗

)

+ κ∗2Sinh
(

ψ∗
)

(17c)

Re

(

∂v∗

∂t∗
+ v∗

∂v∗

∂y∗
+ w∗ ∂v

∗

∂z∗

)

− ReΩu∗

= −
∂P∗

∂y∗
+

∂

∂y∗

(

η∗
∂v∗

∂y∗

)

+
∂

∂z∗

(

η∗
∂v∗

∂z∗

)

+
∂η∗

∂y∗

∂v∗

∂y∗
+

∂η∗

∂z∗

∂w∗

∂y∗

(17d)

Re

(

∂w∗

∂t∗
+ v∗

∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗

)

= −
∂P∗

∂z∗
+

∂∗

∂y∗

(

η∗
∂w∗

∂y∗

)

+
∂

∂z∗

(

η∗
∂w∗

∂z∗

)

+
∂η∗

∂y∗

∂v∗

∂z∗
+

∂η∗

∂z∗

∂w∗

∂z∗

(18a)

Initial condition: t∗ ≤ 0, u∗ = 0, v∗ = 0 ,w∗ = 0 ∀ y∗, z∗
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3  Numerical approach and model benchmarking

We solve the transport equations as mentioned above 
using the finite-volume framework of our in-house code. 
We here give a brief description of the code as employed 
in this analysis. The code employs first-order scheme for 
the temporal discretization, while the spatial terms are 
discretized using second-order central difference scheme. 
We use a fully explicit scheme to track the temporal 
advancement of the flow (Bell et al. 1989; Fernandez-
Feria and Sanmiguel-Rojas 2004). The pressure equation 
is solved by the two-step projection method (Brown et al. 
2001). Furthermore, we obtain the solutions until the 
steady state is attained. We would like to mention here 
that, from here onward, the ‘*’ symbol is removed from 
the dimensionless variables only for the sake of ease in 
the presentation.

Before we proceed to discuss the results obtained 
from the present study, we here take an effort to show 

(18b)

Boundary conditions:
{

t∗ > 0, u∗|z=±1 = 0, v∗|z=±1 = 0, w∗|z=±1 = 0 ∀ y∗

t∗ > 0, u∗|z=±b∗ = 0, v∗|z=±b∗ = 0, w∗|z=±b∗ = 0 ∀ z∗

the grid independence and convergence test results per-
tinent to the present analysis. In the present study, we 
use the same number of uniform grids in both the y and 
z-directions, i.e., �y = �z = δ. We show, in Fig. 2a, b, 
the grid independence study for different values of δ, 
while Fig. 2a, b depicts the variation of v and w veloci-
ties, respectively, along y-direction. It is observed from 
the present figures that the change in velocities becomes 
insignificant as δ is changed from 1/80 to 1/96. We, 
therefore, consider δ = 1/80 for all the simulations in 
the present study. Also, we show the variation of veloc-
ity, in Fig. 2c, for different time step sizes as mentioned 
in the figure. One may note from the figure under pre-
sent focus is that the variation becomes negligibly small 
as �t changes from 5× 10−8 to 1× 10−8, and hence, we 
have considered �t = 5× 10−8 throughout this study. In 
an effort to establish the efficacy of the present numeri-
cal model, we also take an attempt in Fig. 2d to repro-
duce the results reported by Ng and Qi (Ng and Qi 
2015), using our in-house code. A close match between 
the results obtained from the present numerical frame-
work and the reported results in the literature (Ng and Qi 
2015), indeed, vouches for the accurateness of the pre-
sent modeling framework.

Fig. 2  (Color online) Grid independence and convergence test: a 
Variation of v-velocity v(t, y, 0) versus y for different grid sizes δ and 
b variation of w-velocity w(t, y, 0) versus y for different grid sizes δ 
and c variation of u-velocity versus z for different time step values 
and obtained for n = 1.2, t = 0.0001 and ReΩ = 40. The change in 
variation of both the velocities becomes insignificant as δ changes 

from 1/80 to 1/96, while a change in �t from 5e−8 to 1e−8 does not 
bring a substantial change in the velocity. Model Benchmarking: 
Plot showing the variation of u-velocity for different ReΩ. The other 
parameters used are B = 1, Re = 0.01, n = 1, κ = 10. The variations 
obtained from the present study match well with the results reported 
by Ng and Qi (2015), for a Newtonian fluid at steady state
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4  Results and discussion

We here discuss different issues, originating from the 
rotation-induced forcing factors, which are likely to influ-
ence the underlying transport as considered in this analysis 
non-trivially. In fact, we will be discussing the augmented 
functionalities involved with the microscale transport 
over rotationally actuated platform as modulated by the 
combined consequences of the fluid rheology and EDL 
phenomena. Typical values of the fluid properties are 
η ∼ 8× 10−4 N sm−2, ρ ∼ 1000 kgm−3 and n ∼ 0.6− 1.3 . 
Typical height of the microchannel is H ∼ 300µm (Lee 
et al. 2011), while the rotational speeds of rotating microflu-
idic platforms typically become Ω ∼ 5000 rpm (Andersson 
et al. 2007; Richard et al. 2009). Considering these values, 
we get a rotational Reynolds number of ReΩ ∼ 20. In an 
effort to do so, we mainly look at the development of flow 
velocities and their consequential effect on the volume trans-
port rate through the channel as discussed in the subsequent 
sections. We first discuss the underlying dynamical behavior 

during initial transience, and then, we proceed to elaborate 
several issues of the flow dynamics as the steady state is 
attained. Unless specified otherwise, we consider the follow-
ing set of parameters in this study as: ReΩ = 40, Re = 0.01 
and κ = 10. We also consider unit aspect ratio B = 1 through 
this study.

4.1  Transient analysis of axial flow velocity: 
interplay among electrokinetics, fluid rheology 
and rotation‑induced forcing

4.1.1  Variation of axial (u) velocity

We begin our discussion with Fig. 3, which shows the 
variation of u-velocity in y − z plane at different temporal 
instants and obtained for different values of power-law 
index n = 0.8, 1 and 1.2, respectively. The other parame-
ters considered in plotting the figure are as follows:B = 1 , 
Re = 0.01, ReΩ = 40, κ = 10. Having a closer look at 
Fig. 3, one may find the appearance of the depression 

t

n

0.0001t = 0.001t = Steady State

1n =

0.8n =

1.2n =

Fig. 3  (Color online) Plot depicting the temporal evolution of u-velocity in y− z plane. We have used the following parameters to obtain the 
variation such as B = 1, Re = 0.01, ReΩ = 40, κ = 10
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in the interior to the flow field. The appearance of the 
depression is a consequential effect of the Coriolis force 
on the flow dynamics that stems from the effect of chan-
nel rotation. Although the flow velocity (precisely, the 
u-velocity) in the middle of the channel reduces and 
becomes negative due to the Coriolis effect, the velocity 
at the exterior to the flow field, i.e., in the region close 
to the walls of the channel, remains still positive, largely 
attributed to the electrical forcing.

Since the electrical forcing is mainly acting over the 
EDL (a region close to the walls of the channel), the veloc-
ity becomes positive over there even for the rotating Reyn-
olds number as high as ReΩ = 40. In fact, the electrical 
double-layer phenomena together with the mass conserva-
tion effect lead to a rise in u-velocity (precisely, a positive 
value) at the exterior as shown in Fig. 3. Also, we see from 
the present figure that, with increasing temporal instant 
t = 0.001, the u-velocity starts becoming positive at the 
middle and only a mild depression is seen over that region 
at steady-state condition. We attribute this weak depression 
appearing on the u-velocity contour even at steady-state 
condition to the effect of Coriolis force on the underly-
ing transport originating from the channel rotation. Even 
though the flow dynamics exhibits a qualitative similar 
behavior for all the values of power-law index (n) consid-
ered, a quantitative dissimilarity on the underlying dynami-
cal behavior for a change in the rheological behavior of 
the fluid is witnessed in Fig. 3. Since the effective viscos-
ity and the viscous drag increase with the increasing non-
Newtonian behavior of the fluid (n > 1), the flow velocity 
for, a given strength of applied forcing, both at the exterior 
and at the interior regions gets altered with a change in n as 
reflected in Fig. 3. We further observe from Fig. 3 that, for 
shear-thickening fluid (n = 1.2), the u-velocity in the region 
closer to the walls of the channel becomes relatively lesser, 
while the reduction in u-velocity at the middle also gets 
weakened. This observation can be attributed to a relative 
stronger influence of viscous drag in the flow field, mainly 
arising due to shear-thickening behavior of the fluid. Note 
that the rheology-modulated change in the flow dynamics 
is observed for all the temporal instants considered, which 
one can find from the figure presented above (Fig. 3). These 
observations are well supported by the fact that the depres-
sion appearing in the middle becomes weaker with increas-
ing value of n.

4.1.2  Secondary flow development: streamlines 
and contour in y− z plane

In an effort to bring out more insights into the flow 
dynamics, we depict in Fig. 4 the velocity vectors and 
streamlines at different temporal instants. Note that 
to describe the streamlines and the velocity vectors, 

we consider three different values of n, while the other 
parameters considered for this plot are B = 1, Re = 0.01 , 
ReΩ = 40, κ = 10. We have shown the streamlines over 
the entire section of y − z plane essentially to obtain a 
much clearer picture of the flow pattern inside the chan-
nel. One may see from Fig. 4 that, although the stream-
lines are parallel in the middle of the channel, double-
vortex structures formed one at the upper part of the 
channel (z > 0) and another at the lower part of the chan-
nel (z < 0), indeed, are in compliance with the develop-
ment of secondary flow inside the channel. At the earlier 
instant of time (t < 0.0001), while the vortex at the upper 
part of the channel shows counterclockwise rotation, the 
lower vortex exhibits an clockwise sense of rotation (see 
the velocity vectors). It is worth mentioning here that 
the formation of double-vortex structures inside the flow 
domain along with their rotational sense largely corrobo-
rates with the similar structures from the perspective of 
experimental as well as numerical evidence as reported 
in the literature (Hart 1971; Speziale 1982; Kheshgi and 
Scriven 1985), albeit the flow configuration in this analy-
sis differs from those reported studies.

One may further note from Fig. 4 that, with increasing 
time, the shape of the vortexes formed inside the channel 
changes. Importantly, we observe the formation of sister 
vortexes at the corner of the channel at t = 0.001, which, 
however, disappears at a higher temporal instant, pre-
cisely at steady state. In fact, this observation holds true 
for all the values of n considered in the present analysis. 
Having a closer scrutiny at Fig. 4, we further observe that 
the sister vortexes formed at both halves of the channel 
demonstrate an opposite sense of rotation. Notably, out 
of these two sister vortexes, one sister vortex at each half 
resembles the rotational sense of the main vortex, while 
the other sister vortex, in stark contrast to the main vor-
tex, shows an opposite sense of rotation.

Quite remarkably, the formation of sister vortexes in 
the flow field is, indeed, an interesting phenomena in the 
purview of microscale transport, since the appearance of 
these sister vortexes leads to an enhancement in mixing 
by altering the overall rotational sense of the main vor-
texes as aptly confirmed in Fig. 4 (see the streamlines 
and velocity vectors at steady state). We would like to 
attribute this phenomenon to the strong interplay between 
the rotation-induced forces and the electrical forcing as 
modulated by the confinement effect. It is worth mention-
ing here that the rotational sense of the main vortexes at 
steady-state condition becomes completely different from 
those demonstrated during transience. Albeit, in Fig. 4, 
we have speculated different facets of the vortex forma-
tion dynamics in the channel qualitatively, we also take 
an effort to figure out the underlying physical issues 
that give rise to such an interesting flow behavior from 
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different perspectives. We attempt to look at this phenom-
enon of vortex formation dynamics in the flow field from 
the variation of development in vorticity in the channel as 
modulated by the confinement effect and discussed in the 
next section.

4.1.3  Vorticity vector

We show, in Fig. 5, the vorticity vectors in the flow field at 
different temporal instants, which includes the initial tran-
sience as well as steady-state condition for different val-
ues of the power-law index. In Fig. 5, we show only the 
one-fourth of the channel cross section essentially for the 
clarity in the presentation as the other three-fourths are 
symmetric. The other parameters are: B = 1, Re = 0.01, 

ReΩ = 40, κ = 10 . The electrical forcing due to the dou-
ble-layer phenomena at all the walls of the channel leads 
to a development of flow in the x-direction of the channel, 
while the Coriolis force originating from the rotational 
effect induces the secondary flow in the y-direction as well. 
As constrained by the confinement effects, we observe 
recirculation vortices in the y − z plane. At early times, it 
is observed that the variation in the magnitude of vorticity 
from the center of the channel to near the walls is much 
less at larger times. This is true for all values of n. We also 
observe that the vorticity vector forms a clockwise chain 
in all the cases with the largest of the magnitude being 
closer to the walls. This is due to the larger gradients of 
velocity close the walls, which is inherent with electroos-
motically driven flows. It is also observed that the influence 

Fig. 4  (Color online) Plot showing the temporal evolution of veloc-
ity vectors and streamlines in the y− z plane. Three different values 
of n = 0.8, 1 and 1.2 have been considered to obtain the variations 
depicted in the present figure. We have considered the following 

other parameters as: B = 1, Re = 0.01, ReΩ = 40, κ = 10. a n = 0.8,  
t = 0.0001, b n = 0.8, t = 0.001, c n = 0.8, steady state, d n = 1,  
t = 0.0001, e n = 1, t = 0.001, f n = 1, steady state, g n = 1.2, 
t = 0.0001, h n = 1.2, t = 0.001, i n = 1.2, steady state
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of vorticity closer to the center of the channel is more for 
higher values of n as shown in Fig. 5g–i. During the middle 
stages of flow development (t = 0.001), the gradients of the 
velocity are higher over the cross section, and hence, we 
see a comparable vorticity magnitude between the center of 
the channel and near the walls.

4.2  General dynamics

4.2.1  Effect of ReΩ and n on the axial flow velocity

We discuss, in Fig. 6, the spatial evolution of the axial 
velocity in the channel during steady condition as obtained 
for different values of ReΩ. In an effort to have an under-
standing about the rheological effect on the underlying 

transport, we consider three different values of power-law 
index n = 0.8, 1 and 1.2 in Fig. 6 as well.

The other parameters taken into consideration for plot-
ting the present figure have been mentioned in the cap-
tion. Since all the walls are considered to be charged in 
this case, we see the development of EDLs on four walls, 
leading to a plug-like flow dynamics at the channel core. 
We would like to discuss a few distinctive transport fea-
tures as evident from Fig. 6. First, for ReΩ �= 0, a depres-
sion is appearing on the velocity profile at the core region 
of the channel, which, however, becomes stronger with 
an increasing value of rotational Reynolds number (ReΩ).  
This observation holds true for all the values of power-
law index considered here. Albeit an equal electroos-
motic effect, arising from the double-layer phenomena 

Fig. 5  (Color online) Plot showing the vectors of vorticity in the 
y− z plane for different values n, while obtained at different temporal 
instants. The other parameters used are B = 1, Re = 0.01, ReΩ = 40, 

κ = 10. a n = 0.8, t = 0.0001, b n = 0.8, t = 0.001, c n = 0.8, steady 
state, d n = 1, t = 0.0001, e n = 1, t = 0.001, f n = 1, steady state, g 
n = 1.2, t = 0.0001, h n = 1.2, t = 0.001, i n = 1.2, steady state
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on four walls, tries to pump the fluid in an uniform man-
ner in z-direction, the Coriolis acceleration resulting from 
the channel rotation together with the no-slip condition 
at z = ±1 becomes strong enough to induce secondary 
flow in the channel as well, thereby disturbing the axial 
velocity profile at the channel interior. Note that the con-
straint of no-slip condition at z = ±1 leads to a reduction 
in axial velocity at the channel core essentially to main-
tain a uniform profile in the z-direction. The reduction in 
axial velocity at the core of the channel gets further accel-
erated by the stronger effect of Coriolis force at a higher 
ReΩ, leading to an appearance of depression at the mid-
dle as reflected in Fig. 6 (see the variation for ReΩ ≥ 20).  
We may mention here that the ultimate consequence of a 
reduction in axial velocity as shown in Fig. 6 is the devel-
opment of secondary flow inside the channel. We will dis-
cuss the formation of secondary flow during steady-state 
condition in the next subsection. An increase in n increases 
the effective viscosity of the fluid, which, in turn, increases 
the viscous resistance to the flow field as well. Our results 

reveals that, experiencing a relatively higher viscous resist-
ance for a higher value of n, the drop downing tendency 
of the axial flow velocity at the channel center becomes 
stringent for a higher value of n, since the net driving force 
remains unaltered.

4.2.2  Secondary flow in the development in the channel

In order to obtain further insights into the development 
of secondary flows, we depict, in Fig. 7, the streamlines 
and velocity vectors in y − z plane as influenced by the 
ReΩ for three different values of power-law index. The 
following parameters are considered for plotting Fig. 7 
as: B = 1, Re = 0.01, κ = 10. The formation of sec-
ondary flow in the channel is largely supported by the 
appearance of the double-vortex structures, which are 
having different senses of rotation, in the flow field. Fig-
ure 7 shows that the top vortex (z > 0) shows a clockwise 
rotation, while the vortex formed at the bottom (z < 0) 
exhibits an anticlockwise sense of rotation. We have 

ReΩ

n
Ω = Ω =Re 0 Re 20 Re 40Ω =

1.2n =

1n =

0.8n =

Fig. 6  (Color online) Plot showing the variation of u-velocity in y− z plane during steady state. The above variations are obtained for different 
values of n and ReΩ. The other parameters used are B = 1, Re = 0.01 and κ = 10
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discussed the underlying physical issues of the forma-
tion of vortex structures in the context of the discussion 
of vorticity vector (see detail discussions in Fig. 5). Dur-
ing steady-state condition, a favorable pressure gradient 
in the transverse direction of the channel 

(

∂P
/

∂y < 0
)

 
allows the fluid to move in the positive y-direction of the 
channel.

Contrarily, the stronger effect of the Coriolis force at the 
core of the channel pushes the fluid back toward the oppo-
site direction (i.e., in the negative y-direction). The gross 
effect of these two opposing forcing factors leads to the 
formation of vortex structures in the flow field as shown in 
Figs. 4 and 7. For a given ReΩ, a quantitative change in the 
vortex dynamics with a change in flow behavior index n as 
shown in Fig. 7 is attributed to the rheology-driven altera-
tion in the effective viscosity of the fluid. On the contrary, 
we attribute a qualitative difference in the shape of the 
vortex structures with a change in ReΩ, which is shown in 
Fig. 7 as well, to the effect of the Coriolis force.

4.2.3  Effect of Debye parameter and power‑law index 
on the flow dynamics

As mentioned, the volume transport is an important quan-
tity of interest in microfluidic systems/devices, which, 
in turn, strongly depends upon the development of axial 

velocity in the systems/devices under concern. Considering 
this aspect, we here discuss the variation of axial velocity 
in the channel for different values of κ as shown in Fig. 8a, 
b. The flow velocities depicted in Fig. 8a, b correspond to 
the shear-thinning (n = 0.8) and shear-thickening (n = 1.2) 
fluids, respectively. We have considered the following other 
parameters for the present figures as: B = 1, Re = 0.01, 
ReΩ = 40.

Although the rotation-induced forces remain unal-
tered for the variation depicted in the present figures, we 
observe from Fig. 8a, b that, with increasing value of κ, 
the axial velocity responds non-trivially with a change in 
the rheological behavior of the fluid. Note that the param-
eter κ is a representative measure of the EDL thickness. 
One may find from Fig. 8a that an increase in κ leads 
to an enhancement in u-velocity for the flow of a shear-
thinning fluid (n = 0.8), which is as expected. Since with 
increasing value of κ, for which the charge density in the 
EDL becomes relatively higher (EDL becomes thinner), 
the net electrical body force acting over the fluid mass in 
the EDL increases and results in an enhancement in flow 
velocity. On the contrary, we observe a reverse phenom-
enon for the flow of a shear-thickening (n = 1.2) fluid, 
where u-velocity decreases both in the EDL and in the 
bulk with the increasing magnitude of κ. Even though 
this reverse flow dynamics can be apparently attributed 
to the effect of the change in the fluid rheology, we would 

Fig. 7  (Color online) Variation of velocity vectors and streamlines in 
the y− z plane with n and ReΩ. The variations depicted in the pre-
sent figure correspond to steady-state condition. The other parameters 

considered to obtain the variations are B = 1, Re = 0.01, κ = 10. a 
n = 0.8, ReΩ = 20, b n = 0.8, ReΩ = 20, c n = 0.8, ReΩ = 20, (d) 
n = 0.8, ReΩ = 40, e n = 0.8, ReΩ = 40, f n = 0.8, ReΩ = 40
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like to describe this alteration in flow velocity from the 
perspective of the electrical force-modulated alteration 
in the viscous drag in the fluid continua. As κ increases, 
the net electrical body force increases, which, in turn, 
brings an increment in velocity gradient near the walls of 
the channel. The higher velocity gradient stimulates the 
viscous drag to the flow field following an increment in 
effective viscosity of the fluid and leads to a reduction 
in u-velocity as aptly confirmed in Fig. 8b. Also, hav-
ing a closer look at above two figures (Fig. 8a, b), one 
may perceive the effect of rotation-induced forces on the 
underlying transport as witnessed by the appearance of 
depression at the central part of the velocity profiles.

We have seen in the previous section that the depression 
appearing in the middle of the u-velocity profile, which 
results from the effect of the Coriolis force, culminates in 
the development of secondary flow inside the channel. We 
have also verified from Figs. 4, 5, 6 and 7 that the induction 
of secondary flow inside the channel leads to an enhance-
ment in mixing accounting the formation of vortex struc-
tures in the flow domain. Albeit the effective viscosity and 
so is the viscous drag to the flow becomes lesser for the 
transport of shear-thinning fluids, we still observe a weak 
depression at the central part of the u-velocity profile for 
a relatively smaller κ(=10) . Note that the u-velocity pro-
file for a higher κ(=30) becomes almost flat irrespective of 
the rheological behavior of the fluid, largely attributed to 
the stronger effect of electrical forcing on the underlying 
transport. It may be mentioned here that the reduction of  
u-velocity owing to the depression appearing at the central 
part of the channel gives rise to the development of second-
ary flow (v-velocity) in the channel, since the continuity 
in the field is needed to be satisfied. We have depicted the 
development in v-velocity in Fig. 9a, b as well.

4.3  Variation of flow rate in the channel

4.3.1  Effect of fluid rheology

In the purview of microscale/nanoscale transport, an impor-
tant quantity of interest is the rate of volumetric transport 
through the channel. Considering this aspect, in this sec-
tion, we take an effort to demonstrate the variation of flow 
rate for different cases. Since our major focus in this analy-
sis lies on the understanding of the transport of rheological 
fluids, as a first case, we show, in Fig. 10, the temporal var-
iation of the flow rate in the x-direction of the channel for 
different values of power-law index n. Note that the other 
parameters are being B = 1, Re = 0.01, ReΩ = 40, κ = 10 , 
while they have been mentioned in the caption as well. One 
may observe from the present figure that, at the earlier of 
instants of time, the flow rate increases for all the values of 
power-law index considered. On the other hand, a steady 
behavior of the flow rate is observed as time grows further. 
We would like to mention here that the steady behavior of 
the flow rate as shown in Fig. 10 is the consequence of the 
attainment of a steady flow velocity as described in the pre-
ceding sections.

Having a look at Fig. 10, one may find an escalation 
in volume transport for the flow of a shear-thinning fluid 
(n = 0.8), albeit the other parameters considered remain 
same. During initial transience as well as at steady-state 
condition, a relatively higher and lower volume transport of 
a shear-thinning (n = 0.8) and shear-thickening (n = 1.2) 
fluids, respectively, as witnessed in Fig. 10, is attributed to 
the rheological effect on the underlying flow dynamics as 
modulated by the combined consequences of the electri-
cal forcing and rotational effect. We would like to discuss 
here that, in a rotational platform, the induced flow velocity 

Fig. 8  (Color online) Variation of u-velocity versus z for different 
values κ: a for shear-thinning fluid (n = 0.8) and b for shear-thick-
ening fluid (n = 1.2). The variations are obtained during steady-state 

condition at y = 1. The other parameters used for this plotting are 
B = 1, Re = 0.01, ReΩ = 40
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develops in the transverse direction of the channel distracts 
the axial momentum (x-momentum) originating from the 
applied electrical field, thereby attenuating the velocity gra-
dient in the axial direction. Furthermore, in an electrically 
actuated transport the main driving force remains confined 
over a small region near the walls of the channel, and thus, 
the velocity gradient ceases to exist in the bulk region of 
the flow field. Accounting for these two factors, the velocity 
gradient in the bulk reduces, which, in turn, drops down the 
effective viscosity of the shear-thinning fluid (n = 0.8) as 
compared to that of the shear-thickening fluid (n = 1.2) in 
the present scenario. Since the effective viscosity becomes 
lesser, the viscous resistance to the underlying transport of 
a shear-thinning fluid (n = 0.8) gets reduced, leading to an 

augmentation in flow velocity and the volume flow rate in 
the channel as confirmed in Fig. 10.

4.3.2  Effect of EDL parameter

In Fig. 11a, b, we show the transient variation of the flow 
rate for different values of κ, while obtained for differ-
ent other values as mentioned in the caption. Let us first 
look at Fig. 11a, which describes the flow rate variation 
of a shear-thinning fluid (n = 0.8). We get a relatively 
higher flow rate of a shear-thinning fluid (n = 0.8) with 
an increasing value of κ as supported by Fig. 11a. This 
can be explained as follows: a higher value of κ (inverse 
of which is a measure of EDL thickness) thins the EDL 
and thus squeezes more number of ions inside the EDL. 
With increasing value of κ, the ionic change density in 
the EDL increases, which, in turn, leads to a higher body 
force on the fluid mass inside the layer. The higher electri-
cal body force imparts a higher flow velocity and results 
in a higher flow rate as confirmed in Fig. 11a. Contra-
rily, we observe, in Fig. 11b, a different trend of the flow 
rate variation of a shear-thickening fluid (n = 1.2) with κ. 
What we observe from Fig. 11b is that the flow rate of a 
shear-thickening fluid (n = 1.2) increases as κ increases 
from 10 to 20, while a further increases in κ(= 30) leads 
to a reduction in flow rate. Albeit an enhancement in flow 
rate with an increment in κ from 10 to 20 can be explained 
from the perspective of the fortification of electrical body 
force being applied on the fluid mass (we have discussed 
the same effect in the context of the shear-thinning fluid), 
a reduction of flow rate beyond κ = 20 can be attributed 
to the rheological effect of the fluid as modulated by the 
electrical double-layer phenomena. Since the flow velocity 
and the velocity gradient increase with an increment in κ, 

Fig. 9  (Color online) Plot showing the variation of v-velocity ver-
sus z, obtained for different values of κ: a for shear-thinning fluid 
(n = 0.8) and b for shear-thickening fluid (n = 1.2). The above vari-

ations are obtained at y = 1 and during steady-state condition. We 
have considered the other parameters as follows: B = 1, Re = 0.01, 
ReΩ = 40

Fig. 10  (Color online) Plot showing the variation of flow rate Q ver-
sus t  obtained for different values of n. The other parameters used are 
B = 1, Re = 0.01, ReΩ = 40, κ = 10
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the rise in velocity gradient for κ = 30 in conjunction with 
the stronger non-Newtonian behavior of the fluid (n = 1.2) 
leads to an enhancement in effective viscosity of the fluid. 
This effect, in turn, offers a relatively higher viscous 
resistance to the flow field and diminishes the flow rate 
essentially by attenuating the flow velocity as shown in 
Fig. 11b. Also, having a closer look at Fig. 11a, b, one may 
find a lesser flow rate of a shear-thickening fluid (n = 1.2) 
in the channel albeit the set of other parameters considered 
to obtain the present figures remains unaltered. This obser-
vation once more underlines the rheology-driven alteration 
in the flow dynamics under the combined influences of 
electrical forcing and rotational effect. Interplay between 
the effective viscosity of the fluid and viscous resistance in 
the field as modulated by the electrical forcing gives rise to 
a complex variation of the flow rate of a shear-thickening 
fluid (n = 1.2) as evident in Fig. 11b.

4.3.3  Effect of rotation Reynolds number

We show, in Fig. 12a, b, the flow rate variation in the chan-
nel as influenced by the rotation Reynolds number ReΩ for 
two different values of n(=0.8, 1.2), respectively. Note that 
the variations depicted in Fig. 12a, b correspond to a unit 
aspect ratio of the channel. The following other param-
eters are considered for plotting the above figures as B = 1, 
Re = 0.01, ReΩ = 40. From the figures depicted above 
(Fig. 12), we observe two distinct regimes, viz. regime-I 
and regime-II, on the variation of flow rate. In regime-
I, during initial transience, the flow rate increases with 
increasing ReΩ. On the other hand, the dependence of Q 
on ReΩ is seen to be completely contrary in regime-II. We 
mention here that these observations hold true for both the 
cases of power-law indices considered. A relative incre-
ment in flow rate with increasing value of ReΩ as seen in 

Fig. 11  (Color online) Variation of flow rate Q with t  for different values of κ: a for shear-thinning fluid (n = 0.8) and b for shear-thickening 
fluid (n = 1.2). The other parameters considered are B = 1, Re = 0.01, ReΩ = 40

Fig. 12  (Color online) Variation of flow rate Q with t  for different values of ReΩ: a for shear-thinning fluid (n = 0.8) and b for shear-thickening 
fluid (n = 1.2). The following other parameters are considered for plotting the figures as: B = 1, Re = 0.01, ReΩ = 40
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regime-I is mainly attributed to the combined effects of 
electroosmotic (EO) pumping and centrifugal force. At the 
earlier instants of time, higher the value of ReΩ, the higher 
the initial acceleration of the fluid mass inside the channel, 
leading to an augmented flow velocity and so is the flow 
rate in the channel. The contrasting behavior of a reduction 
in flow rate at a higher value of ReΩ as seen in regime-II 
can be explained as follows: When the flow time overshad-
ows the initial transience, the formation of the secondary 
flow inside the channel weakens the electroosmotic (EO) 
pumping essentially by distracting the axial momentum 
developed due to electroosmotic effect.

Also, we would like to mention here that the higher 
value of ReΩ accelerates the development of secondary 
flow at a larger instant of time, since the Coriolis acceler-
ation becomes stronger at a higher ReΩ. In fact, it may be 
mentioned in this conjecture that the contribution of the 
Coriolis forcing plays a big role on the underlying trans-
port as the flow time crosses the initial transience. Thus, 
the development of the secondary flows inside the chan-
nel at a larger time as aggravated by the Coriolis force 
due to a relatively larger ReΩ reduces the axial flow rate, 
which is verified in our results depicted in Fig. 12a, b. 
Albeit other parameters remain unaltered, having a closer 
look at Fig. 12a, b, one may find a quantitative difference 
in the volume flow rate. We attribute this observation to 
the rheological effect of the fluid on the underlying elec-
trohydrodynamics. It is worth mentioning here that the 
results depicted in Fig. 12a, b are in compliance with 
what is expected to be and support the variations of flow 
velocities those demonstrated in previous figures.

5  Conclusions

We have executed transient analysis of the rotational 
flow of a non-Newtonian fluid in a microfluidic channel 
under the influence of the electrical double-layer effect. 
While investigating the underlying electrohydrodynam-
ics, we have taken the effect of the lateral confinement 
of the channel into account in the present analysis. We 
have described the rotational force-induced complex 
flow dynamics, realized though the development of the 
secondary flows, in the channel as modulated by the cor-
relative-cooperative effects of the electrical forcing and 
the fluid rheology on the underlying transport. Also, we 
have shown the formation of double-vortex structures 
in the flow field mainly originating from the interactive 
effects of the rotation-induced Coriolis acceleration and 
the electrical force-driven uniform velocity profile in 
the channel. Furthermore, we have investigated that the 
combined consequences of the no-slip condition at the 
wall along with the effect of favorable pressure gradient 

developed in the adverse direction of the channel lead to 
the formation of sister vortexes in the flow domain fol-
lowing a complex competition among the electrical forc-
ing and the fluid rheology. In particular, we have been 
able to show that the formation of sister vortexes enforces 
to alter the overall rotational sense of the main vortexes, 
thus enabling to get an augmentation in mixing in rota-
tional microflows. Finally, we have demonstrated the rate 
of volumetric transport though the channel under differ-
ent conditions. In particular, we have depicted two dis-
tinct regimes showing the rotation-induced alteration in 
flow rate for different values of power-law index, where 
we have shown that, in regime-I, the flow rate during 
initial transience increases with increasing magnitude of 
rotational effect, while the flow rate, in regime-II, is seen 
to decrease with increasing rotational effect at steady-
state condition. We believe that the results obtained from 
this analysis may bear a significant impact in design-
ing the lab-on-chip-based diagnostic microsystems/
devices, which are typically used for the transportation of 
bio-fluids.
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