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1 Introduction

Nowadays, dynamics analysis and mathematical modeling of 
nano-structures are important because of their industrial 
applications. Recently, by utilizing the physical features of 
the rotating CNT and the vacancy modified CNT, Tu et al. 
(2016) proposed a novel nanoscale fluidic device a rotating 
carbon nanotube membrane filter to resolve some of the criti-
cal issues in CNT-based membrane technology. This device 
can refine saltwater into the freshwater. Thus, because of the 
importance of this device, this study examined influences of 
rotational speed and velocity of viscous fluid flow on free 
vibration behavior of spinning single-walled carbon nanotube 
(SWCNT). Surprising mechanical properties of SWCNTs 
make them an appropriate choice to be used in chemistry, 
physics and nano-engineering applications, as well as their 
practical usages in electrical engineering, materials science 
and construction engineering. Therefore, it is vital to study 
mechanical behaviors of SWCNTs such as buckling and post-
buckling (Eftekhari et al. 2013), vibration (Elishakoff and 
Pentaras 2009), thermal vibration (Zidour et al. 2012) and 
instability analysis (Yoon et al. 2005). Bringing some exam-
ples of SWCNT applications, drug delivery (Rao and 
Cheetham 2001), micro-/nano-electromechanical systems 
(MEMS/NEMS) (Li et al. 2015) and nano-pipes containing 
flowing fluid (Hummer et al. 2001) are notable. Rotating 
SWCNT has attracted attentions in recent years due to their 
promising future. These rotating nano-structures can be also 
used as MEMS gyroscope sensors (Yang et al. 2011) in the 
aerospace industry, military, automotive and consumer elec-
tronics markets including advanced automotive safety sys-
tems, high-performance navigation and guidance systems, 
ride stabilization, rollover detection and prevention, image 
stabilization in digital cameras and highly technological 
applications including nano-/micro-satellites, nano-/
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micro-robotics and even implantable devices to cure internal 
disorders. Lately, Tu et al. (2016) suggested rotating mem-
brane filter built of carbon nanotubes for desalinating water 
which proves the preciousness of this study. The experiments 
and researches show that size effects play an important role in 
mechanical properties (Ghadiri et al. 2016). Thus, avoiding 
these effects may result wrong designs and unacceptable 
answers. It should be noted that the size effect is not consid-
ered in classical continuum theories, so this theory is not 
appropriate for micro- and nanoscales. One of the nonclassi-
cal theories that consider the effects of size is couple stress 
theory. Toupin, Koiter and Mindlin (Toupin 1962; Kolter 
1964; Mindlin 1964) investigated the couple stress theory 
including higher-order rotational gradients which in fact it is 
the asymmetric part of the deformation gradient. According 
to this theory, it includes four material constants (two classi-
cal and two additional) for isotropic elastic materials. As an 
example of this theory, Asghari et al. (2011) presented the 
size effects in Timoshenko beams on the basis of the couple 
stress theory. It is difficult to determine the microstructure-
related length scale parameters. Therefore, we are looking for 
the continuum theory which involves only one additional 
material length scale parameter. MCST is one of the best and 
most well-known continuum mechanics theories that include 
small-scale effects with reasonable accuracy in microscale 
devices. Yang et al. (2002) presented a modified couple stress 
theory, in which the couple stress tensor is symmetric and 
only one internal material length scale parameter is involved, 
unlike the classical couple stress theory mentioned above. 
Many researchers have used this theory to examine the 
dynamic and static behavior of micro-beams, micro-plates 
and micro-shells (Park and Gao 2006; Reddy 2011; Shaat 
et al. 2014; Ghadiri and SafarPour 2017). It is noted that non-
local theory of Eringen is one of the best and most well-
known continuum mechanics theories includes small-scale 
effects with good accuracy in nano-/microscale devices, but 
the results show that modified couple stress theory coincides 
with experimental results better than Eringen’s nonlocal elas-
ticity and classical theories (Miandoab et al. 2014). There-
fore, in this study, the modified couple stress theory is used. 
In classical shell theories, it is assumed that the stresses are 
constant along the thickness. Considering this assumption, 
the theories of classical shell cannot present precise results 
for thick and moderately thick shells. First-order shear defor-
mation theory (FSDT) was presented by Reissner (1945) and 
Mindlin (1951) to compensate the defects of the classical the-
ory. Researchers show that the dynamic behavior of carbon 
nanotubes is substantially similar to that of cylindrical shells 
(Torkaman-Asadi et al. 2015). Consequently, for a better 
comprehension of nanotubes rotational behavior, firstly, the 
rotational behavior of cylinder should be studied. In the field 
of rotating cylindrical shell structures, Hua and Lam (1998) 
presented frequency characteristic of a thin rotating 

cylindrical shell using GDQM. Also Liew et al. (2002) inves-
tigated the free vibration analysis of rotating cylindrical shells 
considering initial hoop tension effect using a mesh-free 
approach. Recently, Hosseini-Hashemi et al. (2013) presented 
an exact analytical solution for free vibration of a rotating cir-
cular functionally graded cylindrical shell based on FSDT 
shell theory. The whirling frequencies of rotating cylindrical 
shells surrounded by an elastic foundation with various 
boundary conditions were presented by Firouz-Abadi et al. 
(2013). In addition, stability of high rotational speed and free 
vibration analysis of carbon nanotubes partially resting on 
Winkler foundations were investigated by Torkaman-Asadi 
et al. (2015). All scopes of the above articles are dynamic 
analysis of cylindrical shell structures, but it should be noted 
that none of them have considered conveying fluid. In the 
field of vibration analysis of single-walled nanotube convey-
ing fluid, Bahaadini and Hosseini (2016) presented the effects 
of slip condition and nonlocal elasticity on vibration and sta-
bility analysis of viscoelastic cantilever CNT conveying fluid. 
Arani et al. (2013) presented the effect of time discretization 
on nonlinear vibration of embedded single-walled boron 
nitride nanotube conveying viscous fluid based on the nonlo-
cal piezoelasticity theory. Vibration analysis of fluid-convey-
ing double-walled carbon nanotubes using MCST was pre-
sented by Zeighampour and Beni (2014). In this study, by 
increasing the fluid velocity, the natural frequency tends to 
decrease. Lee and Chang (2008) investigated the free trans-
verse vibration of the fluid-conveying single-walled carbon 
nanotube using nonlocal elastic theory. Wave propagation in 
single- and double-walled carbon nanotubes filled with fluid 
was investigated by Natsuki et al. (2007). Also in other work, 
the effects of nonlocal elasticity and Knudsen number on 
fluid–structure interaction in carbon nanotube conveying fluid 
were presented by Mirramezani and Mirdamadi (2012). 
Zhang et al. (2016) investigated acoustic nano-wave absorp-
tion through clustered carbon nanotubes conveying fluid. Nat-
ural frequency and stability tuning of cantilevered CNTs con-
veying fluid in magnetic field were presented by Wang et al. 
(2016). Nonlinear vibration of fluid-conveying single-walled 
carbon nanotubes under harmonic excitation was presented 
by Zhen and Fang (2015). Also, size-dependent nonlinear 
vibration and instability of embedded fluid-conveying 
SWBNNT in thermal environment was investigated by Ansari 
et al. (2014). According to the theory of stress gradient, 
Zhang et al. (2014) presented free vibration analysis of the 
fluid-conveying carbon nanotube. They in this work investi-
gated critical flow speed of carbon nanotube based on strain 
gradient theory. In the field of nonuniform CNTs, Rafiei et al. 
(2012) investigated the small-scale effect on the vibration of 
nonuniform carbon nanotubes conveying fluid and embedded 
in viscoelastic medium. In addition, in the field of vibration 
analysis of double-walled nanotubes conveying fluid, Kuang 
et al. (2009) presented analysis of nonlinear vibrations of 
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double-walled carbon nanotubes conveying fluid. Nonlocal 
vibration and instability of embedded double-walled boron 
nitride nanotube conveying viscose fluid were presented by 
Maraghi et al. (2013). Also, nonlocal surface piezoelasticity 
theory for dynamic stability of double-walled boron nitride 
nanotube conveying viscose fluid was investigated by Arani 
et al. (2014). In the field of vibration analysis of micro-tubes 
conveying fluid, Wang (2010) presented size-dependent 
vibration characteristics of fluid-conveying micro-tubes. They 
in this work observed the micro-tube will become unstable by 
divergence at a critical flow velocity. In other work, Li et al. 
(2016) investigated size-dependent effects on critical flow 
velocity of fluid-conveying micro-tubes via nonlocal strain 
gradient theory. Tang et al. (2014) studied nonlinear modeling 
and size-dependent vibration analysis of curved micro-tubes 
conveying fluid based on modified couple stress theory. In the 
field of vibration analysis of micro-pipe conveying fluid, 
Wang et al. (2013) investigated flexural vibrations of micro-
scale pipes conveying fluid by considering the size effects of 
micro-flow and microstructure. Stability analysis of a piezoe-
lectrically actuated micro-pipe conveying fluid was presented 
by Abbasnejad et al. (2015). They in this work showed 
imposing voltage difference to piezoelectric layers can signif-
icantly suppress the effect of fluid flow on vibrational fre-
quencies and thus extend the stable margins. Also, Hosseini 
and Bahaadini (2016) investigated size-dependent stability 
analysis of cantilever micro-pipes conveying fluid based on 
modified strain gradient theory. In other work, Hu et al. 
(2016) presented nonlinear and chaotic vibrations of cantile-
vered micro-pipes conveying fluid based on modified couple 
stress theory. Setoodeh and Afrahim (2014) investigated the 
size-dependent nonlinear vibration behavior of micro-pipes 
conveying fluid based on strain gradient theory. In the field of 
vibration analysis of nano-pipe conveying fluid, Mirramezani 
and Mirdamadi (2012) presented the effects of Knudsen-
dependent flow velocity on vibrations of a nano-pipe convey-
ing fluid. They in this work observed that, for passage of gas 
through nano-pipe with nonzero Knudsen number (Kn), the 
critical flow velocities decreased considerably as opposed to 
those for zero Kn. Recently, according to the Mindlin’s strain 
gradient theory, Ansari et al. (2016) investigated size-depend-
ent thermo-mechanical vibration and instability of conveying 
fluid functionally graded nano-shells. Also, Ansari et al. 
(2016) studied geometrically nonlinear free vibration and 
instability of fluid-conveying nanoscale pipes including sur-
face stress effects. It is worth mentioning none of the previous 
works have considered size effect, viscous fluid flow and ini-
tial hoop tension on a rotary SWCNT using MCST. The nov-
elty of this work is considering the viscous fluid flow, rota-
tion, initial hoop tension and size effect in addition to 
considering various boundary conditions on the SWCNT 
using MCST. Because of high accuracy and efficiency of the 
generalized differential quadrature method (GDQM), it is 

employed to solve the governing equations of the problem for 
all boundary conditions. The governing equations and bound-
ary conditions have been developed using Hamilton principle 
which are solved with the aid of the GDQM. The results show 
that initial hoop tension, material length scale parameter, vis-
cous fluid flow, angular velocity, length-to-radius ratio, 
radius-to-thickness ratio and boundary conditions play impor-
tant roles on natural frequency of rotating SWCNT conveying 
viscous fluid.

2  Mathematical formulation

In order to have better understanding of the importance 
and applications of the proposed model, Fig. 1 demon-
strates a rotating SWCNT conveying fluid flow which can 
turn saltwater into the freshwater (Tu et al. 2016). They 
have designed a rotating carbon nanotube membrane filter 
(RCNT-MF) for the reverse osmosis desalination that can 
refine saltwater into the freshwater.

2.1  Modified couple stress theory

Modified couple stress theory was presented by Yang 
et al. (2002) for the first time. In this theory, the strain 
energy expressed as a function of rotation tensor gradient 
and strain tensor; in addition, it includes one length scale 
parameter and two Lame parameters. According to this the-
ory, the strain energy is expressed as:

(1)
U =

1

2

∫∫∫

V

(σijεij + ms
ijχ

s
ij)dV

Fig. 1  One application of the rotating SWCNT model conveying 
fluid flow (Tu et al. 2016)
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In Eq. (1), χ s
ij, εij, σij and mij represent the components of 

symmetric rotation gradient tensor, strain tensor, stress ten-
sor and higher-order stress tensor, respectively, which are 
expressed as:

where ui and ∅i represent the components of displace-
ment vector and infinitesimal rotation vector, respectively. 
In Eq. (4), l is the parameter which denotes the additional 
independent material length scale parameter that is related 
to the symmetric rotation gradients. Note that the length 
scale parameter is assumed constant in FG cylindrical shell. 
In addition, the stress–strain relation can be expressed as 
follows:

where Cij is the elasticity matrix component. The stiffness 
coefficients are expressed as:

2.2  Displacement field of cylindrical shell

Figure 2 shows a rotating SWCNT conveying viscous fluid 
flow in which x, θ and z denote the orthogonal curvilinear 
coordinates on the middle surface (z = 0). The thickness, 

(2)εij =
1

2
(ui,j + uj,i)

(3)χ s
ij =

1

2
(ϕi,j + ϕj,i)

(4)ms
ij = 2l2µ(ẑ)χ s

ij, ϕi =
1

2
[curl(u)]i

(5)
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(6)

C11 =
E

1− ν2
, C12 = νC11, C22 = C11,

C44 = C55 = C66 =
E

2(1+ ν)

length and the middle surface radius of cylindrical shell are 
denoted by h, L and R, respectively. According to the first-
order shear deformation theory, the displacement field of 
cylindrical FG nano-shell along the three directions of x, θ 
and z is expressed as:

In Eq. (7), u(x, θ, t), v(x, θ, t) and w(x, θ, t) are consid-
ered as neutral axis displacement, and ψθ(x, θ, t) and ψx(x, 
θ, t) as rotation of a transverse normal surface about the cir-
cumferential and axial directions.

2.3  Governing equations and boundary conditions

To derive equations of motion and boundary conditions for 
SWCNTs, using the modified couple stress theory and the 
first-order shear deformation shell model, one must insert 
the components of the displacement field into the strains. 
Now by substituting Eq. (7) into Eqs. (2)–(4), the compo-
nents of the deviatory stretch gradient tensor and the strain 
tensor are obtained as follows:

Moreover, the nonzero components of symmetric rota-
tion gradient tensor are obtained as follows:

(7)

U(x, θ , z, t) = u(x, θ , t)+ zψx(x, θ , t)

V(x, θ , z, t) = v(x, θ , t)+ zψθ(x, θ , t)

W(x, θ , z, t) = w(x, θ , t)

(8)

εxx =
∂u

∂x
+ z

∂ψx

∂x

εθθ =
1

R

∂v

∂θ
+ z

1

R

∂ψθ

∂θ
+

w

R

εxz =
1

2

(

ψx +
∂w

∂x

)

εxθ =
1

2

(

1

R

∂u

∂θ
+

∂v

∂x

)

+
z

2

(

1

R

∂ψx

∂θ
+

∂ψθ

∂x

)

εθz =
1

2

(

ψθ +
1

R

∂w

∂θ
−

v

R

)

Fig. 2  Geometry of the rotating 
SWCNT conveying viscous 
flow
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For the equations of the motion and boundary condi-
tions, the principle of minimum potential energy states that 
(Tauchert 1974):

Strain energy of cylindrical FG nano-shell based on the 
modified couple stress theory is expressed as follows:

(9)

χ s
xx = −

1

2

(

∂ψθ

∂x
+

1

R

∂v

∂x
−

1

R

∂2w

∂x∂θ

)

χ s
θθ = −

1

2R

(

1

R

∂u

∂θ
−

∂v

∂x
− z

∂ψθ

∂x

)

−
1

2

(

1

R

∂2w

∂x∂θ
−

1

R

∂ψx

∂θ

)

χ s
zz = −

1

2

(

1

R

∂ψx

∂θ
−

∂ψθ

∂x
−

1

R2

∂u

∂θ

)

χ s
xθ = −

1

4

(

1

R2

∂v

∂θ
+

∂2w

∂x2
−

1

R2

∂2w

∂θ2
−

∂ψx

∂x
+

1

R

∂ψθ

∂θ

)

χ s
xz = −

1

4

(

1

R

∂2u

∂x∂θ
−

∂2v

∂x2
−

v

R2
+

1

R2

∂w

∂θ
+

ψθ

R

)

−
z

4

(

1

R

∂2ψθ

∂x∂θ
−

∂2ψθ

∂x2

)

χ s
θz = −

1

4

(

1

R2

∂2u

∂θ2
−

1

R

∂2v

∂x∂θ
−

1

R

∂w

∂x
+

ψx

R

)

−
z

4

(

1

R2

∂2ψx

∂θ2
−

1

R

∂2ψθ

∂x∂θ

)

(10)

∫ t2

t1

(δT − δU + δW)dt = 0

(11)

δU =
1

2

���

V

�

σijδεij + ms
ijδχ

s
ij

�

dV = δU1 + δU2

δU1 =
1

2

���

V

(σijδεij)dV =

��

A
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∂
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�
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1
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R

�

+Mθθ
1
R
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δψθ + Qxz

�
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�

+Nxθ

�

1
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δu+ ∂

∂x
δv
�
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1
R
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+Qzθ
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1
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�
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�
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�
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Rdxdθ

where the classical and nonclassical force and momentum 
are defined as follows:

The velocity vector of any generic point on the rotating 
shell is expressed as:

The first three terms represent linear velocities in axial, 
circumferential and lateral directions, respectively. The 
fourth and fifth terms are due to Coriolis and centrifugal 
effects; doted terms represent temporal derivatives; and i, 
j and k are unit vectors in the x, θ and z directions, respec-
tively. Also, the kinetic energy of the cylindrical shell can 
be expressed as:

(12)

(Nxx,Nθθ ,Nxθ ) =

∫ h/2

−h/2

(σxx , σθθ , σxθ )dz,

(Mxx,Mθθ ,Mxθ ) =

∫ h/2

−h/2

(σxx, σθθ , σxθ )zdz,

(Qxz,Qzθ ) =

∫ h/2

−h/2

ks(σxz, σzθ )dz,

(Yxx, Yθθ , Yzz, Yxθ , Yxz, Yzθ )

=

∫ h/2

−h/2

(mxx ,mθθ ,mzz,mxθ ,mxz,mzθ )dz,

(Txx, Tθθ , Tzz, Txθ , Txz, Tzθ )

=

∫ h/2

−h/2

(mxx ,mθθ ,mzz,mxθ ,mxz,mzθ )zdz

(13)V =
∂u

∂t
i +

(

∂v

∂t
+Ωw

)

j +

(

∂w

∂t
−Ωv

)

k
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(14)δT =

�

Z

��

A

ρ
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+ z
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δv+ z ∂
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− (v + zψθ)
�
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�

+δw
�

∂v
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+ z
∂ψθ
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− (δv + zδψθ )
�

∂
∂t
w
�

�

+Ω2[(v+ zψθ)(δv + zδψθ )+ wδw]























Rdzdxdθ

Centrifugal force of rotation produces initial hoop ten-
sion; this effect is considered in potential energy. Potential 
energy involves the nonlinear terms of thin sanders theory 
in strain relations as the theory recommends (Hosseini-
Hashemi et al. 2013).

In the above equation, Nh = ρhR2Ω2. Consider the flow 
of fluid in a CNTRC cylindrical shell in which the flow is 
assumed to be axially symmetric, Newtonian and laminar 
(Rabani Bidgoli et al. 2016). By the well-known Navier–
Stokes equation, the basic momentum governing equation 
of the flow is simplified to be expressed as:

In Eq. (16), P and ρb are flow fluid pressure and mass 
density of the fluid, respectively. The fluid force acted on 
the SWCNT can be calculated from Eq. (16). Since the 
acceleration and velocity of the SWCNT and fluid at the 
point of contact between them are equal (Rabani Bidgoli 
et al. 2016), we have:

where vx is the mean flow velocity. In Eq. (17), shear stress 
(τ) is dependent to viscosity (μ) which can be obtained as 
follows:

(15)

Uh =
1

2

∫∫

A

Nh

{

(

∂w

R∂θ
−

v

R

)2

+
1

4

(

∂u

R∂θ
−

∂v

∂x

)2
}

Rdθdx

(16)ρb
dVR

dt
= −

∂P

∂R
+

1

R

∂τRθ

∂θ
−

τθθ

R
+

∂τRx

∂x

(17)vR =
dw

dt
,

d

dt
=

∂

∂t
+ vx

∂

∂x

Finally, using Eqs. (17) and (18) and their combination 
with Eq. (16), the pressure of fluid 

(

∂P
∂R

)

 will be obtained. 
Finally, the fluid flow work may be written as:

The axial fluid velocity in above relation can be written 
as:

where the modified dimensionless coefficient VCF may be 
defined as (Fereidoon et al. 2016):

where the slip of flow from inner SWCNT through number 
of Knudsen (kn) is considered; for practical purposes, it is 
σv = 0.7; in addition, other parameters are:

In Eq. (22), μ and μ0 are fluid viscosity and bulk viscos-
ity, respectively. Now, substituting Eqs. (11), (14), (15) and 
(19) into (10) and integrating by parts, equations of motion 
and boundary conditions can be expressed as follows:

(18)τRθ =
µ

R

∂VR

∂θ
, τθθ = 2µ

VR

R
, τRx = µ

∂VR

∂x

(19)δW =

∫ 2π

0

∫ L

0

∂P

∂R
Rdxdθ

(20)vx = vave,slip = VCF× vave,noslip

(21)

VCF = (1+ aKn)×

[

1+ 4

((

2− σv

σv

)(

kn

1+ kn

))]

(22)

a = a0
2

π

(

tan
−1

(

a1k
B
n

))

, a0 =
64

3π

(

1−
4

b

)−1

,

µ = µ0(1+ akn)
−1
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(23)

δu :
∂Nxx

∂x
+

1

R

∂Nxθ

∂θ
+

1

2R2

(

−
∂Yθθ

∂θ
+

∂Yzz

∂θ

)

+
1

2R

∂2Yzx

∂θ ∂x
+

1

2R2

∂2Yθz

∂θ2

− Nh

(

1

R

∂2v

∂x∂θ
−

1

R2

∂2u

∂θ2

)

= I0
∂2u

∂t2
+ I1

∂2ψx

∂t2

δv :
∂Nxθ

∂x
+

1

R

∂

∂θ
Nθθ +

Qzθ

R
+

1

2

{

1

R

∂

∂x
(−Yxx + Yθθ )−

1

R2

∂Yθx

∂θ
−

∂2Yxz

∂x2
−

Yxz

R2
−

1

R

∂2Yzθ

∂θ∂x

}

− Nh

(

1

R

∂2u

∂x∂θ
−

∂2v

∂x2
+

v

R2
−

1

R2

∂w

∂θ

)

= I0

[

∂2v

∂t2
+ 2

(

∂w

∂t

)

Ω − vΩ2

]

+ I1

{

∂2ψθ

∂t2
− ψθΩ

2

}

δw :
∂Qxz

∂x
+

1

R

∂Qzθ

∂θ
−

Nθθ

R
−

1

2R2

∂2Yθx

∂θ2
−

1

2R2

∂Yzx

∂θ
+

1

2R

∂Yθz

∂x
+

∂2Yxθ

2∂x2

−
1

2R

∂2

∂θ∂x
(Yxx − Yθθ )− Nh

(

1

R2

∂v

∂θ
−

1

R2

∂2w

∂θ2

)

− ς1v
2

x

∂2w

∂x2
− ς2vx

∂w

∂x

+ ς3vx
∂3w

∂x3
= I0

(

∂2w

∂t2
− 2Ω

∂v

∂t
−Ω2w

)

− 2I1

{

Ω
∂ψθ

∂t

}

+ ς4
∂2w

∂t2

− ς5vx
∂2w

∂x∂t
− ς6

∂w

∂t
+ ς7

∂3w

∂t∂x2

δψx :
∂Mxx

∂x
+

1

R

∂Mθθ

∂θ
− Qxz +

1

2

∂Yθx

∂x
−

1

2R

∂

∂θ
(Yzz − Yθθ )+

Yzz

R
+

1

2R

∂2Tzx

∂θ∂x
+

1

2R2

∂2Tθz

∂θ2

= I1
∂2u

∂t2
+ I2

∂2ψx

∂t2

δψθ :
1

R

∂Mθθ

∂θ
+

∂Mxθ

∂x
− Qzθ +

1

2

∂

∂x

(

Yzz − Yxx +
Tθθ

R

)

−
1

2

∂Yθx

∂θ
+

Yxz

2R
−

1

2R

∂2Tθz

∂θ∂x
−

1

2

∂2Tzx

∂x2

= I1

(

∂2v

∂t2
+ 2

(

∂w

∂t

)

Ω − vΩ2

)

+ I2

(

∂2ψθ

∂t2
− ψθΩ

2

)

Table 1  Effect of the number of grid points on evaluating convergence of the dimensionless natural frequency of the rotating SWCNT convey-
ing viscous flow with respect to the flow velocity, angular velocity and L/R = 10, h/R = 0.1, l = R/3

Boundary conditions Flow velocity 
(m/s)

Angular velocity 
(THz)

N = 11 N = 13 N = 15 N = 17 N = 19 N = 21

Simply–simply vx = 500 Φ = 0.1 0.02161 0.02161 0.02161 0.02161 0.02161 0.02161

vx = 1000 Φ = 0.3 0.01904 0.01903 0.01903 0.01903 0.01903 0.01903

Simply–clamp vx = 500 Φ = 0.1 0.03398 0.03397 0.03396 0.03396 0.03396 0.03396

vx = 1000 Φ = 0.3 0.03179 0.03177 0.03177 0.03177 0.03177 0.03177

Clamp–clamp vx = 500 Φ = 0.1 0.04726 0.04627 0.04627 0.04627 0.04627 0.04627

vx = 1000 Φ = 0.3 0.04561 0.04562 0.04561 0.04561 0.04561 0.04561

Clamp–free vx = 500 Φ = 0.1 0.01238 0.01247 0.01253 0.01253 0.01253 0.01253

vx = 1000 Φ = 0.3 0.00803 0.00820 0.00826 0.00826 0.00826 0.00826
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Appendix describes the parameters used in Eq. (23). 
Nonclassical boundary conditions are as follows:

Table 2  Material properties of single-walled carbon nanotubes for 
verification

E ν H ρ

1.1 Tpa 0.3 0.34 nm 2300 kg/m3

(24)

δu = 0 or

(

Nxx +
1

4R

∂Yxz

∂θ

)

nx +

(

Nxθ −
Yθθ − Yzz

2R
+

1

4

∂Yxz

∂x
+

1

2R

∂Yθz

∂θ

)

nθ = 0,

δu,x = 0 or

(

∂Yxz

4

)

nθ = 0,

δu,θ = 0 or

(

∂Yxz

4

)

nx +

(

∂Yθz

2

)

nθ = 0,

δv = 0 or

(

Nxθ +
Yθθ − Yxx

2R
−

1

2

∂Yxz

∂x
−

1

4R

∂Yθz

∂θ

)

nx +

(

Nθθ −
1

4R

∂Yθz

∂x
−

Yθx

2R

)

nθ = 0,

δv,x = 0 or

(

Yzx

2

)

nx +

(

Yzθ

4

)

nθ = 0,

δv,θ = 0 or

(

Yzθ

4

)

nx = 0,

δw = 0 or

(

Qxz +
Yzθ

2R
+

1

2

∂Yxθ

∂x
+

1

4R

∂(Yθθ − Yxx)

∂θ

)

nx +

(

Qθz −
Yzx

2R
−

1

2R

∂Yxθ

∂θ
+

1

4

∂(Yθθ − Yxx)

∂x

)

nθ = 0,

δw,x = 0 or

(

Yxθ

2

)

nx +
(Yθθ − Yxx)

4
nθ = 0,

δw,θ = 0 or
(Yθθ − Yxx)

4
nx +

(

Yxθ

2

)

nθ = 0,

δψx = 0 or

(

Mxx +
1

4R

∂Txz

∂θ
+

Yxθ

2

)

nx +

(

Mθx +
1

4

∂Txz

∂x
+

1

2R

∂Tθz

∂θ
+

(Yθθ − Yzz)

2

)

nθ = 0,

δψx,x = 0 or

(

Txz

4

)

nθ = 0,

δψx,θ = 0 or

(

Txz

4

)

nx +

(

Tθz

2

)

nθ = 0,

δψθ = 0 or

(

Mxθ −
(Yxx − Yzz)

2
−

1

4R

∂Tθz

∂θ
−

1

2

∂Txz

∂x
+

Tθθ

2R

)

nx +

(

Mθθ −
Yxθ

2
−

1

4

∂Tθz

∂x

)

nθ = 0,

δψθ ,x = 0 or

(

Txz

2

)

nx +

(

Tθz

4

)

nθ = 0,

δψθ ,θ = 0 or

(

Tθz

4

)

nx = 0

3  Solution procedure

In the past decade, Bellman et al. introduced differen-
tial quadrature (DQM) as a reliable and effective method 
(Bellman and Casti 1971; Bellman et al. 1972). In DQM 
preliminary formulations, weight coefficients were calcu-
lated using an algebraic equation system which limits the 
use of large grid numbers in DQM. So, for this defect, gen-
eral quadrature method appeared. Shu (2012) devised an 
explicit formula for the weighting coefficients with infinite 
number of grid points leading to GDQM. Early applications 

of GDQ were applied mostly to regular domain problems; 
in addition, Shu and Richards (1992) developed a domain 
decomposition technique to be used in the multi-domain 
problems. By this method, the main domain is divided into 
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Table 3  Comparison of first dimensionless natural frequencies of nonrotating simply supported isotropic homogeneous nano-shells with differ-
ent thicknesses

h/R n Alibeigloo and Shaban (2013) Present
GDQEM (l = 0)

Present
Analytical (l = 0)

Present
GDQEM (l = h)

Present
Analytical (l = h)

0.02 1 0.1968 0.1953621557 0.1953621467 0.19543206 0.1954320689

0.05 1 0.2004 0.1954230464 0.1954230557 0.1958578181 0.1958578259

Table 4  Comparison of first three dimensionless natural frequencies of simply supported isotropic homogeneous nano-shells, with different 
thicknesses

h/R n Tadi Beni et al. (2016) (l = 0) Present study (GDQM)
(l = 0)

Tadi Beni et al. (2016) (l = h) Present study (GDQM)
(l = h)

0.02 1 0.1954 0.19536215 0.1955 0.19543206

2 0.2532 0.25271274 0.2575 0.25731258

3 0.2772 0.27580092 0.3067 0.30621690

0.05 1 0.1959 0.19542305 0.1963 0.19585782

2 0.2623 0.25884786 0.2869 0.28543902

3 0.3220 0.31407326 0.4586 0.45457555

Table 5  Comparison of fundamental natural frequency (THz) of simply supported SWCNTs, with different length and material length scale 
parameters and L/R = 10, h = 0.2R

L (nm) Exact solution
l = 0

GDQ solution
l = 0

Exact solution
l = R/3

GDQ solution
l = R/3

Exact solution
l = R/2

GDQ solution
l = R/2

1 0.59241061 0.59241061 0.62808799 0.62808799 0.66154189 0.66154189

2 0.2962053 0.2962053 0.31404399 0.31404399 0.33077094 0.33077094

3 0.1974702 0.1974702 0.20936266 0.20936266 0.22051396 0.22051396

4 0.14810265 0.14810265 0.157022 0.157022 0.16538547 0.16538547

5 0.11848212 0.11848212 0.1256176 0.1256176 0.13230838 0.13230838

6 0.098735101 0.098735101 0.10468133 0.10468133 0.11025698 0.11025698

7 0.084630087 0.084630087 0.089726856 0.089726856 0.094505984 0.094505984

8 0.074051326 0.074051326 0.078510999 0.078510999 0.082692736 0.082692736

9 0.065823401 0.065823401 0.069787554 0.069787554 0.073504654 0.073504654

10 0.059241061 0.059241061 0.062808799 0.062808799 0.066154189 0.066154189

Table 6  Critical flow velocity 
for flutter instability of rotating 
SWCNT

Boundary conditions Aspect ratio (L/R) 2.5 3 3.5 4 4.5 5

S–S Mode 1 – – – – – –

Mode 2 5440 5360 5200 3840 3280 3120

C–S Mode 1 – – – – – –

Mode 2 6000 5840 5600 4220 3520 3280

C–C Mode 1 – – – – – –

Mode 2 6560 6240 6000 4220 3520 3280

C–F Mode 1 – – – – – –

Mode 2 4400 4050 3850 3450 3100 3050
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a number of sub-domains or elements, before discretizing 
each sub-domain for using GDQ. The rth-order deriva-
tive of the function f(xi) can be expressed as follows (Shu 
2012):

where “n” is the number of grid points along “x” direction. 
Also, “Cij” is obtained as follows:

(25)
∂r f (x)

∂xr

∣

∣

∣

∣

x=xp

=

n
∑

j=1

C
(r)
ij f (xi)

M(x) is developed as:

(26)

C
(1)
ij =

M(xi)
(

xi − xj
)

M
(

xj
) i, j = 1, 2, . . . , n and i �= j

C
(1)
ij = −

n
∑

j=1,i �= j

C
(1)
ij i = j

(27)M(xi) =

n
∏

j=1,j �=i

(

xi − xj
)

Fig. 3  Variation of fundamental 
frequency (THz) with angular 
velocity of a rotating simply–
simply SWCNT conveying 
viscous flow with different 
length-to-radius ratios with 
h/R = 0.1, vx = 500 m/s and 
L = 10 nm
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Fig. 4  Variation of fundamental frequency (THz) with angular velocity of a rotating clamp–simply SWCNT conveying viscous flow with differ-
ent length-to-radius ratios with h/R = 0.1, vx = 500 m/s and L = 10 nm
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Superscript “r” is the order of the derivative; also, C(r) is 
the weighing coefficient along x direction which is written 
as follows:

(28)

C
(r)
ij = r

[

C
(r−1)
ij C

(1)
ij −

C
(r−1)
ij

(

xi − xj
)

]

i, j = 1, 2, . . . , n,

i �= j and 2 ≤ r ≤ n− 1

C
(r)
ii = −

n
∑

j=1,i �= j

C
(r)
ij i, j = 1, 2, . . . , n and 1 ≤ r ≤ n− 1

Owing to the geometrical periodicity of the cylindrical 
shell, the displacement vector for the free vibration analysis 
can be described as follows:

(29)























u(x, θ , t)

v(x, θ , t)

w(x, θ , t)

ψx(x, θ , t)

ψθ (x, θ , t)























=

∞
�

n=1























ū(x) cos(nθ)eiωt

v̄(x) sin(nθ)eiωt

w̄(x) cos(nθ)eiωt

ψ̄x (x) cos(nθ)e
iωt

ψ̄θ (x) sin(nθ)e
iωt
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Fig. 5  Variation of fundamental frequency (THz) with angular velocity of a rotating clamp–clamp SWCNT conveying viscous flow with differ-
ent length-to-radius ratios with h/R = 0.1, vx = 500 m/s and L = 10 nm
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A proper method to discretize the domain is apply-
ing Chebyshev polynomials as it is explained in Civalek 
(2004). Now the following equation is obtained by substi-
tuting Eq. (2) into equations Eqs. (23) and (24):

Stiffness matrix [K], damping matrix [C] and mass 
matrix [M] are obtained by applying GDQ into the equa-
tions of motion and the boundary conditions. Also the d 
and b indexes denote the domain and boundary, respec-
tively, and d is the mode shape. For solving Eq. (30) and 
reducing it to a standard form of eigenvalue problem, it is 

(30)
(

[M]{ω2} + [C]{ω} + [K]
)

(

db
dd

)

= 0

convenient to rewrite Eq. (30) as the following first-order 
variable as

in which the state vector Z and state matrix [A] are defined 
as:

In Eq. (25), [0] and [I] are the zero and unitary matrices, 
respectively. Eventually the natural frequency and its mode 
shape are obtained.

(31)
{

Ż
}

= {A}{Z}

(32)

Z =

{

dd
ḋd

}

and [A] =

[

[0] [I]

−
[

M−1K
]

−
[

M−1C
]

]

Fig. 7  Variation of fundamental 
frequency (THz) with angular 
velocity of a rotating simply–
simply SWCNT conveying 
viscous flow with different 
length scale parameters with 
h/R = 0.1, vx = 500 m/s and 
L = 10 nm
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Fig. 8  Variation of fundamental frequency (THz) with angular velocity of a rotating clamp–simply SWCNT conveying viscous flow with differ-
ent length scale parameters with h/R = 0.1, vx = 500 m/s and L = 10 nm
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4  Results

Here, the numerical results of the influence of the rotational 
speed and fluid flow velocity on the vibrational behav-
ior of rotary SWCNT conveying viscous flow based on 
the FSD and MCS theories must be found to obtain accu-
rate results for GDQ method. Table 1 shows that for get-
ting convergent results, fifteen grid points are enough. The 
results are shown and analyzed in two sections. The first 
one verifies the proposed model with existing literatures. 
Second section shows the effect of length-to-radius ratio, 
radius-to-thickness ratio, initial hoop tension, fluid flow 

velocity, angular velocity, material length scale parameter 
and boundary conditions on critical rotational speed, criti-
cal velocity of viscous fluid flow and natural frequency of 
the rotating SWCNT conveying viscous flow (Table 2).

4.1  Results verification with other articles

Material properties of single-walled carbon nanotubes are 
presented in Table 2. Achieved results are compared with 
those of GDQ and an exact analytical method, moreover 
in Tables 3 and 4; it can be seen from the results that by 
setting L = h, the achieved results of classical cylindrical 
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Fig. 9  Variation of fundamental frequency (THz) with angular velocity of a rotating clamp–clamp SWCNT conveying viscous flow with differ-
ent length scale parameters with h/R = 0.1, vx = 500 m/s and L = 10 nm
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Fig. 10  Variation of fundamental frequency (THz) with angular velocity of a rotating clamp–free SWCNT conveying viscous flow with differ-
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Fig. 11  Variation of funda-
mental frequency (THz) with 
angular velocity of a rotat-
ing simply–simply SWCNT 
conveying viscous flow with 
different velocities of viscous 
fluid flow with h/R = 0.1, 
vx = 500 m/s and L = 10 nm
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Fig. 12  Variation of funda-
mental frequency (THz) with 
angular velocity of a rotating 
clamp–simply SWCNT convey-
ing viscous flow with different 
velocities of viscous fluid flow 
with h/R = 0.1, vx = 500 m/s 
and L = 10 nm
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Fig. 13  Variation of fundamental frequency (THz) with angular velocity of a rotating clamp–clamp SWCNT conveying viscous flow with dif-
ferent velocities of viscous fluid flow with h/R = 0.1, vx = 500 m/s and L = 10 nm
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Fig. 14  Variation of funda-
mental frequency (THz) with 
angular velocity of a rotating 
clamp–free SWCNT convey-
ing viscous flow with different 
velocities of viscous fluid flow 
with h/R = 0.1, vx = 500 m/s 
and L = 10 nm
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Fig. 15  Variation of fundamen-
tal frequency (THz) with flow 
velocity of a rotating simply–
simply SWCNT conveying 
viscous flow with different 
length-to-radius ratios with 
h/R = 0.1, Φ = 0.5 THz and 
L = 10 nm
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Fig. 16  Variation of funda-
mental frequency (THz) with 
flow velocity of a rotating 
clamp–simply SWCNT convey-
ing viscous flow with different 
length-to-radius ratios with 
h/R = 0.1, Φ = 0.5 THz and 
L = 10 nm
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nano-shell theory are very close to results of Alibeigloo and 
Shaban (2013). Some researchers (Ghadiri and Safarpour 
2016; Beni et al. 2015) show, as l = R/3, the results of the 
current research based on FSDT are very similar to those 
of MD simulation. In addition, dimensionless frequency in 
this article is approximated by equation Ω = ωR

√

ρ
E

.

4.2  Verification of achieved results by using the results 
of an analytical method

Table 5 demonstrates the GDQ results in comparison with 
analytical results for different length and material length scale 
parameters of SWCNT. It is noteworthy that in this table the 
effect of flow velocity and angular velocity is ignored and 
E = 1.06 Tpa and ρ = 2300 kg/m3. Table 5 shows that the 
GDQ results are in good agreement with analytical results, 

so the GDQ method with N = 15 can be used instead of the 
analytical solution. Also, Table 5 shows that, by increasing 
the material length scale parameter, the natural frequency 
increases. Comparison of the natural frequencies given in 
Table 5 shows that increase in shell length leads to decrease 
in stiffness and therefore decrease in natural frequency.

4.3  Parametric results

The material for this paper is carbon which its properties 
are given in Table 6. Now, in this section presents the effect 
of different parameters on the critical rotational speed, 
critical velocity of viscous flow and natural frequency of a 
rotating SWCNT conveying viscous flow. Also, the effect 
of L/R ratio on the critical flow velocity for flutter instabil-
ity of rotating SWCNT is studied.

Fig. 17  Variation of funda-
mental frequency (THz) with 
flow velocity of a rotating 
clamp–clamp SWCNT convey-
ing viscous flow with different 
length-to-radius ratios with 
h/R = 0.1, Φ = 0.5 THz and 
L = 10 nm
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Fig. 18  Variation of fundamental frequency (THz) with flow velocity of a rotating clamp–free SWCNT conveying viscous flow with different 
length-to-radius ratios with h/R = 0.1, Φ = 0.5 THz and L = 10 nm
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4.3.1  The effect of different length‑to‑radius ratios 
on natural frequency, critical flow velocity for flutter 
instability and critical speed rotation of SWCNT

According to Paidoussis and Denise (1972), the instability 
associated with n = 1 corresponds to beam flutter (lateral 
oscillations), while those associated with n = 2 correspond 
to “true” shell flutter. Also according to Yoon et al. (2006), 
the critical flow velocities for flutter instability occur as the 
second frequency (mode 2) is equal to zero. Table 6 gives 
a presentation of the critical flow velocity for flutter insta-
bility of rotating SWCNT under the various boundary con-
ditions. Table 6 shows an increase in L/R ratio leads to a 

decrease in the critical flow velocity. This trend is observed 
under all types of boundary conditions. Clamp–free bound-
ary condition has the lowest critical flow velocity because 
of its particular condition, and clamp–clamp boundary con-
dition has the highest critical flow velocity. Figures 3, 4, 5 
and 6 show the effect of the length-to-radius ratio on natu-
ral frequency and critical speed of SWCNT with different 
boundary conditions. Figures 4, 5, 6 and 7 show that the 
increase in L/R leads to the increase in critical rotational 
speed and consequently the increase in stability of the sys-
tem. Also, by increasing the L/R parameter, the natural fre-
quency in stability area decreases, because increase in the 
L/R parameter leads to the decrease in stiffness. The C–F 
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Fig. 19  Variation of fundamental frequency (THz) with flow velocity of a rotating simply–simply SWCNT conveying viscous flow with differ-
ent material length scale parameters with h/R = 0.1, Φ = 0.5 THz and L = 10 nm
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Fig. 20  Variation of fundamental frequency (THz) with flow velocity of a rotating clamp–simply SWCNT conveying viscous flow with different 
material length scale parameters with h/R = 0.1, Φ = 0.5 THz and L = 10 nm



 Microfluid Nanofluid (2017) 21:22

1 3

22 Page 18 of 23

Fig. 21  Variation of funda-
mental frequency (THz) with 
flow velocity of a rotating 
clamp–clamp SWCNT convey-
ing viscous flow with different 
material length scale parameters 
with h/R = 0.1, Φ = 0.5 THz 
and L = 10 nm
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Fig. 22  Variation of fundamen-
tal frequency (THz) with flow 
velocity of a rotating clamp–
free SWCNT conveying viscous 
flow with different material 
length scale parameters with 
h/R = 0.1, Φ = 0.5 THz and 
L = 10 nm
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Fig. 23  Variation of fundamen-
tal frequency (THz) with flow 
velocity of a rotating simply–
simply SWCNT conveying vis-
cous flow with different angular 
velocities with h/R = 0.1, 
Φ = 0.5 THz and L = 10 nm
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boundary condition results in instability in lower critical 
speed; despite C–F boundary condition, C–C boundary 
condition leads to instability in higher critical speed.

4.3.2  Effect of different material length scale parameters 
on natural frequency and critical rotational speed 
of SWCNT

Figures 7, 8, 9 and 10 demonstrate the effect of material 
length scale parameter on critical speed under different 
boundary conditions. These figures show that an increase 
in material length scale parameter leads to an increase in 
critical rotational speed value so that instability occurs in 

higher values of critical rotational speed. Therefore, the 
higher the length scale value is, more stable the system is. 
Also, C–F boundary condition results in instability in lower 
critical speed; in spite of C–F boundary condition, C–C 
boundary condition leads to instability in higher critical spe
eds.

4.3.3  The effect of different velocities of viscous fluid flow 
on natural frequency and critical rotational speed 
of SWCNTs

Figures 11, 12, 13 and 14 present the influence of veloc-
ity of viscous fluid flow on frequency and critical rotational 
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Fig. 24  Variation of fundamental frequency (THz) with flow velocity of a rotating clamp–simply SWCNT conveying viscous flow with different 
angular velocities with h/R = 0.1, Φ = 0.5 THz and L = 10 nm
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Fig. 25  Variation of fundamental frequency (THz) with flow velocity of a rotating clamp–clamp SWCNT conveying viscous flow with different 
angular velocities with h/R = 0.1, Φ = 0.5 THz and L = 10 nm



 Microfluid Nanofluid (2017) 21:22

1 3

22 Page 20 of 23

speed under different boundary conditions. It can be clearly 
seen that an increase in flow velocity results in a decrease 
in critical rotational speed, but it has higher tangible effect 
on the stability of cylindrical shell. It is worth to mention 
that increase in the angular velocity and flow velocity leads 
to decrease in natural frequency with more intensity and 
increase in unstable area.

4.3.4  The effect of different length‑to‑radius ratios 
on natural frequency and critical velocity of viscous 
fluid flow of SWCNT

Figures 15, 16, 17 and 18 present the influence of length-
to-radius ratios on frequency and critical flow velocities 
under different boundary conditions. It is shown that, as 
the length-to-radius ratio/flow velocity increases, the fun-
damental natural frequency decreases. It can also be con-
cluded from Figs. 15, 16, 17 and 18 that as the length-
to-radius ratio increases, the stiffness of the SWCNT 
decreases and leads to decrease in the natural frequency 
of the system. Also the C–F boundary condition results 
in instability in lower critical speed, and in spite of C–F 
boundary condition, C–C boundary condition leads to 
instability in higher critical speed.

4.3.5  The effect of different material length scale 
parameters on natural frequency and critical 
velocity of viscous fluid flow of SWCNT

The effect of material length scale parameter on natural 
frequency and critical flow velocity is studied considering 
different boundary conditions as shown in Figs. 19, 20, 21 
and 22. Results indicate that increasing length scale param-
eter enhances the natural frequency and the critical flow 
velocity. The results show that, in the clamp–clamp and 

clamp–simply boundary conditions, the critical flow veloc-
ity is very close and this boundary conditions have high 
critical flow velocity than simply–simply and clamp–free 
boundary conditions.

4.3.6  The effect of different angular velocities on natural 
frequency and critical velocity of viscous fluid flow 
of SWCNT

Figures 23, 24, 25 and 26 illustrate the effect of angular 
velocity on the natural frequency and critical flow velocity 
of fluid-conveying rotating SWCNT. With the increase in 
angular velocity, the natural frequency and critical velocity 
of SWCNT decrease; hence, the region of stability of the 
SWCNT decreases, too. It is worth to mention that increase 
in the angular velocity and flow velocity leads to decreas-
ing of natural frequency with more intensity and increasing 
of unstable area.

5  Conclusion

This article represents the analysis of size-dependent vibra-
tion of a rotating SWCNT conveying viscous flow to obtain 
the critical angular velocity and the critical viscous fluid 
flow velocity. Modified couple stress theory introduces the 
size-dependent effect. The equations of motion and non-
classical boundary conditions are derived using Hamilton’s 
principle. The natural frequency of the rotating SWCNT 
conveying viscous flow is investigated with respect to 
the material length scale parameter, velocity of viscous 
fluid flow, angular velocity, length, length-to-radius ratio, 
radius-to-thickness ratio and boundary conditions on criti-
cal speed, critical velocity of the SWCNT. The followings 
important results can be obtained from this study:

Fig. 26  Variation of fundamen-
tal frequency (THz) with flow 
velocity of a rotating clamp–
free SWCNT conveying viscous 
flow with different angular 
velocities with h/R = 0.1, 
Φ = 0.5 THz and L = 10 nm
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1. Increasing the length-to-radius ratio and material 
length scale parameter, the natural frequency tends 
to increase, while by increasing the flow velocity and 
angular velocity the natural frequency of the rotating 
SWCNT conveying viscous flow decreases.

2. Clamp–free boundary condition has the lowest natu-
ral frequency because of its particular condition, and 
clamp–clamp boundary condition has the highest natu-
ral frequency.

3. The results show that increasing the material length 
scale parameter leads to increase in the critical speed 

while increasing the length-to-radius ratio and flow 
velocity leads to decrease of critical rotational speed of 
the SWCNT conveying viscous flow.

4. By increasing the material length scale parameter, the 
flow velocity increases, while increasing the length-
to-radius ratio and angular velocity leads to decrease 
in the flow velocity of the rotating SWCNT conveying 
viscous flow.
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