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Finally, we present an original methodology to extract 
stationary mass flow rates by using the tube conductance, 
which can be associated with the characteristic time of the 
experiment, measured for different mean pressures between 
two tanks. The results were obtained in a wide range of rar-
efaction conditions for nitrogen (N2). A brief comparison 
is offered with respect to R134a (CH2FCF3), too, a heavy 
polyatomic gas which is typically used in the refrigeration 
industry.

Keywords Micro-flows · Transient flows · MEMS · Gas 
rarefaction · Kinetic theory

1 Introduction

Since the advent of micro-electro-mechanical systems 
(MEMS), the physical investigations performed on gas 
flows at a microscopic scale have become of great interest 
for various applications that touch almost every industrial 
field, such as fluidic micro-actuators for active control of 
aerodynamic flows, mass flow and temperature microsen-
sors, micropumps, micro-systems for mixing or separa-
tion for local gas analysis, mass spectrometers, vacuum 
applications, pressure gauges, dosing valves and micro-
heat exchangers. In practical applications, these micro-
fluidic devices are often required to function in transient 
conditions, hence a time-dependent analysis of the flow is 
needed. To this day not much attention has been dedicated 
to study and analyze time-dependent gas flows in micro-
devices, to the extent that experimental data on the matter 
is basically lacking.

In micro-devices, the equivalent mean free path of the gas 
molecules (ℓ) can be of the same order as the characteristic 
dimension (L) of these devices. In this case, the fluid can be 
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considered to be under rarefied conditions and it cannot be 
treated as a continuum medium as it usually done by clas-
sic fluid mechanics. Depending on their level of rarefac-
tion, which can be characterized by a rarefaction parameter 
δ = L/ℓ, micro-gas flows often require modeling by means 
of molecular-based approaches. Gas rarefaction induces 
macroscopic non-equilibrium effects at the interface between 
gas and solid surfaces for the gas macroscopic parameters, 
such as viscous and thermal slip and temperature jump at the 
wall, for the gas velocity and its temperature, respectively. 
These non-equilibrium phenomena are affected by the spe-
cific configuration of the surface of the micro-device, such as 
surface roughness and materials, and the molecular structure 
of the gas considered (Sharipov 2011).

At the current state of the art, experimental observation 
on rarefied gas flows is generally limited to stationary flow 
configurations. Particularly, most works aim to measure 
stationary isothermal mass flow rates as a function of the 
flow rarefaction in order to identify the magnitude of the 
velocity slip at the wall. This particular phenomenon has 
been greatly investigated since the modified boundary con-
ditions to be used together with the Navier-Stokes equa-
tions for slightly rarefied gas flows take account of gas slip 
at the wall. However, these slip boundary conditions require 
an empirical adjustment which depends on the gas tangen-
tial momentum accommodation at the wall (Porodnov et al. 
1974; Harley et al. 1995; Arkilic et al. 1997; Ewart et al. 
2007; Pitakarnnop et al. 2010; Perrier et al. 2011; Yamagu-
chi et al. 2011; Silva et al. 2016).

Even if the main focus of attention in rarefied gas 
flows has been the measurement of stationary flow con-
figurations, some authors have numerically studied tran-
sient rarefied gas flows (Colin 2005; Lihnaropoulos and 
Valougeorgis 2011; Sharipov 2012b, 2013; Vargas et al. 
2014a; Sharipov and Graur 2014). Nevertheless, very lit-
tle experimental efforts on the topic have been conducted 
so far. The only experimental study that at our knowledge 
offers an insight on transient rarefied gas flows is the recent 
work of Vargas et al. (2014b), who measured the pressure 
difference between inlet and outlet of a single short tube as 
a function of time for different single gases and binary gas 
mixtures. The hybrid model they presented could qualita-
tively but not quantitatively follow the experimental results.

Due to this lack of experimental observation, the pri-
mary goal of the present study was to measure the relaxa-
tion process of a gas diffusing through a long micro-tube. 
The relaxation process refers to the pressure variation with 
time in two tanks, set at the inlet and outlet of a micro-tube, 
from an initial pressure difference stage until a final equi-
librium stage of pressure equality.

Furthermore, by monitoring the entire relaxation process 
of pressure evolution inside two tanks of equal volumes at 
the inlet and outlet of the micro-device, we demonstrated 

that it is indeed possible to extract an unique conductance 
value that depends only on the average pressure of the 
experiment, the geometry of the channel and the gas nature. 
This was achieved by means of a dynamic constant volume 
technique that was firstly proposed to measure thermally 
driven gas flows by Rojas-Cardenas et al. (2011). The origi-
nality with respect to the classic constant volume technique 
(Arkilic et al. 1997; Yamaguchi et al. 2011; Ewart et al. 
2006) relies on the fact that a dynamic measurement tech-
nique considers the time-dependency of pressure during the 
full duration of the pressure relaxation process obtained 
from one single experiment. The methodology therefore 
takes under account the intrinsic non-stationarity of the 
pressure measurements and profits from it to characterize 
the relaxation process by a characteristic time that can be 
associated with the conductance of the channel used.

From these experiments, it is not only possible to meas-
ure a single conductance value, but it is also possible to 
associate with the pressure evolution with time the time-
dependent mass flow rate along the micro-tube.

The experiments were performed for different ini-
tial pressure ratios and for a large spectrum of rarefaction 
conditions.

Finally, the obtained experimental time-dependent 
results were compared with the numerical solution of the 
linearized BGK model kinetic equation in the case of tran-
sient flows (Sharipov and Graur 2014).

The understanding of the phenomena relating the non-
equilibrium effects of viscous slip to the transient gas mac-
roscopic displacement in micro-systems under different 
type of rarefaction conditions and for different gases could 
be used to develop interesting applications such as, for 
example, gas separators or accurate micro-mass flow rates 
regulating devices.

2  Experimental apparatus

The experimental setup was composed of a single metal-
lic (stainless steel) micro-tube of circular cross sec-
tion, two reservoirs, two capacitance diaphragm pres-
sure gauges, two thermocouples, a vacuum pump and the 
acquisition system (Fig. 1). The single metallic micro-tube 
(Lt = 92.22± 0.01mm, D = 435.5± 3.5µm) was con-
nected to two tanks which were positioned at the inlet and 
outlet of the capillary.

The volume of the tanks was chosen to be much larger 
with respect to the volume of the micro-tube. Two sets 
of inlet/outlet tank volumes were used. The main experi-
mental campaign was performed for a first set of volumes 
with almost equal dimensions that is V1 = 173.2± 0.5ml 
and V2 = 174.5± 0.5ml (V1/V2 = 0.9926). While 
the second set of volumes were chosen to be of 
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considerably different dimensions V1 = 181.1± 0.5ml 
and V2 = 28.5± 0.1ml (V1/V2 = 6.354). The indexes 1 
and 2 stand for inlet and outlet of the tube, respectively. 
The two tanks were appositely designed to host the single 
micro-tube. However, the experimental apparatus can be 
re-arranged in order to host in its test section a great vari-
ety of micro-fluidic devices.

The temperature inside both tanks was continuously 
monitored by means of two thermocouples, and it was 
stabilized at around Tm = 295.5± 0.5K during the full 
duration of one experiment. The apparatus was thermally 
insulated from the external room by means of the same adi-
abatic chamber used by Pitakarnnop et al. (2010). Addi-
tionally, an efficient isothermal stability was achieved due 
to the high thermal inertia of the two stainless steel tanks. 
The temperature oscillations at the inlet and outlet tanks 
were evidently lower than the sensibility of the temperature 

sensors, as it can be seen from Fig. 2. We estimated these 
oscillations in the order of dT/Tm = 10−3.

The inlet tank was connected by means of valve A to 
high pressure reservoirs containing nitrogen N2 and R134a 
(CH2FCF3), a commonly used refrigerant fluid. The out-
let tank was connected by means of valve B to a vacuum 
pump. The test section could be vacuumed until pressures 
as low as 10−2Pa and it was regulated by means of valve 
B. The rarefaction conditions imposed in the micro-tube 
ranged from transition to near hydrodynamic regime.

The fast response capacitance diaphragm gauges (CDG) 
monitored the pressure variation with time inside the two 
tanks. The acquisition frequency of the pressure gauges 
was of 33 Hz. CDGs with different full scales were used 
as a function of the nominal pressure in the system, which 
allowed us to improve the measurements accuracy at low 
pressures (see Table 1 for specifications).

3  Experimental methodology

In this section, we introduce the dynamic constant volume 
technique which can be used to extract a time-dependent 
mass flow rate at the inlet or outlet of the micro-device. 
In order to do this, we give a brief description of the well-
known classical constant volume technique and present 
its limitations and how it can be extended into a dynamic 
constant volume technique. Finally, as a consequence of 
the new methodology, we present the extraction of the 
conductance from the exponential relaxation of the pres-
sure variation with time.

Fig. 1  Above The experimental apparatus composed by the micro-
tube, two temperature sensors (t1 and t2), two tanks (R1 and R2) and 
the INFICON capacitance pressure diaphragm gauges (CDG). Below 
Details of the circular cross-sectional micro-tube

Fig. 2  Temperature oscillations around the average temperature 
Tm = 295.5± 0.5K measured by two temperature sensors (t1 and t2) 
at the inlet and outlet tanks (R1 and R2)
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3.1  Constant volume technique

From the constant volume technique it is possible to 
measure the stationary mass flow rate along the tube by 
correlating the variation of mass inside tanks 1 and 2 to 
a linear pressure variation with time. Thus, the constant 
volume technique consists on performing a quasi-station-
ary macroscopic thermodynamic study inside a defined 
volume of a tank by means of the ideal gas law

where R, T, pi, Vi, and Mi, are, respectively, the specific 
gas constant, the temperature, the pressure, the tank vol-
ume and the mass of the gas in the tank. The subscript 
i = 1, 2 defines the equation with respect to where the 
measurement was taken that is the tank at the inlet or out-
let of the micro-tube. As the experiments were isother-
mal, the temperature in both tanks was exactly the same.

If one differentiates Eq. (1) by considering a constant 
tank volume, it is possible to write for tank 2

while an analogous expression can be written for the 
other tank.

If the relative temperature variation in the tank can be 
considered as negligible in relation to the relative pres-
sure variation and by defining a specific time interval, dt, 
it is then possible to obtain the isothermal mass flow rate 
Ṁ2 from Eq. (2) as

Since here the variation of the thermodynamic parame-
ters dM and dp are sufficiently small, one can approxi-
mate dM / dt and dp/dt as the time derivative of the mass, 
i.e., mass flow rate Ṁ, and the time derivative of pres-
sure, respectively. For each experiment, the oscillations 
of temperature were in the order of dT/T = 10−3 and 
the variation of pressure in average was in the order of 
dp/p = 10−1. Therefore, the ǫ parameter as defined in 
Eq. (3) was estimated to be negligible (ǫ ≈ 0.01).

(1)p1V1 = M1RT , p2V2 = M2RT ,

(2)dM2 =
V2

RT
dp2

(

1−
dT/T

dp2/p2

)

,

(3)Ṁ2 =
V2

RT

dp2

dt
, ǫ =

dT/T

dp2/p2
≪ 1.

From the mass conservation law, the mass flow rate leav-
ing the first tank is necessarily equal to the mass flow rate 
entering into the second tank and it is therefore possible to 
write

Consequently, from Eqs. (3) and (4), one can simply notice 
that by subtracting

it is possible to deduce the dependence of the mass varia-
tion in one tank to the pressure difference variation between 
both tanks, as

where ∆p(t) is the pressure difference between the two res-
ervoirs: ∆p(t) = p1(t)− p2(t).

In the classical constant volume technique case, the 
duration of the time interval dt is notably chosen to be small 
enough in order to respect the tank stationary assumption in 
both reservoirs that means that the variation of any mac-
roscopic quantity inside the tanks needs to be negligible. 
However, this time interval needs to be long enough, too, 
since the pressure changes in both tanks must be measured 
within an acceptable accuracy.

The stationary flow assumption physically justifies that 
the pressure varies with time in a linear manner and by 
thus it may be represented with a simple linear least-square 
fit. Conversely, the measurements consistent with the lin-
ear profile justify the stationarity assumptions (Ewart et al. 
2006).

3.1.1  Limits and extension of the constant volume 
technique

The first limit of the classical constant volume technique 
results from the fact that the method does not provide 
direct access to a real-time-dependent flow regime. In fact, 
the method could only be used at a fixed time during one 
experiment, allowing us to derive various stationary mass 
flow rates related to various quasi-stationary states.

Now considering precisely the use of the methodology 
at a fixed time, some limits can be found considering the 
two opposite purposes of the technique. A time interval 
dt is to be defined where the pressure measurement has to 
be made. As previously discussed, this time interval must 
be sufficiently small to allow us to identify the left-hand-
side expression of Eq. (3) to the time derivative of the 
mass, namely to the mass flow rate at a fixed time t∗, in 
other words to a mass flow rate considered as stationary. 

(4)Ṁ2 = −Ṁ1 = Ṁ.

(5)
dp1

dt
−

dp2

dt
= RT

(

Ṁ1

V1

−
Ṁ2

V2

)

,

(6)Ṁ = −
V0

RT

d(∆p(t))

dt
, V0 =

V1V2

V1 + V2

,

Table 1  Characteristics of the capacitance pressure gauges CDG025

a Full scale
b Reading

F. S.a [Pa] Accuracy % 
of r.b

Resolution % 
of F.S

Lowest  
r. % of F.S.

Acq.  
frequency

13332 0.2 0.003 0.01 33 Hz

1333.2

133.32
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But, nevertheless, it is necessary to consider a time inter-
val dt, sufficiently long that allows us to extract a pres-
sure variation measurement that has a substantial physi-
cal meaning.

Thus, in some cases, where a very fast pressure vari-
ation with time is initially induced, it may be difficult to 
completely verify both the previously defined constraints: 
in such cases the error on the stationary mass flow rate 
evaluation would be without any doubt increased. As pre-
viously discussed, when the pressure varies with time in a 
linear way, this error becomes, by all matters, completely 
negligible.

3.2  Dynamic constant volume technique

The technique proposed herein is not limited to a quasi-sta-
tionary approach, i.e., to the measurement of a linear pres-
sure variation with time.

Firstly, this dynamic method allows us to obtain, through 
the pressure time derivative, an explicit expression of the 
time-depending mass flow rate. Therefore, regarding the 
stationary mass flow rate evaluation, the new methodology 
eliminates the necessity of using a time interval, where the 
pressure varies linearly, but uses the whole process of the 
pressure decay in both reservoirs.

Secondly, this methodology offers new interesting pos-
sibilities, since the pressure difference decay with time 
between both reservoirs can be associated with a conduct-
ance value which depends only on the tube geometry, the 
gas used and the average pressure in the micro-device.

3.2.1  Pressure variation with time

In order to obtain a pressure variation with time in both 
reservoirs, an initial pressure difference, ∆p0, is imposed 
between the two tanks. Thereafter, since the tanks are con-
nected only by the micro-tube (valve A and B are closed, 
see Fig. 1), the pressure inside the two tanks can relax to 
a final state of equilibrium, i.e., to a final pressure equality 
stage where pf = p1(tf ) = p2(tf ).

For every experiment, we monitored the whole pressure 
relaxation process by means of two capacitance diaphragm 
gauges connected to the tanks. For convenience, we always 
imposed a higher initial pressure in tank 1 with respect to 
tank 2 that is p1(t) > p2(t) (Fig. 3).

The relation between the pressure variations in both 
tanks that is from the initial pressure pi(t0) imposed to the 
final pressure pf  reached, can be computed a priori as this 
variation closely relates to the tanks volume ratio. From the 
ideal gas law, admitting again the mass conservation along 
the micro-tube at any time, see Eq. (4), one can write the 
following relation for the two tanks if they are maintained 

at the same temperature V2dp2 = −V1dp1. This expression 
can be rewritten in the following form

It is clear from Eq. (7) that by adjusting the tanks’ vol-
ume ratio one could control the pressure variation between 
initial and final stages. Therefore, from Eq. (7) it is pos-
sible to estimate the maximal variation of the mean pres-
sure pm = 0.5(p1 + p2) with time during one experiment 
between the initial mean pressure pm(t0) = pm to the final 
mean pressure pm(tf ) = pf

In previous expression, kp = p1(t0)/p2(t0) is the initial 
pressure ratio, kV = V1/V2 is the volume ratio. As it is clear 
from Eq. (8), when the tank volumes are equal kV = 1, the 
mean pressure pm(t) does not vary in time, i.e., pm(t) = pf  
during the whole experiment.

By using Eq. (8), one can estimate the maximal ampli-
tude of mean pressure variation between its initial state 
pm(t0) and its final state pf  for a known tank volumes 
ratio and initial pressure ratio. For example, for the case 
shown in Fig. 3 where V1/V2 = 0.9926, p1(t0) = 805.7Pa 
and p2(t0) = 23.5Pa the mean pressure varies from 
pm(t0) = 414.6Pa to pf = 413Pa that means ≈ 0.35% . 
This information will be crucial for what concerns the 

(7)
pf − p2(t)

p1(t)− pf
=

V1

V2

.

(8)
pf

pm(t0)
=

2(1+ kVkp)

(1+ kV )(1+ kp)
.

Fig. 3  An initial pressure difference (∆p0) is imposed between 
the two reservoirs that leads to a pressure relaxation with time in 
the two tanks 1 and 2 until a final pressure equilibrium is reached 
pf = p1(tf ) = p2(tf ). The initial pressures are p1(t0) = 805.7Pa, 
p2(t0) = 23.5Pa, the mean pressure varies from pm(t0) = 414.6Pa to 
pf = 413Pa. A small fraction of the acquired experimental points are 
shown for sake of a proper visual representation. The acquisition fre-
quency for each experiment was 33 Hz
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conductance determination performed in the following 
section.

3.2.2  Exponential relaxation with time

By analogy to Ohm’s law, one can relate the pressure dif-
ference (p1 − p2) across the micro-tube to the “potential,” 
the flow throughput Q̇ to the “current” and the conductance 
C to the inverse of the “an electrical resistance.” Therefore, 
one can define the conductance of the tube as

where C is the same for both reservoirs, admitting the mass 
conservation of the flow along the micro-tube (Arkilic et al. 
2001). The flow throughput Q̇,commonly used in the field 
of vacuum science and technology to express gas flow rates 
(Jousten 2008), is defined as

and, as seen above, it can be easily correlated to the mass 
flow rate by using Eq. (3). We can now relate the conduct-
ance C in Eq. (9) to the pressure variation in time in each 
reservoir by means of Eq. (10) in the following form:

where V1 and V2 are constant tank volumes. By subtracting, 
one of the previous equations to the other, we can obtain 
a differential equation for the pressure difference ∆p(t) 
between the tanks:

This differential equation can be easily solved if the con-
stancy of the conductance C in time is assumed, then the 
solution of Eq. (12) has the form

where ∆p0 is the initial pressure difference at t = 0 and τ 
is the characteristic time of the experiment or the system 
relaxation time.

The pressure difference variation with time between 
tank 1 and 2 can be thus associated with an exponential 
decay for the case where the conductance of the tube is 
constant during one single experiment. In addition, we can 
note that τ can be extracted from the experimental pressure 
variation with time (Fig. 4). This value of the characteristic 
time allows us to obtain the tube conductance correspond-
ing to the mean pressure of an experiment.

(9)C = −
Q̇1

p1 − p2
, C =

Q̇2

p1 − p2
,

(10)Q̇i =
d(pV)i

dt
= RTṀi,

(11)
dp1

dt
= −

C

V1

(p1 − p2),
dp2

dt
=

C

V2

(p1 − p2),

(12)
d(∆p(t))

∆p(t)
= −

C

V0

dt.

(13)∆p(t) = ∆p0 exp

(

−
t

τ

)

, τ =
V0

C
,

3.2.3  Time‑dependent and steady‑state mass flow rate 
measurements

In the previous section, we derived the exponential 
expression of the pressure difference variation with time. 
By using Eqs. (6) and (13), we can now express the mass 
flow rate variation with time using the analytical deriva-
tion of the pressure difference variation with time. There-
fore, for the case of isothermal tanks the mass flow rate 
entering in tank 2 can be written as

This expression of the mass flow rate, Eq. (14), can be 
used in two different ways:

–– The mass flow rate depends on time, but for a given 
time t = t∗ this mass flow rate can be identified as the 
stationary mass flow rate corresponding to the pres-
sure difference between the extremities of the tube, 
i.e., p1(t∗)− p2(t

∗).
–– It is possible to directly consider the transient mass 

flow rate Ṁ(t) through the tube for the full duration 
of one experiment in order to study the transient phe-
nomenon.

(14)Ṁ2(t) =
V0

RT

∆p0

τ
exp

(

−
t

τ

)

.

Fig. 4  Pressure difference variation with time ∆p(t): an initial pres-
sure difference is imposed at the inlet and outlet of the tube, this 
engenders a pressure relaxation in the two tanks 1 and 2 until a final 
pressure equilibrium is reached ∆p(tf ) = 0. The experimental results 
were fitted by Eq. (13). The mean pressure is 413Pa. A small fraction 
of the acquired experimental points are shown for sake of a proper 
visual representation. The acquisition frequency for each experiment 
was 33 Hz
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3.2.4  On the conductance constancy condition

As it was shown in Sect. 3.2.2, the expression of the pres-
sure difference variation with time [Eq. (13)] and, there-
fore, the expression of the mass flow rate variation with 
time [Eq. (14)], are valid under the assumption of having a 
constant conductance C during one single experiment. Let 
us now analyze for which conditions the conductance con-
stancy assumption is thus satisfied. As shown in Sect. 3.2.2, 
the conductance can be easily related to the mass flow rate 
along the tube leaving the first reservoir or entering the sec-
ond reservoir. For the case of tank 2, one can write

It is known that the mass flow rate Ṁ imposed by a pres-
sure difference p1 − p2 flowing through a long tube of 
diameter D ≪ L can be related to the dimensionless mass 
flow rate G as

where v =
√
2RT  is the most probable molecular speed 

(Sharipov 1997). Comparing Eqs. (15) and (16), one can 
easily conclude for an isothermal configuration that the 
conductance is constant when the dimensionless mass flow 
rate G is constant. Since G is only a function of the rarefac-
tion parameter (Sharipov 1997), it is possible to state that if 
the gas rarefaction is constant, the conductance is constant, 
too. The mean rarefaction parameter along the tube can be 
defined as

where µ(T) is the gas viscosity which depends only on 
temperature. The values of G are provided in Sharipov 
(1997) for a large range of the rarefaction parameter. It 
becomes clear from Eq. (17) that for an isothermal case, 
the rarefaction parameter δm depends only on pressure. 
Therefore, when the mean pressure does not vary dur-
ing the experiment the dimensionless mass flow rate G 
is constant and hence the tube conductance remains con-
stant too. If the rarefaction varies greatly along the chan-
nel for large pressure ratios imposed, the dimensionless 
mass flow rate varies along the channel, too, nevertheless it 
has been proven that when the pressure ratio is p1/p2 = 4 
the dimensionless mass flow rate G can be approximated 
with a 5% accuracy from the value calculated by means of 
the mean pressure between the inlet and outlet tank, i.e., 
G(δm) (Sharipov 1997; Graur and Sharipov 2008). As it 
was shown in Sect. 3.2.1, the mean pressure does not vary 
during an experiment when the inlet/outlet volumes are 

(15)C =
ṀRT

p1 − p2
.

(16)Ṁ = G
πD3(p1 − p2)

8vL
,

(17)δm =
pmD

µ(T)v
,

identical. Therefore, it is interesting to have an estimation 
of the variation of dimensionless mass flow rate G, and 
consequently of the conductance C, as a function of the 
rarefaction parameter defined by the mean pressure. An 
expression of the dimensionless mass flow rate G as a func-
tion of the mean rarefaction parameter δm was proposed in 
Sharipov et al. (2010) for the case of complete accommo-
dation of molecules to the wall:

By analyzing Eq. (18), one can see that for small del-
tas (δm → 0, low pressures) the dimensionless mass flow 
rate tends to a limit value G(δm) → 8

3
√
π

, however for 
(δm → ∞ ) G(δm) becomes linearly proportional to δm tend-
ing to the hydrodynamic limit, where the mass flow rate is 
defined by the Poiseuille solution that is G(δm) = δ/8.

Since the dimensionless mass flow rate is correlated to 
the mass flow rate and the conductance from Eqs. (15) and 
(16)

by using Eq. (18) one can obtain two limit values for the 
conductance, one in the free molecular flow

and one in the hydrodynamic flow, which coincides with 
the Poiseuille solution and is linearly proportional to the 
mean pressure

Therefore, it is clear that the limit case of hydrodynamic 
flow could be sensitive to conductance variations during 
the duration of one experiment, specially for cases above 
δm > 10, where the influence of the mean pressure starts 
to be relevant. It was thus of great importance to chose an 
upper limit value of mean pressure variation with time with 
respect to the initial pressure ratio imposed at the beginning 
of one experiment. Since the reservoirs’ volume ratio is 
known, we can establish a condition on the maximum pres-
sure ratio kp to be imposed to have a maximum mean pres-
sure variation with time pf /pm of the order of 1%. From 
Eq. (8), for the first case configuration of volume ratio 
V1/V2 = 0.9926 an initial pressure ratio kp = 33.75 relates 
to a maximum mean pressure variation of 0.35%, therefore, 
one can consider that this volume ratio configuration does 
not generate any mean pressure variation during the whole 

(18)
G(δm) =

8

3
√
π

1+ 0.025 δ0.7m ln

(

δm
2

)

1+ 0.448 δ0.8m

+
(

δm

8
+ 1.018

)

δm

2+ δm
.

(19)C =
πD3v

16L
G,

(20)CFM =
√
πD3v

6L
(δm → 0),

(21)CH =
πD3v

128L
δm (δm > 10

3).
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duration of one experiment. For the second case configura-
tion of volume ratio V1/V2 = 6.354 an initial pressure ratio 
kp = 1.1475 relates to a maximum mean pressure variation 
of 5%, therefore, Eq. (13) can be applied to this case con-
figuration only for relatively short relaxation experiments. 
Since the conductance C in the worst case scenario is lin-
early proportional to pm, we can state that in our experi-
ments we have chosen to work with a maximum of 1% 
uncertainty value related to the measurement methodology 
on C.

3.2.5  Mass flow rate measurements uncertainty

To estimate the measurement uncertainty when using the 
dynamic constant technique, we can rewrite Eq. (14) in 
the following form

Using the classical technique to calculate the mass flow 
rate measurements uncertainty if one measures it using 
Eq. (22).

The first term is related to the constancy of the conduct-
ance and the fitting coefficient τ and can be estimated at 
around dC

C
= 1%, the second uncertainty can be related 

(22)Ṁ(t) =
C

RT
∆p0exp

(

−
C

V0

t

)

.

(23)
dṀ

Ṁ
=

dC

C
+

d(∆p)

∆p
+

dV0

V0

+
dǫ

ǫ
.

to pressure sensors used d(∆p)
∆p

= 0.5%, the third term is 
related to the volume measurement uncertainty which 
was estimated to be around dV0

V0
= 0.5%, while the last 

term is related to the relative temperature variation 
effects, see Sect. 3.1 for details, and it is estimated to be 
of the order of dǫ

ǫ
= 1%.

4  Experimental results

4.1  Pressure variation with time

The pressure variation with time experiments gave a 
clear idea on which parameters affect the relaxation 
process from the initial non-equilibrium stage and the 
final equilibrium stage of pressure equality. It was pos-
sible to identify some main parameters that affected the 
process, such as the gas used, the mean rarefaction of 
the gas (δm), the tanks dimensions (V1, V2) and the tube 
conductance (D, L). By keeping the tube geometry as a 

Fig. 5  Pressure difference variation with time until a pressure equi-
librium equality is reached for the same initial pressure difference 
∆p0 = 100 Pa. The experimental results are shown for the same ini-
tial pressure difference. Left pressure variation with time of nitrogen 
at different rarefaction conditions (V1/V2 = 0.9926 V0 = 86.92ml). 

Right pressure variation with time at the same rarefaction conditions 
of nitrogen and R134a (V1/V2 = 6.35 V0 = 24.62ml). On the right, 
we compare the pressure variation with time for different tank vol-
umes used, too

Table 2  Gas properties

Gas Molecule µ× 10−5[Pa s] R[J kg−1K−1]

Nitrogen N2 1.775 297

R134a CH2FCF3 1.181 81.5
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constant parameter, we were able to extract the influence 
of the gas rarefaction, the gas molecular composition and 
the tanks volumes over the pressure variation with time 
behavior.

It is possible to characterize a single experiment by 
defining its initial pressure difference ∆p0 and its initial 
state of mean rarefaction as a function of the rarefaction 

parameter δm. The values of the gas viscosity and specific 
gas constant are given in Table 2.

The pressure variation with time changes radically as 
a function of the gas rarefaction, i.e., mean rarefaction 
parameter δm, see Fig. 5 left. For the same initial pressure 
difference (∆p0) imposed, but for different δm, the pressure 
variation with time is much slower for rarefied flows that 
tend to the free molecular regime (δm = 0.5) with respect to 
flows in near hydrodynamic regime (δm = 338). For exam-
ple, the time that a flow of nitrogen needs to reach its final 
state of equilibrium is around tf = 200s for δm = 338 (near 
hydrodynamic regime), around tf = 1500s for δm = 19.5 
(slip regime) and around tf = 4000s for δm = 0.5 (transi-
tion regime).

Furthermore, the pressure variation with time is 
greatly influenced by the molecular weight of the gas 
(Fig. 5 right). For same initial rarefaction conditions, 
same initial pressure difference and same tank volumes 
(V1/V2 = 6.35; V0 = 24.62ml), a heavier gas is always 
slower to reach its final state of equilibrium than a lighter 
gas. For example, a nitrogen flow needs around 600s to 
reach its final equilibrium stage against approximately 
1000s for R134a at same rarefaction conditions, δm = 16.4 , 
which corresponds to slip regime (see Table 2 for the gas 
properties).

Finally, again an interesting information can be deduced 
from Fig. 5 right. For the pressure variation with time of 
nitrogen, with respect to different tank volumes used 
(case 1: V0 = 86.92ml and V1/V2 = 0.9926 and case 

Fig. 6  Conductance (C = V0/τ) for nitrogen (N2) as a function of the 
mean gas rarefaction conditions that is from transition to near hydro-
dynamic regime. A comparison is done with values obtained from 
the BGK kinetic model equation (Graur and Sharipov 2008) and a 
fitting equation (Eq. 18) (Sharipov et al. 2010). In the plot also the 
free molecular (left) and hydrodynamic (right) analytical solutions 
(Eqs. 20, 21) are represented

Fig. 7  Mass flow rate variation with time until a final equilibrium 
of no motion is reached through the tube for the same initial pres-
sure difference. Left mass flow rate variation with time of nitrogen 
at different rarefaction conditions for ∆p0 = 100 Pa (first case con-
figuration: V1/V2 = 0.9926 and V0 = 86.92ml). Right mass flow rate 

variation with time at the same rarefaction conditions of nitrogen 
and R134a for ∆p0 = 10 Pa. Additionally, two volume case configu-
rations were studied (first: V1/V2 = 0.9926, V0 = 86.92ml and sec-
ond:V2/V1 = 6.354 V0 = 24.62ml)
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2: V0 = 24.62ml and V1/V2 = 6.354), it is possible to 
observe that the relaxation process is always slower if the 
V0 parameter increases or, in other words, if the harmonic 
mean volume of the two tanks V0 is increased.

4.2  Conductance

We were able to extract the conductance of the tube at 
arbitrary rarefaction conditions, from transition to near 
hydrodynamic regime, by fitting the pressure variation with 
time [Eq. (13)], at different mean pressures. For the same 
tube and volumes of the tanks, we observed, as expected 
that the conductance was strongly influenced by the rar-
efaction conditions of the flow. For the reasons explained 
in Sect. 3.2.4, the here presented conductance results 
were obtained only for the equal volumes configuration, 
V1/V2 = 0.9926.

We compared our conductance experimental results 
to numerical results of the dimensionless mass flow rate 
G, obtained by Graur and Sharipov (2008) with the BGK 
model kinetic equation and to the empirical fit of G, 
obtained by Sharipov et al. (2010), Eq. (18) that reproduces 
very accurately the BGK solution. Equation (19) is used to 
relate the two quantities.

It is possible to observe from Fig. 6 the very good agree-
ment between the experimentally obtained tube conduct-
ance and the results derived from the solution of the BGK 
equation. It should be underlined that the experimental 
uncertainty on the conductance is related to the uncertainty 
on the pressure and volume measurements, see Eq. (13), as 
well as to the dimensional quality of the volumes V1 and V2 
which have to be perfectly identical to assure the constancy 
of the mean pressure during one experiment. As expected, 
the experimental results tend toward the free molecular 
limit for δm → 0 [Eq. (20)] and the hydrodynamic limit for 
δm > 103 [Eq. (21)].

It should be noted that when a comparison between the 
experimental and numerical results of conductance is car-
ried out, additional sources of experimental errors have to 
be considered. These sources are related to the tube dimen-
sions measurement and, especially, of the tube diameter, 
since it intervenes at the power 3 when the numerical val-
ues of the dimensionless mass flow rate G are compared to 
the experimental values of the conductance C via Eq. (19). 

Nevertheless, for the case shown on Fig. 6, the mean rela-
tive deviation between experimental and numerical results 
is of the order of 1.3% .

4.3  Mass flow rate variation with time

By fitting the data for pressure variation with time results 
by means of the exponential function of Eq. (13) and 
consequently by using Eq. (14), the dynamic constant 
volume technique allowed us to measure non-stationary 
mass flow rates along the full duration of one experi-
ment that is from the initial pressure difference imposed, 
where the mass flow rate along the tube was at its maxi-
mum, until a final pressure equality equilibrium stage 
was reached, where the mass flow rate was zero.

It is possible to notice that the influence of the rarefac-
tion on the flow is predominant in the mass flow rate evo-
lution when different rarefaction conditions are compared 
whereas keeping the same gas and same initial pressure 
difference imposed (Fig. 7 left). At rarefaction conditions 
tending to hydrodynamic flow regime, for example at 
δm = 338, the initial pressure difference imposed engen-
dered a greater initial mass flow rate, and its final equilib-
rium state to be reached more rapidly its final equilibrium 
stage with respect to a higher rarefied flow, for example 
at δm = 0.50 in transition regime.

The influence of the gas used on the mass flow rate 
variation with time is also evident, where is always the 
heavier gas that gives rise to a greater mass flow rate at 
same rarefaction conditions for same initial pressure dif-
ferences imposed (Fig. 7 right).

With respect to different tank volumes used for the 
experiments (case 1: V0 = 86.92ml and V1/V2 = 0.9926 
and case 2: V0 = 24.62ml and V1/V2 = 6.354), it is possi-
ble to observe that the mass flow rate variation with time 
process is slower if the V0 parameter increases or, in other 
words, if the total volume of the two tanks increases 
(Fig. 7 right). This is an analogous consideration with 
respect to the pressure variation with time section, but 
for the here shown results it is possible to observe the 
great reproducibility of the experiments performed: for 
two completely different experimental campaigns that 
is for same tube but different tank volumes used, for the 
same mean pressure and same initial difference of pres-
sure, the methodology measures the same initial mass 
flow rates within the experimental uncertainty. For the 
second case configuration V1/V2 = 6.354 the here shown 
pressure relaxation with time from ∆p0 = 10Pa and 
p1/p2 = 1.036 , corresponds to a mean pressure variation 
with time of 1.3% and a conductance variation of 0.7% 
[Eqs. (18), (19)].

Fig. 8  Comparison between numerical and experimental results 
of the pressure variation with time in the inlet and outlet tanks. All 
comparisons were performed for nitrogen at different mean rarefac-
tion conditions. Left column first case configuration V0 = 86.92ml 
and V1/V2 = 0.9926. Right column case 2 V0 = 24.62ml and 
V1/V2 = 6.354

◂
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5  Comparison between numerical 
and experimental results

5.1  Pressure variation with time

The experimental pressure variation with time of nitrogen 
has been compared with numerical results based on the 
linearized BGK model kinetic equation. The particular-
ity of the numerical results presented here relates to the 
application of stationary mass flow rate results previously 
obtained by solving the linearized stationary kinetic 
equation (Graur and Sharipov 2008) in order to describe 
a transient rarefied gas flow (Sharipov and Graur 2014). 
This approach is of undeniable efficiency since the com-
putational time required to describe a transient phenom-
enon is not as significant with respect to a direct solution 
of the full time-dependent kinetic equation. The devia-
tion between the results obtained by the BGK model and 
those of the Boltzmann equation does not exceed 5% for 
the isothermal flows (Sharipov 2012a).

The results presented in Fig. 8 take under account the 
pressure variation with time of nitrogen inside both the 
inlet and outlet tanks for two cases (case 1: V0 = 86.92ml 
and V1/V2 = 0.9926 and case 2: V0 = 24.62ml and 
V1/V2 = 6.354). Three different rarefaction conditions 
have been chosen for the comparison at slip, transition, 
and close to free molecular regime conditions. It is pos-
sible to observe that the numerical results for the six 
cases studied that is from slip to close to free molecular 
regime, match very well the experimental results. The 
small difference that is to be found between numerical 
and experimental can be due to the uncertainties related 
to the pressure sensors, the volume dimensions and the 
diameter measurement. It is to be reminded that the pres-
sure sensors are less accurate for low pressure readings. 
From the analysis of the deviation between experimental 
and numerical results (Fig. 9), one can clearly see that 
the deviation is higher for pressure measurements per-
formed at nominal pressures around the reading limit 
of the CDG (low pressures). Nevertheless, even for low 
pressure measurements, the deviation between numerical 
and experimental is always lower than 4%. In the pressure 
regions where the CDG sensors are more accurate that is 
for higher pressures at the inlet tank (upstream), the devi-
ation is always lower than 0.5%, at exception of the meas-
urements performed at δm = 0.63 where the deviation is 
slightly higher. Let us notice that the different volume 
size configuration gives always rise to the higher devia-
tion between experimental and numerical. For this case, 
the downstream measurements are not only carried out 
at the limits of the CDGs sensibility but also the pressure 
variation with time is much faster with respect to the same 

Fig. 9  Deviation of experimental results with respect to numerical 
results for the pressure variation with time in the inlet (upstream) 
and outlet (downstream) tanks. All comparisons where performed for 
nitrogen at different mean rarefaction conditions. Left column first 
case configuration V0 = 86.92ml and V1/V2 = 0.9926. Right column 
case 2 V0 = 24.62ml and V1/V2 = 6.354

◂

Fig. 10  Comparison between numerical and experimental results 
of stationary mass flow rates as a function of rarefaction for several 
pressure differences imposed for nitrogen. The uncertainties asso-
ciated with the measurement are smaller than the size of the points 
(∆Ṁ/Ṁ = 3%)

Table 3  Values of conductance C as a function of the mean rarefac-
tion parameter δm for nitrogen

Nitrogen

δm C [m3/s] × 107 δm C [m3/s] × 107

338.3 32.04 11.06 1.855

276.7 26.35 8.691 1.639

229.4 21.96 7.238 1.517

185.0 17.88 5.968 1.397

153.6 15.04 5.037 1.317

123.2 12.36 4.109 1.237

100.1 10.16 3.746 1.211

83.78 8.650 2.956 1.150

67.36 7.088 2.461 1.127

55.34 5.954 2.031 1.095

45.10 4.994 1.849 1.046

35.87 4.141 1.476 1.036

36.23 4.179 1.155 1.039

29.52 3.552 0.985 1.015

24.20 3.056 0.750 1.033

19.54 2.625 0.632 0.986

16.29 2.332 0.506 0.993

13.73 2.097
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volume size configuration, possibly adding up in meas-
urement uncertainties. This remark can be confirmed by 
comparing the deviations of δm = 0.63 and δm = 0.33 for 
the inlet tank case: the deviation is lower for the differ-
ent volume size configuration since the pressure variation 
with time speed in this scenario is lower with respect to 
the same volume size case, even if the nominal pressures 
of both experiments are comparable. In addition, the pres-
sure variation with time is highly influenced by the vol-
ume ratio between the two tanks; therefore, an additional 
source of uncertainty is introduced by the measurement of 
the tanks volume ratio, which can be particularly delicate 
when the ratio between both volumes is high. Neverthe-
less, let us remind the reader that the pressure variation 
with time results for different volumes configuration have 
not been used in order to extract conductance and tran-
sient mass flow rate values when such high initial pressure 
ratios are imposed (Sect. 3.2.4).

Another possible reason of the small difference 
between experiments and numerical results could be due 
to the non-negligible effects of the gas/surface interac-
tions at low rarefaction levels. A non-complete accom-
modation at the wall could play a significant role in the 
variation of pressure with time, too. Even if it has been 
found that for this tube the tangential momentum accom-
modation for nitrogen in the case of metallic surfaces can 
be slightly less than unity (Silva et al. 2016), the experi-
mental results were compared to BGK results obtained 
for a tangential accommodation coefficient α = 1 that is 
for a complete diffuse gas accommodation at the surface.

5.2  Stationary mass flow rate

From the non-stationary results obtained, it is also possi-
ble to extract stationary mass flow rate results by means of 
the conductance results obtained in Sect. 4.2. Therefore, we 
here show results of stationary mass flow rates obtained by 
using the dynamic constant volume technique and we com-
pare them to results obtained numerically from the BGK 
model kinetic equation (Graur and Sharipov 2008).

Let us remember that the conductance, for a fixed tube 
geometry, varies only as a function of the mean rarefaction 
(or mean pressure) and of the gas used. This means that the 
conductance does not depend on the initial pressure differ-
ence imposed.

Therefore, in order to extract a stationary mass flow rate, 
once the conductance has been measured for a given rar-
efaction condition, one can reduce Eq. (22) in the limit of 
t → 0 to

(24)Ṁ =
C

RT
∆p0, C = f (δm, gas).

If one knows the conductance for one precise rarefac-
tion condition, one can obtain the mass flow rate along 
the tube for an arbitrary difference of pressure imposed. 
For example, for an experiment performed with nitrogen 
at an initial pressure difference of ∆p0 = 133.5Pa and 
mean rarefaction δm = 4.1, the conductance obtained was 
C = 12.37× 10−8m3s−1 (see Table 3). This conductance 
value was obtained from one single experiment, neverthe-
less, with this value it is not only possible to extract the 
mass flow rate that corresponds to the initial pressure dif-
ference of the experiment, but also the mass flow rates for 
lower or higher pressure differences, as shown in Fig. 10.

This property which is characteristic of the conductance 
parameter is very useful, since normally mass flow rates 
engendered by very low pressure differences are extremely 
difficult to measure. Nevertheless, with this technique one 
could apparently measure mass flow rates at arbitrary pres-
sure differences imposed. The here presented mass flow 
rate measurements have been calculated for ∆p = 100Pa, 
∆p = 10Pa and ∆p = 1Pa, but other pressure differences 
could have been used. Moreover, the methodology suffers 
of no apparent accuracy limitations in within the three order 
of magnitudes of pressure differences tested. It is possible 
to observe that we obtained very stable results that match 
with great accuracy the numerical results obtained by 
means of BGK. The uncertainties are the same as the ones 
declared in Sect. 4.2 for the conductance measurements.

6  Conclusions

This work is a first effort to experimentally analyze tran-
sient rarefied gas flows through long tubes. This study is 
aimed to add knowledge on time-dependent micro-gas 
flows which is at the present moment lacking in the litera-
ture. Specific applications of transient micro-flows could be 
applied to gas separators, micro-chromatography, oscillat-
ing micro-actuators and others.

Of novelty and particular importance is the new meth-
odology proposed in order to extract from a theoretically 
derived exponential expression characteristic times of sin-
gle experiments which can characterize the relaxation phe-
nomenon of pressure variation with time as a function of 
gas molecular weight and gas rarefaction. The new meth-
odology differs from the classic constant volume technique 
since it does not suffer of limitations with respect to the 
time scale needed in order to perform the measurement: In 
the classic technique a stationary assumption and a proper 
time interval were necessary in order to perform stationary 
mass flow rate measurements. The dynamic methodology 
can easily perform transient mass flow rate measurements 
through a micro-device in a stable and repeatable man-
ner. Furthermore, the technique offers the possibility to 
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associate the characteristic time of the experiment to the 
conductance of the tube for a given gas. This new method-
ology could be used as an efficient and real-time micro-gas 
mass flow meter as it allows to measure at any instant tran-
sient gas flows that are far lower in dimensions with respect 
to the measurements performed by mass flow meters that 
are currently commercially available.

The here proposed study has been conducted for fixed 
parameters such as the diameter and length of the tube. It 
was observed that the pressure relaxation phenomenon 
depends greatly on gas rarefaction and its speed can vary as 
much as tenfold from transition to hydrodynamic regime. 
If different gases are compared at same rarefaction condi-
tions, the lighter gas is always faster to relax to equilibrium 
with respect to a heavier gas. The mass flow rate variation 
with time behavior as a function of the gas rarefaction and 
molecular weight was analyzed, too.

Moreover, the dynamic constant volume technique offers 
the possibility to extract stationary values of mass flow rate 
by means of the conductance C, which was obtained from 
the time-dependent experiments. It was possible to obtain a 
large spectrum of results from a reduced number of experi-
ments performed. This final result of the paper represents a 
significant accomplishment.

Finally, the pressure variation with time experimental 
results were compared to results obtained from the BGK 
kinetic model equations and the agreement is excellent for 
flows in slip and transitional regime while the comparison 
is good for flow tending toward free molecular regime. To 
conclude, the stationary experimental results of mass flow 
rate give an excellent agreement with respect to the BGK 
kinetic model.
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