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1  Introduction

Emulsions, i.e., metastable dispersions of two immisci-
ble liquids, are used in a variety of industrial, engineering 
and biomedical applications (Leal-Calderon et  al. 2007). 
Examples include end products in the cosmetic and food 
industries, dynamical templates for the production of col-
loidal suspensions, capsules or liposomes in material sci-
ence and microreactors in high-throughput biomicrofluidic 
assays. All of these applications require to control the drop 
size distribution as the physical properties of these mate-
rials are highly size dependent. Hence, drop breakup is a 
central topic in emulsion science. For any drop breakup 
experiment, the key issues are to identify the experimen-
tal conditions for breaking a mother drop and to predict the 
size of the daughter droplets as a function of the parameters 
at play.

Since the pioneering studies of the deformation and 
rupture of an isolated drop in bulk by Taylor (1932, 
1934), the topic has been widely studied for many flow 
configurations such as linear two-dimensional flows 
(Bentley and Leal 1986), simple shear flows (Janssen and 
Meijer 1993) and extensional flows (Stone 1994). For 
low Reynolds numbers and Newtonian fluids, it is known 
that drop breakup is mainly controlled by two dimen-
sionless parameters: the capillary number C defined as 
the ratio between viscous and capillary forces and p the 
viscosity ratio between dispersed and continuous phases. 
Drop breakup usually occurs when the capillary number 
exceeds a threshold Cb that varies with p and the nature of 
the flow (Grace 1982). Under shear flow, for instance, an 
isolated droplet adopts an ellipsoidal shape when C < Cb . 
At Cb, the droplet draw ratio, defined as the drop length 
needed for breakup over the original droplet diameter, 
is a non-monotonic function of p: it is either decreasing 
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(p < 10−1) or increasing (p > 10−1) with p (Grace 1982). 
At either very small (p < 10−5) or very large (p > 3 ) 
viscosity ratios, the droplet draw ratio approaches one 
hundred, a breaking drop is then a very long thread that 
breaks because of the growth of a capillary-wave instabil-
ity (Rayleigh 1878), or other processes, e.g., tip stream-
ing (Torza et  al. 1972; Grace 1982) or end pinching 
(Stone and Leal 1989). In all cases, smaller droplets with 
a broad size distribution are produced. Around p = 10−1 , 
the droplet draw ratio is minimum and the size of a drop 
at breakup is only a few times the original one. This drop 
then breaks into smaller ones having a narrow size distri-
bution centered around a mean size ∼ C

−1. When p > 4 , 
the droplet deformation remains small and breakup is 
never observed. These results strongly depend on the rhe-
ological properties of the two-phase fluid. For instance, 
for fluids having a viscoelastic component, breakup can 
occur in shear flows when p > 4 (Mighri et  al. 1998). 
Also, when shearing alters the microstructure of the two-
phase fluid, the response of sheared drops may become 
non-stationary and sustained droplet size oscillations 
can be observed (Courbin et  al. 2004a). For this class 
of fluids, the breakup of drops may even occur without 
elongation (Courbin et  al. 2004b). In confined flows, Cb 
does not only depend on p but also on the degree of con-
finement. This parameter tends to increase the threshold 
for breakup at low viscosity ratios, whereas Cb decreases 
with the confinement at large p (Vananroye et  al. 2006, 
2007). For sufficiently confined sheared flows, Vanan-
roye et  al. (2006) have even shown that breakup can 
occur when p > 4. Also, Newtonian drops in viscoelastic 
matrix break at very small values of Cb in confined condi-
tions (Cardinaels and Moldanaers 2011; Guido 2011). By 
contrast, in the case of viscoelastic drops, Cb may either 
increase or decrease depending on the drop viscoelastic-
ity (Gupta and Sbragaglia 2014).

Recent advances in microfluidics for material science 
(Chu et al. 2007; Shah et al. 2008; Engl et al. 2008), bio-
technology and chemistry (Teh et  al. 2008; Trivedi et  al. 
2010; Seeman et  al. 2012) have inspired investigations 
of the breakup of confined drops in various microfluidic 
geometries. For instance, one can actively break microflu-
idic drops using an electric field (Link et  al. 2006) or an 
optical approach (Baroud et al. 2007). However, most stud-
ies exploit passive (geometry-based) methods that solely 
rely on the flow geometry. Examples include cross-flow 
microchannels (Tan et  al. 2008; Cubaud 2009; Che et  al. 
2011), T-junctions (Link et  al. 2004; de Menech 2006; 
Leshansky and Pismen 2009; Afkhami et al. 2011; Bedram 
and Moosavi 2011; Samie et  al. 2013; Salkin et  al. 2013; 
Wang and Yu 2015), Y-junctions (Ménétrier-Deremble and 
Tabeling 2006; Abate and Weitz 2011; Bedram et al. 2015; 
Zheng et  al. 2016) and micro-obstacles (Link et  al. 2004; 

Protière et al. 2010; Chung et al. 2010; Salkin et al. 2012; 
Li et al. 2014). The earliest work by Link et al. (2004) has 
shown that breaking a drop or a bubble into two daughter 
droplets or bubbles of different sizes can be achieved by 
drop impact either against an off-centered micro-obsta-
cle in a channel or at a T-junction, i.e., the inlet node of a 
loop having two arms of different lengths: other governing 
parameters being fixed, the volume fraction φi (i = 1 or 2) 
of the two daughter droplets or bubbles is controlled either 
by the distance between obstacle and axis of a channel or 
by the ratio of the lengths of the two arms of a loop. Simi-
lar to bulk experiments, for these two microfluidic configu-
rations, breakup also occurs when the capillary number is 
larger than a threshold Cb. Many of the works cited above 
combine experiments and theory to understand how Cb and 
φi vary with the geometrical, hydrodynamical and phys-
icochemical variables at play. In particular cases, φi solely 
depends on the geometry and can be explained using simple 
physical arguments (Link et  al. 2004; Salkin et  al. 2013). 
In most cases, however, modeling experimental findings is 
a challenging task since the number of governing param-
eters is large. For drop impact against micro-obstacles, 
Salkin et al. (2012) have shown that the use of a rectangu-
lar obstacle allows one to establish a theoretical framework 
that provides a full description of the experiments. Notably, 
the model introduced by Salkin et al. (2012) has been suc-
cessfully employed to rationalize non-trivial experimental 
results such as the either monotonic or non-monotonic evo-
lution of Cb with a drop size depending on the sign of the 
viscosity contrast, that is, the difference between the vis-
cosities of dispersed and continuous phases divided by the 
latter one. Salkin et al. (2013) have also used their theoreti-
cal framework to explain the variations of φi with numeri-
cal simulations, φi being in this case a complex function of 
the size and speed of a mother drop, p, the surface tension 
between liquid phases, and the geometrical variables.

Here, we investigate the volume fraction φi of the 
daughter droplets formed upon breakup of a mother drop 
against an off-centered rectangular obstacle as a function 
of the viscosity ratio p and capillary number C. We present 
a model that provides an analytical expression for φi as a 
function of these controlling parameters and the geometri-
cal variables. We find that the threshold in capillary number 
Cb decreases monotonically with p = 0.2–2 and its value is 
three orders of magnitude smaller than previous results for 
shear flows in bulk.

2 � Experiments: setup, materials and methods

Our microchannels are made in poly-dimethylsiloxane 
(PDMS) using standard soft lithography (McDonald et al. 
2000). They have a rectangular cross section with height 
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h = 50µm and width w = 130µm (see Fig.  1). We gen-
erate a periodic train made of monodisperse drops using a 
flow-focusing geometry (Anna et  al. 2003). Two syringe 
pumps (PHD 2000, Harvard Apparatus) inject the dispersed 
(aqueous solution) and continuous (oil) phases at controlled 
flow rates which are adjusted independently until a steady 
flow of monodisperse drops with volume Ω = 1140 pL is 
obtained. We herein refer to these flattened drops that are 
larger than w as “slugs.” Details about the fluid system are 
given further in the text. Typical flow rates of dispersed 
and continuous phases are qw = 5–200 µL/h and qfo = 5–
500 µL/h, respectively. The drops are then directed toward 
a rectangular obstacle (length L = 500µm and width 
30µm) parallel to the walls of the channel and off-cen-
tered. As shown in Fig. 1, the two gaps (1) and (2) on both 
sides of an obstacle have different widths w1 = 70µm and 
w2 = 30µm. A dilution module (Prat et al. 2006; Sessoms 
et al. 2010) allows for an additional injection of oil at con-
stant flow rate qdo = 0–1000 µL/h to vary the drop velocity 
v while Ω is unchanged. This module is far upstream from 
the obstacle so that the flow is steady near the obstacle (see 
Fig. 1) and the distance � between two consecutive drops is 
large enough to prevent drop-to-drop interactions that are 

known to affect drop breakup (Belloul et al. 2011; Schmit 
et al. 2015).

We record videos of the flow nearby the obstacle with a 
high-speed camera (Phantom V7) working at 1000 frames/s 
for a resolution of 64× 512 pixels2. The production rate f 
of the drops, Ω, v, their size Ld and the sizes L1 and L2 of 
the two daughter droplets, respectively, flowing the gaps (1) 
and (2) are obtained from image processing using a cus-
tom-written MATLAB software. The volume of a mother 
drop, Ω =

qw
f

, is first determined by measuring the droplet 
production rate f. One then computes the effective droplet 
size Ld = 220± 20µm according to Ld = Ω

hw
. The vol-

umes Ω1 [gap (1)] and Ω2 [gap (2)] of the daughter drops 
are deducted from the measurements of their surface areas 
by using the formulae predicting the volume of a confined 
droplet (see Fig. 2). These formulae are valid provided that 
the capillary number at play is sufficiently small so that 
the droplet shape is only set by its degree of confinement. 
Note that we have neglected the thickness of the lubrica-
tion films that always exist between a non-wetting drop-
let and the microchannel walls. Such lubrication films are 
expected to be much smaller than the characteristic sizes of 
the channels we use (Huere et al. 2015). Once the volumes 
mentioned above are obtained, the two daughter droplets 
effective lengths L1 and L2 are, respectively, determined 
using the two relationships L1 =

Ω1
w1h

 and L2 =
Ω2
w2h

. These 
effective lengths correspond to the lengths of cuboids hav-
ing similar volumes to those of the considered droplets. As 
we will see further in the text, these quantities are useful 
parameters to model our experiments.

We use hexadecane (Sigma-Aldrich) for the continuous 
phase and solutions of glucose (0–38 wt%) in water for the 
dispersed phase. We add 15  g/L of a surfactant [sodium 
dodecyl sulfate (SDS), Sigma] in the aqueous solutions to 
hinder droplet coalescence. In our experiments, the Reyn-
olds and capillary numbers are small and span the ranges 
10−2–10−1 and 10−3–10−2, respectively. The Reynolds num-
ber R and the capillary number C correspond to the ratios 
between inertial and viscous forces and between viscous 
and capillary forces, respectively. They are defined in our 
system as R =

ρcvh
ηc

 and C =
ηcv
γ

, ρc being the density of the 
continuous phase. We measure the viscosity of each liquid 
with an Anton Paar MCR 301 rheometer. Table 1 describes 
the properties of each water/SDS/glucose mixture with 
dynamic viscosity ηd, the viscosity of hexadecane being 
ηc = 3mPa s. For the prepared mixtures, the interfacial 
tension between continuous and dispersed phases deter-
mined with pendant drop tensiometry is γ = 5–6.5 mN/m . 
In what follows, we investigate the variations of the vol-
ume fraction of the daughter droplet in the narrow gap (2), 
φ2 = Ω2/Ω; the volume fraction of the drops in the large 
gap is simply φ1 = Ω1/Ω = 1− φ2.

w2w1

h

w

Fig. 1   Middle panel: Image of the photomask of the microfluidic 
device used in our study; defined are the flow rate of the dispersed 
phase qw and the oil flow rates in the production and dilution mod-
ules, qfo and qdo, respectively. Top panel: Photographs showing the 
flow-focusing geometry that produces periodic trains of monodis-
perse drops and the dilution module. The bottom panel which consists 
of a photograph of the flow downstream of the dilution module and 
a combination of a photograph and a schematic nearby the obstacle 
defines the geometrical, hydrodynamical and physicochemical vari-
ables at play. Scale bar 100µm
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3 � Experiments: results

In our experiments, we vary v while maintaining all other 
variables fixed. In agreement with foregoing results in the 
literature, when v becomes larger than threshold velocity 
vb, a slug breaks in two daughter droplets when its rear 
edge meets the obstacle (see Fig.  1). These drops then 
flow in gaps (1) and (2). By contrast, when v < vb, a slug 
does not break and flows in the larger gap. As depicted in 
Fig.  1, the volume Ω2 of the droplet created in the nar-
row gap is smaller that that of the drop formed in gap (1). 
Figure 3 shows that Ω2 is an increasing function of v > vb 
and that it increases with ηd for a given speed.

4 � Discussion and model

We now discuss the variations of φ2 with the dimension-
less parameters controlling the problem, C =

ηcv
γ

 and 
p =

ηd
ηc

. We will rationalize our findings with a theoretical 
framework recently introduced to describe the breakup 
dynamics of drops impacting a micro-obstacle (Salkin 
et  al. 2012 and Schmit et  al. 2015). We describe below 
the basic elements of this framework.

We assume that the speed v of a slug flowing in a chan-
nel of constant cross section S = hw varies as q  / S with 
q = qw + q

f
o + qdo the total flow rate. We consider that the 

flows of the slug and the continuous phase satisfy Darcy’s 
law, with an effective viscosity ηsd for the slug. ηsd is a free 
parameter that accounts for viscous dissipation inside the 
slug, in the thin lubrication films of oil between the slug 
and the channel walls and in the corners of the rectangu-
lar geometry. Thus, the pressure drop �p over a portion ℓ 
of the slug reads

with

a dimensionless function which can be written f ≈ 12[1–
0.63 x−1]−1 for 1 < x (Bruus 2008). We write an estimate 
of the pressure drop across the front edge of the slug due 
to the curved two-fluid interface

This contribution to the pressure accounts for the pres-
ence of curved interfaces in our model. We next consider 
flat interfaces rather than curved for simplicity’s sake. 
Using these assumptions, we are able to rationalize the 
breakup dynamics starting at time t = 0 when the drop 
collides with the obstacle. The time at which the rear edge 

(1)�pvisc =
ηsdℓq

h3w
f
(w

h

)

,

(2)f (x) =
π2

4x2





∞
�

j=1

∞
�

k=1

[1− (−1)j]2[1− (−1)k]2

jk[j2 + k2x2]





−1

(3)�pcurv =
2γ

w

(

1+
w

h

)

.

Fig. 2   This figure depicts the 
shape that a droplet seeks when 
it is confined in a microfluidic 
channel having a rectangular 
cross section. In this qualitative 
picture, the capillary number 
is sufficiently small so that the 
droplet shape only depends on 
its degree of confinement. Three 
possible cases can be obtained 
depending on the ratio between 
a drop size and channel geom-
etry. The last column shows the 
surface, length and volume of a 
drop in these three cases D – h
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Table 1   Composition and viscosities of the water/SDS/glucose mix-
tures used in our study

Amount of glucose 
(wt%)

Viscosity ηd (mPa s) Symbols used in the 
figures

0 1 Circles

14 2.1 Squares

22 2.7 Up-pointing triangles

30 3.5 Down-pointing 
triangles

34 4.1 Diamonds

38 5.2 Times sign
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of a slug of length Ld meets the obstacle is tf = Ld/v . We 
next work with the dimensionless time T = t

tf
.

Since we work at constant flow rates, a two-fluid 
interface always invades gap (1) at t = 0. Then, it begins 
to move forward at a speed dℓ1/dt (see Fig.  4 defining 
the variables used in our model). A two-fluid interface 
invades the narrow gap (2) only when the pressure drop 
�p between the two ends of the obstacles overcomes the 
Laplace pressure 2γ

w2

(

1+
w2

h

)

 required to accommodate a 
curved interface in this gap. Prior to the invasion of the 
narrower gap (2) by a fluid–fluid interface, the position 
of the interface in the large gap at T, ℓ1(T) = X1(T)L, is 
obtained by conservation of the total flow rate in Eq. (4): 
X1(T) = αT  with α =

Ldw

Lw1
. We now consider the situ-

ation for which the interface which has entered gap (1) 
has not yet reached the extremity of the obstacle, that is, 
X1(T) < 1. Using Eq. (1), we write the pressure drop over 

L in gap (1), �p =
ηcLq

h3w1
f1[(1+�ηsX1)+

2Z
C

(

1+
w1

h

)

] , 

where �ηs = (ηsd − ηc)/ηc and Z = (f1h
−2wL)−1 with 

f1 = f
(

w1

h

)

 are two dimensionless parameters. The condi-
tion for the invasion of the narrow gap can be mathemati-
cally expressed as 1+�ηsX1 >

C⋆
C

, where C⋆ = 2Z 1−W
W

,  
which provides insights into the importance of the 
sign of �ηs. Indeed, when �ηs < 0, the term on the 
left-hand side of the inequality, 1+�ηsX1, decreases 
with T, so that the time Tp at which an interface begins 
to propagate in gap (2) is Tp = 0 whenever C > C⋆. By 
contrast, when �ηs > 0, this term increases with T so 

that Tp = 1
α�ηs

(

C⋆
C

− 1

)

≥ 0. Using the two conditions 
to be fulfilled to allow propagation in gap (2), Tp < 1 
and X1(Tp) ≤ 1, one finds that invasion occurs when 

C > C⋆
1+α�ηs

 (α ≤ 1) or C > C⋆
1+�ηs

 (α ≥ 1). Note that the 

extra condition to fulfill, Tp ≥ 0, gives Tp = 0 whenever 

C > C⋆. For both positive and negative �ηs, if those con-
ditions are not fulfilled when the two-fluid interface exits 
gap (1), the pressure drop in this gap suddenly decreases 

and remains constant over time, �p =
ηcLq

h3w1
f1[(1+�ηs). 

Then, the pressure drop can no longer become larger that 
the Laplace pressure mentioned above and the invasion of 
the narrow gap never occurs.

When T ≥ Tp, the dynamics of the interfaces present 
in both gaps are controlled by a set of two coupled first-
order ordinary equations whose solutions are X1 and 
X2 = ℓ2(T)/L. The conservation of the total flow rate 
gives

The second one is obtained by the equality of pressure 
drops over both gaps

for X1 ≤ 1 and X2 ≤ 1 and where W =
w2

w1
 and 

F = f
(

w2

h

)

/
[

Wf
(

w2

Wh

)]

.
As we work with a slug size Ld = 220± 20µm that 

is constant within experimental errors, we consider 
that α =

Ldw

Lw1
= 0.82± 0.07 < 1 is constant. Assuming 

that �ηs > 0, we now discuss the two cases C > C⋆ and 
C ≤ C⋆.

•	 The case C > C⋆: We have previously shown that this 
situation corresponds to Tp = 0. By integrating Eqs. (4) 
and (5) between T = 0 and T = 1 with the initial con-
ditions X1(0) = X2(0) = 0, one easily shows that X2(1) 
is the positive solution of the quadratic equation 

(4)
dX1

dT
+W

dX2

dT
= α.

(5)(1+�ηsX1)
dX1

dT
− FW(1+�ηsX2)

dX2

dT
= α

C⋆

C

(6)

X2(1)
2
W(W − F)

�ηs

2
− X2(1)W(1+ F + α�ηs)

+ α

(

1+
α�ηs

2
−

C⋆

C

)

= 0.

2
0

50
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150

200

0 4 6 8 10 12

Ω
2
(p
L)

v (mm/s)
vb

Fig. 3   Variations of the volume Ω2 of the daughter drops produced 
in gap (2) with the velocity of the mother drop v for different viscosi-
ties of the dispersed phase: (circles) 1, (squares) 2.1 and (diamonds) 
4.1 mPa s. The lines are guides for the eyes

2(T )=X2(T )L

1(T )=X1(T )L

Ω2=X2(T=1)Lhw2

Ω1=X1(T=1)Lhw1

T=t/tf

Ω=Ldhw

Fig. 4   Top-view schematic of a drop colliding with an obstacle 
defining the variables used in our model which describes the propaga-
tion of two-liquid interfaces in the two gaps
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•	 The case C ≤ C⋆: We integrate Eqs. (4) and (5) between 

Tp =
1

α�ηs

(

C⋆
C

− 1

)

 and T = 1 with X1(Tp) = αTp and 

X2(Tp) = 0 as initial conditions. One readily finds that 

X2(1) is the positive solution of the following equation 

Since we consider that the slugs have flat interfaces 
in our modeling work, we estimate Ω = Ldwh and 
Ω2 = L2w2h = X2(1)Lw2h so that X2(1) =

αφ2
W

. Using 
this relationship between X2(1) and φ2 in Eqs. (6) and (7), 
one finds that φ2 is the positive solution of the quadratic 
equation

with ζ = α�ηs and where

◦ A(ζ , C, C⋆) = 1+
ζ
2
−

C⋆
C

 when C > C⋆;

◦ A(ζ , C, C⋆) = 1
2ζ

(

1+ ζ −
C⋆
C

)2

 when C ≤ C⋆.

One then easily shows that

As discussed above, the outcome of our model is 
Eq.  (9) that gives an analytical expression for the vari-
ations of φ2 with C and other dimensionless parameters 
describing the geometry; finding an expression of φ1 is 
then immediate as φ1 = 1− φ2. As shown in Fig.  5, 
the theoretical prediction provided by Eq.  (9) describes 
remarkably well our experimental data considering there 
is only one free parameter, ζ, in the model (Fig. 6).

For the discussed case �ηs > 0 and α < 1, Salkin et al. 
(2012) have shown that breakup occurs whenever an inter-
face enters the narrow gap. In other words, the threshold Cb 
corresponds to the capillary number C⋆

1+ζ
 above which an 

interface propagates in the gap (2). In Fig. 6, we report the 
variations of Cb =

C⋆
1+ζ

 with p determined by using the best 
fits to our data shown in Fig. 5. Figure 6 shows that that Cb 
takes values that are surprisingly much smaller (∝ 10−3) 
than those required to break a drop under shear flow in bulk 
(∝ 1). We also note that in our microfluidic experiments, Cb is 
a decreasing function of p in the investigated range [0.2–2].

In Fig.  7, we report the values found for the free 
parameter ζ as a function of p. Since α = 0.82± 0.07 

(7)

X2(1)
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2
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1
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(
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C⋆

C

)2

= 0.

(8)φ2
2

(F −W)ζ

2W
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Fig. 5   Variations of the volume fraction φ2 of the daughter drops 
formed in gap (2) with the capillary number C for different aqueous 
solutions; the symbols are identical to those in Fig. 3. The lines cor-
respond to the prediction of φ2 given by Eq.  (9) with the following 
values of the free parameter ζ = α�ηs: (circles) 2.04, (squares) 3.68 
and (diamonds) 7.35

0

0.5

1

1.5

2

0 0.5 1 1.5 2

10
3
C b

p

Fig. 6   Evolution of Cb with the viscosity ratio p. The symbols stand 
for different viscosities of the dispersed phase: (up-pointing trian-
gles) 2.7, (down-pointing triangles) 3.5 and (times sign) 5.2  mPa  s 
and as indicated in Table 1. The line is a guide for the eyes

is constant within experimental errors in our study, our 
analysis allows us to estimate the free parameter �ηs 
characterizing the effective viscosity introduced by the 
flow of slugs. We find that �ηs = 2.5− 6.5 > 0 for our 
experiments which validates the assumption made when 
modeling φ2. We also note that �ηs, thus ηsd, increases 
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with p (Fig. 7). The values we found for this system for 
ηsd = (1+�ηs)ηc = 10.5–22.5 are larger than ηc in agree-
ment with previous results by Salkin et  al. (2012) also 
conducted with an aqueous solution in oil system.

5 � Conclusion

We have studied the breakup of drops flowing against a rec-
tangular obstacle placed off-center in a microchannel. In 
agreement with earlier works, we have shown that breakup 
requires that the capillary number C exceeds a threshold 
Cb. We have characterized the role of the viscosity ratio p 
between dispersed and continuous phases on drop breakup 
by investigating the experimental variations of the volume 
fraction φ2 of the smaller daughter droplet formed upon 
breakup of a mother drop with C and p. We have presented 
a single free parameter model that gives an analytical 
expression of φ2 which captures these variations and allows 
us to determine Cb. We find a threshold for breakup that is 
three orders of magnitude smaller than typical values found 
under shear flow in bulk experiments. In addition, our 
results show that Cb is decreasing with p in the that studied 
range of the viscosity ratio [0.2–2].

Acknowledgements  We thank A. Saint-Jalmes for his kind help with 
viscosity and surface tension measurements and F. Leal-Calderon 
for fruitful discussions. This work was partly funded by l’Université 
Européenne de Bretagne (Grant EPT Physfood) and le Fond Européen 
de Développement Régional (FEDER). A. Nishimura thanks TUAT 
for granting him a fellowship to work at IPR.

References

Abate AR, Weitz DA (2011) Faster multiple emulsification with 
drop splitting. Lab Chip 11(11):1911–1915

Afkhami S, Leshansky AM, Renardy Y (2011) Numerical investiga-
tion of elongated drops in a microfluidic T-junction. Phys Flu-
ids 23(2):022002

Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions 
using flow focusing. Appl Phys Lett 82(3):364–366

Baroud CN, de Saint R, Vincent M, Delville JP (2007) An optical 
toolbox for total control of droplet microfluidics. Lab Chip 
7(8):1029–1033

Bedram A, Moosavi A (2011) Droplet breakup in an asymmetric 
microfluidic T junction. Eur Phys J E 34(8):78

Bedram A, Moosavi A, Hannani SK (2015) Analytical relations for 
long-droplet breakup in asymmetric T junctions. Phys Rev E 
91(5):053012

Belloul M, Courbin L, Panizza P (2011) Droplet traffic regu-
lated by collisions in microfluidic networks. Soft Matter 
7(9):9453–9458

Bentley B, Leal L (1986) An experimental investigation of drop 
deformation and breakup in steady, two-dimensional linear 
flows. J Fluid Mech 167:241283

Bruus H (2008) Theoretical microfluidics. Oxford University Press, 
New-York

Cardinaels R, Moldanaers P (2011) Critical conditions and breakup 
of non-squashed microconfined droplets: effects of fluid vis-
coelasticity. Microfluid Nanofluid 10(6):1153–1163

Che ZZ, Nguyen NT, Wong TN (2011) Hydrodynamically medi-
ated breakup of droplets in microchannels. Appl Phys Lett 
98(5):054102

Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA (2007) Control-
lable monodispersed multiple emulsions. Angew Chem Int Ed 
46(47):8970–8974

Chung C, Lee M, Chan K, Ahn KH, Lee SJ (2010) Droplet dynam-
ics passing though obstructions in confined microchannel flow. 
Microfluid Nanofluid 9(6):1151–1163

Courbin L, Panizza P, Salmon JB (2004a) Observations of droplet 
size oscillations in a two phase fluid under shear flow. Phys 
Rev Lett 92(1):018305

Courbin L, Engl W, Panizza P (2004b) Can a droplet break up under 
flow without elongating? Fragmentation of smectic monodis-
perse droplets. Phys Rev E 69(6):061508

Cubaud T (2009) Deformation and breakup of high-viscosity drop-
lets with symmetric microfluidic cross flows. Phys Rev E 
80(2):026307

de Menech M (2006) Modeling of droplet breakup in a microflu-
idic T-shaped junction with a phase-field model. Phys Rev E 
73(3):031505

Engl W, Backov R, Panizza P (2008) Controlled production of 
emulsions and particles by milli- and microfluidic techniques. 
Curr Opin Colloid Interface Sci 13(4):206216

Grace HP (1982) Dispersion phenomena in high viscosity immisci-
ble fluid systems and application of static mixer as dispersion 
devices in such systems. Chem Eng Commun 14:225–277

Guido S (2011) Shear-induced droplet deformation: effects of con-
fined geometry and viscoelasticity. Curr Opin Colloid Inter-
face Sci 16(1):61–70

Gupta A, Sbragaglia M (2014) Deformation and breakup of 
viscoelastic droplets in confined shear flow. Phys Rev E 
90(2):023305

Huere A, Theodoly O, Leshansky AM, Valignat MP, Cantat I, Jullien 
MC (2015) Droplets in microchannels: dynamical properties of 
the lubrication film. Phys Rev Lett 115(6):064501

0

2

4

6

8

10

0 0.5 1 1.5 2
p

ζ
=
α
∆
η
s

Fig. 7   Variations of ζ with p. The symbols are identical to those of 
figure and the line is a guide of the eyes



	 Microfluid Nanofluid (2017) 21:94

1 3

94  Page 8 of 8

Janssen JMH, Meijer HEM (1993) Droplet breakup mechanisms. J 
Rheol 37(4):597608

Leal-Calderon F, Schmitt V, Bibette J (2007) Emulsion science: basic 
principles, 2nd edn. Springer, New York

Leshansky AM, Pismen LM (2009) Breakup of drops in a microflu-
idic T junction. Phys Fluids 21(2):023303

Li QX, Chai ZH, Shi BC, Liang H (2014) Deformation and breakup 
of a liquid droplet past a solid circular cylinder: a lattice Boltz-
mann study. Phys Rev E 90(4):043015

Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically medi-
ated breakup of drops in microfluidic devices. Phys Rev Lett 
92(5):054503

Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristo-
bal G, Marquez M, Weitz DA (2006) Electric control of droplets 
in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560

McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller 
OJ, Whitesides GM (2000) Fabrication of microfluidic systems in 
poly(dimethylsiloxane). Electrophoresis 21(1):27–40

Ménétrier-Deremble L, Tabeling P (2006) Droplet breakup in microflu-
idic junctions of arbitrary angles. Phys Rev E 74(3):035303R

Mighri F, Carreau PJ, Ajji A (1998) Influence of elastic proper-
ties on drop deformation and breakup in shear flow. J Rheol 
42(6):1477–1490

Prat L, Sarrazin F, Tasseli J, Marty A (2006) Increasing and decreas-
ing droplets velocity in microchannels. Microfluid Nanofluid 
2(3):271–274

Protière S, Bazant MZ, Weitz DA, Stone HA (2010) Droplet breakup 
in flow past an obstacle: a capillary instability due to permeability 
variations. Europhys Lett 92(5):54002

Rayleigh L (1878) On the instability of jets. Proc London Math Soc 10:4
Salkin L, Courbin L, Panizza P (2012) Microfluidic breakups of con-

fined droplets against a linear obstacle: the importance of the vis-
cosity contrast. Phys Rev E 86(3):036317

Salkin L, Schmit A, Courbin L, Panizza P (2013) Passive breakups 
of isolated drops and one-dimensional assemblies of drops in 
microfluidic geometries: experiments and models. Lab Chip 
13(15):3022–3032

Samie M, Salari A, Shafii MB (2013) Breakup of microdroplets in 
asymmetric T junctions. Phys Rev E 87(5):053003

Schmit A, Salkin L, Courbin L, Panizza P (2015) Cooperative breakups 
induced by drop-to-drop interactions in one-dimensional flows of 
drops against micro-obstacles. Soft Matter 11(4):2454–2460

Seeman R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet 
based microfluidics. Rep Prog Phys 75(1):016601

Sessoms DA, Amon A, Courbin L, Panizza P (2010) Complex dynamics 
of droplet traffic in a bifurcating microfluidic channel: periodicity, 
multistability, and selection rules. Phys Rev Lett 105(15):154501

Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu 
LY, Kim JW, Fernandez-Nieves A, Martinez J, Weitz DA (2008) 
Designer emulsions using microfluidics. Mater Today 11(4):18–27

Stone HA (1994) Dynamics of drop deformation and breakup in viscous 
fluids. Annu Rev Fluid Mech 26:65102

Stone HA, Leal LG (1989) Relaxation and breakup of an initially 
extended drop in an otherwise quiescent fluid. J Fluid Mech 
198:399427

Tan J, Xu JH, Li SW, Luo GS (2008) Drop dispenser in a cross-junction 
microfluidic device: scaling and mechanism of break-up. Chem 
Eng J 136(2–3):306–311

Taylor GI (1932) The viscosity of a fluid containing small drops of 
another fluid. Proc R Soc Lond A 138:41–48

Taylor GI (1934) The formation of emulsions in definable fields of flow. 
Proc R Soc Lond A 146:501–523

Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab 
Chip 8(2):198–220

Torza S, Cox RG, Mason SG (1972) Particle motions in sheared suspen-
sions XXVII. Transient and steady deformation and burst of liquid 
drops. J Colloid Interface Sci 38:395–411

Trivedi V, Doshi A, Kurup GK, Ereifej E, Vandevord PJ, Basu AS (2010) 
A modular approach for the generation, storage, mixing, and detec-
tion of droplet libraries for high throughput screening. Lab Chip 
10(18):2433–2442

Vananroye A, Van Puyvelde P, Moldanaers P (2006) Effect of con-
finement on droplet breakup in sheared emulsions. Langmuir 
22(9):3972–3974

Vananroye A, Van Puyvelde P, Moldanaers P (2007) Effect of confine-
ment on the steady-state behavior of single droplets during shear 
flow. J Rheol 51(1):139–153

Wang J, Yu D (2015) Asymmetry of flow fields and asymmetric breakup 
of a droplet. Microfluid Nanofluid 18(4):709715

Zheng MM, Ma YL, Jin TM, Wang JT (2016) Effects of topological 
changes in microchannel geometries on the asymmetric breakup 
of a droplet. Microfluid Nanofluid 20(7):107


	Breakup of confined drops against a micro-obstacle: an analytical model for the drop size distribution
	Abstract 
	1 Introduction
	2 Experiments: setup, materials and methods
	3 Experiments: results
	4 Discussion and model
	5 Conclusion
	Acknowledgements 
	References




