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applications in engineering and medicine. Chains are pre-
dominant in high external magnetic, with local magnetic 
moments mainly orientated mainly along the direction of 
the applied field.
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Abbreviations
mi (kg)  The ith nanoparticle mass
�vi (m/s)  The ith nanoparticle linear speed
�fi (N)  The resultant of the conservative 

forces acting on the ith nanoparticle
αi,tr (N s)/m)  The translational friction coefficients 

of the ith nanoparticle
αi,rot(N s m)  The rotational friction coefficients of 

the ith nanoparticle
η (Pa·s)  The dynamic viscosity coefficient
ri (m)  The ith nanoparticle radius
βi,tr(t) (N)  The random Brownian force of the ith 

nanoparticle
βi,rot(t) (N m)  The random Brownian torque of the 

ith nanoparticle
Ii (kg m2)  The moment of inertia of the ith 

nanoparticle
�ωi (rad/s)  The angular speed of the ith 

nanoparticle
�Ti,c (N m)  The resultant of the conservative tor-

ques acting on the ith nanoparticle
δ(t)  The Dirac delta function
n̂ij  The versor of the direction connecting 

the ith and jth particles
Dij (m)  The distance between the centres of 

the ith and jth nanoparticles

Abstract This paper presents a modelling study about 
the nanoparticle agglomeration in magnetic nanofluids. 
The colloidal magnetic nanoparticles size distribution is 
subjected to simultaneous translation and rotation move-
ments under the action of conservative and dissipative 
forces, with their respective moments. In order to obtain 
the numerical solution of the coupled equations of motion, 
we use a Langevin dynamics stochastic method based on 
an effective Verlet-type algorithm. The presented model 
is based on an easy-to-implement integrator. We apply a 
number of analytical techniques to assess the performance 
of the method. The model has been tested on a magnetite 
nanoparticle-based nanofluid. Finally, the paper presents 
a number of structures obtained in various physical con-
ditions, discussing the retrieved results of modelling and 
simulation. In weak external magnetic field, the nano-
particles form arrangements like linear chains or dense 
globes and rings, with magnetic moments rotating in both 
directions (both clockwise and counterclockwise). These 
arrangements, in vortex and toroidal states, are reported 
in actual scientific literature and open new perspec-
tives for understanding the behaviour of nanofluids, with 
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�Dij (m)  The vector of the direction connect-
ing the centres of the ith and jth 
nanoparticles

sij (m)  The surface-to-surface separation 
between the ith and jth nanoparticles

Aeff (J)  The Hamaker effective constant for 
iron-oxide nanoparticles in water

�Fel,DL,ij (N)  The electrostatic force acting between 
ith and jth nanoparticle, in a double 
layer system

Vel,DL,ij (J)  The electrostatic potential energy act-
ing between ith and jth nanoparticle, 
in a double layer system

Φ0i (C/m)  The surface potential of the ith nano-
particle at infinite separation

κ (m−1)  The thickness of the screening ionic 
layer

e (C)  Electron charge
n0 (ions/m3)  The concentration of ions in bulk 

solution
zi  The valence of the ith ions from 

electrolyte
ε (F/m)  The electrical permittivity of the 

solvent
kB (J/K)  The Boltzmann constant
T (K)  The absolute temperature
ci (ions/m3)  The concentration of the ith ion spe-

cies in bulk solution
q (C)  The effective charge of the particles
VES
steric

(sij, ri) (J)  The steric potential between two equal 
spheres

VES
steric

(sij, ri, rj) (J)  The steric potential between two 
unequal spheres

�Fsteric,ij (N)  The steric force
di (m)  The diameter of the ith nanoparticle
ξ (m−2)  The surface density of the polymers
Ms (A/m)  The spontaneous magnetization
Vi (m

3)  The particle volume
µ̂i  The unit vector of the magnetic 

moments
�µi(A m2)  The magnetic moment of the i 

nanoparticle
Evdw (J)  The van der Waals’ interaction energy 

between spherical particles i and j
�Fvdw (N)  The van der Waals’ force
�Fmd,ij (N)  The dipolar magnetic force exerted 

between the magnetic moments of the 
nanoparticles i and j

�τi (N m)  The magnetic torque acting on an ith 
nanoparticle

μ0  The vacuum magnetic permeability

�Hi  The local magnetic field on each 
nanoparticle

�Hext (A/m)  The external magnetic field applied
�Hid (A/m)  The internal dipolar magnetic field
t (s)  Time
dt (s)  Time integration step
v̄2 (m2/s2)  The mean-square velocity
φi (rad)  Rotation angle
ω̄2 (rad2/s2)  The mean square of the angular 

velocities

1 Introduction

Actually, modelling and simulation is an important concern 
in science and engineering, since this helps to understand the 
expected behaviour of a system while inspecting underlying 
physical phenomena. In this way, it is possible to implement 
simulations by exploiting computing tools actually available, 
without carrying out expensive laboratory tests. Scientific lit-
eratures present a huge number of papers dealing with model-
ling and simulation in several research areas and frameworks, 
including the study of nanoparticle-based systems and nano-
fluids (Popa et al. 2016; Rob et al. 2016; Sharifi et al. 2012; 
Scherer 2004; Loya et al. 2014; Lim and Feng 2012; Reeves and 
Weaver 2012; Polyakov et al. 2013; Tanygi et al. 2015; Rokidi 
et al. 2016; Drikakis and Frank 2015; Holland et al. 2015; Hu 
et al. 2014; Piet et al. 2013; Sreekumari and Ilg 2013). A mag-
netic nanofluid is a fluid containing magnetic nanoparticles in 
a stable colloidal suspension. In recent years, the magnetic 
nanofluids have received attention expecially due to biomedical 
applications, such as drug delivery and hyperthermia treatment 
for cancer. For instance, the iron-oxide nanofluids have attracted 
special attention because of their low inherent toxicity, ease of 
synthesis, physical and chemical stabilities and suitable mag-
netic properties (Sharifi et al. 2012). Currently, one of the most 
important key issues in colloids is the control of agglomeration 
process, particularly the possibility of determining controlled 
size and composition of agglomerated structures. The self-
assembly of magnetic nanoparticles can lead to local structures 
with important collective properties (Sreekumari and Ilg 2013; 
Margabandhul et al. 2016; Usanov et al. 2016).

Recently, many experimental studies have been per-
formed on nanofluid systems (Loya et al. 2014), showing 
that the presence of an external magnetic field influences 
the agglomeration of nanoparticles (Margabandhul et al. 
2016; Iyengar et al. 2016; Usanov et al. 2016). Labora-
tory experiments are expensive and time-consuming, since 
results related to real-world conditions require a lot of 
efforts and knowledge of experimental procedures (Loya 
et al. 2014). Since these drawbacks, computer simulations 
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have attracted the interest of researchers, even because of 
highly empowering computers.

The superparamagnetic properties of colloids are consid-
erably affected by the aggregation of nanoparticles due to the 
presence of attractive and repulsive interactions. Hence, it is 
important to take into account the various types of interactions 
occurring among nanoparticles, as well as to understand their 
role in the colloidal self-organization and how this self-organ-
ization influences the relaxation time of the system. While 
analysing the physical phenomenon of agglomeration in col-
loids, we should take into account that the colloidal particles 
have translational and rotational motions, due to several forces 
and torques. They are caused by the applied field and inter-
particle interactions. Besides, the nanoparticles collide each 
other, causing translational and rotational Brownian motions. 
Their movements inside the liquid are opposed by viscous, 
dissipative forces and torques (Scherer 2004). Molecular 
dynamics (MD) method is increasingly popular for simulat-
ing nanofluids (Holland et al. 2015; Hu et al. 2014). Lim and 
Feng (2012) studied the magnetic nanoparticle agglomeration 
in suspension using discrete element method (DEM). Lan-
gevin dynamics (LD) technique exploits stochastic differential 
equations with friction and white noise. Reeves and Weaver 
(Reeves and Weaver 2012) numerically solved the stochastic-
type (i.e. Langevin-type) motion equations of nanoparticles by 
using the Brownian dynamics method and an Euler–Maruy-
ama algorithm and simulated the movements of magnetic 
nanoparticles for biomedical applications. Sreekumari and Ilg 
(2013) noticed slow dynamical relaxations in an LD-study of 
a cobalt nanoparticle suspension. Polyakov et al. (2013) made 
large-scale ferrofluid simulations on graphics processing units, 
based on the Barnes–Hut algorithm and using Lennard-Jones 
potential for short-range interactions. In their recently pub-
lished paper, Tanygi et al. (2015) used an Euler algorithm 
based on finite differences. They found some other structures 
of nanoparticles appearing in uniform magnetic field, besides 
linear chains, dense globes and ring assembly structures. 
Unfortunately, the Euler algorithm has a main drawback: the 
local and global truncations generate errors which could not 
be negligible. Combinations of MD and the Navier–Stokes 
equation have been used by Piet et al. (2013) as well, in order 
to include hydrodynamic flows. Monte Carlo simulation tech-
nique is a basic technique in the study of colloidal systems 
(Stopper et al. 2016; Patra 2016; Tasios et al. 2016; Hatch 
et al. 2016; Cacciola and Osaci 2016). Several models (some 
of them based on the MD method, some on the Monte Carlo 
technique) have been proposed in order to study positioning 
of nanoparticles in ferrofluids (Cacciola and Osaci 2016). In 
most models of ferrofluids, the short-range interactions are 
modelled by the Lennard-Jones function (Loya et al. 2014; 
Lim and Feng 2012; Reeves and Weaver 2012; Polyakov et al. 
2013), but it gives only a general and approximate expression 
of the short-range potentials. Most of the current models take 

into account only monodisperse nanoparticle systems (Lim 
and Feng 2012; Reeves and Weaver 2012; Polyakov et al. 
2013), but nanoparticles have usually size dispersion. This 
kind of situation is usually accounted by using the medium 
diameter, above all within the models that consider various 
types of interactions, such as steric repulsion, magnetic dipo-
lar and van der Waals’ interaction energy, provided the case of 
polydispersity (Rokidi et al. 2016).

In our work, we deal with dynamics of nanoparticles 
with different sizes in a nanofluid by LD simulations based 
on a Verlet-type algorithm (Grønbech-Jensena and Faragoa 
2013), extending this algorithm for rotational motion.

2  The computational model

Our system is composed by single-domain, spherical iron-
oxide nanoparticles, with a lognormal distribution of grain 
sizes. Each nanoparticle is composed of a magnetic core and 
a non-magnetic surface layer of stabilizing surfactant. The 
temperature of the system is constant. According to the fluc-
tuation–dissipation theorem, the microscopic processes estab-
lishing the thermal equilibrium are the same that cause drag 
in fluids and other types of dissipation (Pribram-Jones et al. 
2016; Villa-Torrealba and Toro-Mendoza 2015; Evans 2016).

If we compare the Langevin equation to the one result-
ing from Newton’s second law for MD, the former is a sto-
chastic differential equation with two terms added to the 
conservative terms. In case of translational motions, a term 
represents the friction force and a second term represents 
the random Brownian force, according to the –dissipation 
theorem (Pribram-Jones et al. 2016; Villa-Torrealba and 
Toro-Mendoza 2015; Evans 2016). In case of rotational 
motions, a term represents the friction torque and the other 
term represents the random Brownian torque, according to 
the fluctuation–dissipation theorem (Pribram-Jones et al. 
2016; Villa-Torrealba and Toro-Mendoza 2015; Evans 
2016). The Langevin equations for the translational and 
rotational motions of an ith nanoparticle in the basic liquid 
can be written in the form (Grønbech-Jensena and Faragoa 
2013):

where mi and �vi are the mass and linear speed of the ith nan-
oparticle, respectively; �fi is the resultant of the conservative 

(1)mi�̇vi = �fi − αi,tr�vi + βi,tr(t)

(2)αi,tr = 6πηri

(3)Ii �̇ωi = �Ti,c − αi,rot �ωi + βi,rot(t)

(4)αi,rot = 8πηr3i
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forces acting on the ith nanoparticle; αi,tr and αi,rot are the 
translational and rotational friction coefficients, respec-
tively; η is the coefficient of the dynamic viscosity; ri is 
the radius of the ith nanoparticle; βi,tr(t) and βi,rot(t) are the 
random Brownian force and torque, respectively; Ii, �ωi and 
�Ti,c are the moment of inertia, the angular speed and the 
resultant of the conservative torques acting of the ith nano-
particle, respectively.

The random Brownian force and torque are usually 
modelled using the Gaussian noise (Polyakov et al. 2013; 
Hu et al. 2014), so that:

where δ(t) is the Dirac delta function. The translational and 
rotational friction coefficients are related to the fluctuations 
of the random forces and torques by the fluctuation–dissi-
pation theorem.

2.1  Other forces and torques

Theoretically, two kinds of forces can contribute to the 
interparticle potential in the system: the van der Waals 
forces and the electrostatic repulsive forces. The theoretical 
description of these two forces is known as the Derjaguin–
Landau–Verwey–Overbeek (DLVO) theory (Horinek 2014; 
Mikelonis et al. 2016; Liu et al. 2016). With magnetic 
suspensions, we should add the magnetic dipolar forces 
between two particles. Finally, the steric repulsion forces 
have to be taken into account for coated nanoparticles. The 
stabilization of magnetic particles can be achieved by act-
ing on one or both of the two repulsive forces: electrostatic 
and steric repulsions. When both electrostatic and steric 
stabilizations are handled, it is necessary to obtain stable 
iron-oxide nanoparticles. Controlling the strength of these 
forces is a key issue in order to model a good stability of 
nanoparticles (Lim and Feng 2012; Oyegbile et al. 2016). 
We consider the possibility that nanoparticles interact 
by such kind of force equations, but they cannot overlap; 
therefore, there should be a minimum interparticle distance.

2.1.1  The van der Waals force

According to the Derjaguin approximation (Lebovka 
2014), the van der Waals’ interaction energy between 
spherical particles of radii ri and rj is:

(5)
〈

βi,tr(t)
〉

= 0

(6)
〈

βi,tr(t) · βi,tr(t
′)
〉

= 2kBTαi,trδ(t − t′)

(7)
〈

βi,rot(t)
〉

= 0

(8)
〈

βi,rot(t) · βi,rot(t
′)
〉

= 2kBTαi,rotδ(t − t′)

where n̂ij is the versor of the direction connecting the ith 
and jth particles, Dij is the distance between the centres 
of the ith and jth nanoparticles, sij = Dij − (ri + rj) is the 
surface-to-surface separation between the ith and jth nano-
particles and Aeff is the Hamaker effective constant for iron-
oxide nanoparticles in water. If sij is less than 1 nm, then it 
is fixed to 1 nm to avoid a singularity in the above equa-
tion (Lim and Feng 2012). The magnitude and range of the 
van der Waals interaction is closely related to the value of 
the Hamaker constant, Aeff, which depends on the dielec-
tric properties of the involved materials and the interven-
ing medium (Faure et al. 2011). The Hamaker constants for 
iron-oxide nanoparticles in various media have been calcu-
lated by using the Lifshitz theory (Faure et al. 2011). For 
nanoparticles interacting across water, Aeff results between 
33 × 10−20 and 39 × 10−20 J (Faure et al. 2011). The 
expressions for the dielectric responses of three iron-oxide 
phases (magnetite, maghemite and hematite) were derived 
from recently published optical data (Babick 2016).

2.1.2  The electrostatic force

The electrostatic stabilization of colloids is the mechanism 
in which the ionic groups can adsorb to the surface of a col-
loidal particle, forming a charged layer, in liquid dispersion 
media. Most charged colloidal particles possess electrical 
double layers at their surfaces, and these form the basis of 
repulsive interactions. The potential of double layer elec-
trostatic interaction is used in the literature (Lebovka 2014; 
Faure et al. 2011; Babick 2016; Yao et al. 2016; Park and 
Kima 2015; Michel and Gradzielski 2012). If the normal-
ized distances k · sij ≥ 4, then we have the following for-
mulation for the electrostatic potential energy Vel,DL,ij:

(9)

Evdw,ij = −
Aeff

6





2rirj

sij

�

Dij + ri + rj
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2rirj
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ij
−
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ri − rj
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(10)

�Fvdw,ij = −∇Evdw,ij =
AeffDij(4rirj)
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(
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where Φ0i is the surface potential of the ith nanoparticle at 
infinite separation, and the thickness of the screening ionic 
layer κ is estimated by the inverse of Debye constant, in 
case of 1:1 salt concentration:

Here, e = 1.6 × 10−19C(electron charge), n0 is the con-
centration of ions in bulk solution, z is the valence of ions 
in symmetrical (z–z) electrolyte, ε is the electrical permit-
tivity of the solvent (for water 78.5 × 8.85 × 10−12F/m), 
kB = 1.38 × 10−23J/K is the Boltzmann constant and T is 
the absolute temperature. If the ions have higher valences, 
the following formulation is used:

where ci is the concentration of the ith ion species in bulk 
solution. The local ion concentrations around nanoparticle 
surfaces can be measured using, for instance, ion-sensitive 
fluorophores (Zhang et al. 2010, 2011; Riedinger et al. 
2010; Wiśniewska et al. 2016). The electrostatic force is 
then defined as:

When the normalized distances k · sij < 4, considering 
the constant potential approximations (Lebovka 2014), we 
obtain:

The surface potential of the ith nanoparticle at infinite 
separation is given by (Alfimov et al. 2014):

(12)Φ∗
i = 4 tanh

(

Φi

4

)

, Φi =
zeΦ0i

kBT

(13)κ =

√

2e2n0z2

εkBT

(14)κ =

√

e2
∑

i ciz
2
i

εkBT

(15)

�Fel,DL,ij = −∇Vel,DL,ij = −4πε ×

(

kBT

ze

)2

Φ∗
i

×Φ∗
j ×

rirj(1+ kDij)

D2
ij

× e−κsij n̂ij

(16)

Vel,DL,ij = 2πε
rirj

ri + rj

[

2Φ0iΦ0j ln

(

1+ e−ksij

1− e−ksij

)

+
(

Φ2
0i +Φ2

0j

)

ln(1− e−2κsij )

]

(17)

�Fel,DL,ij = −4πεk

(

rirj

ri + rj

)2
(

e−ksij

1− e−2ksij

)

(Φ0i −Φ0j)
2n̂ij

(18)Φ0i =
q

4πεri(1+ kri)

where q is the effective charge of the particles. However, 
due to the advantages in terms of simplicity and computa-
tional cost, the charge stabilization is still widely used in 
stabilizing the dispersions in aqueous media.

2.1.3  The steric force

The steric interactions arise when large molecules are 
adsorbed on the surface of the particles and prevent direct 
interparticle contacts. The polymers and surfactants are 
commonly used as steric stabilizers. In the scientific liter-
ature, the most common coatings are dextran, carboxym-
ethylated dextran, carboxydextran, starch, arabinogalactan, 
glycosaminoglycan, sulfonated styrene–divinylbenzene, 
polyethylene glycol (PEG), polyvinyl alcohol (PVA), 
poloxamers and polyoxamines (Scherer and Figueiredo 
Neto 2005). The steric force is difficult to model and quan-
tify. Many theories have been proposed for explaining the 
steric stabilization mechanism, and many theoretical equa-
tions have been devised for calculating the energy change 
with the overlap of the adsorption layer (Scherer and 
Figueiredo Neto 2005; Lin and Wiesner 2012; Runkana 
et al. 2006; Gillespie 2015; van Gruijthuijsen et al. 2013). 
The interaction energy between two equal spheres can be 
obtained from (Scherer and Figueiredo Neto 2005; Lin and 
Wiesner 2012; Runkana et al. 2006; Gillespie 2015; van 
Gruijthuijsen et al. 2013):

where di = 2ri, l = 2sij/di, sij is again the separation 
between the surfaces, t = 2δ/di and ξ is the surface den-
sity of the polymers. The interaction energy between two 
unequal spheres can be obtained from that of equal spheres, 
using the following relation (Runkana et al. 2006):

The electrostatic and steric stabilizations can be com-
bined as electrosteric stabilization (Wiśniewska et al. 
2016). The origin of the electrostatic component may be a 
net charge on the particle surface and/or charges associated 
with the polymer attached to the surface (i.e. through an 
attached polyelectrolyte).

(19)

VES
steric(sij, ri) =

kBTπd
2
i ξ

2

[

2−
l + 2

t
ln

(

1+ t
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)

−
l

t

]

(20)VES
steric(sij, ri, rj) =

2rj

ri + rj
VES
steric(sij, ri)

(21)�Fsteric,ij = −∇VES
steric,ij

(22)�Fsteric,ij =
kBTπdiξ
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2rj

ri + rj
ln

(

1+ t

1+ l/2

)
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2.1.4  The dipolar magnetic interaction

Each monodomain nanoparticle is characterized by a magnetic 
moment, which is usually given by Haase and Nowak (2012):

where Ms is the spontaneous magnetization, Vi is the par-
ticle volume and µ̂i is the unit vector of the magnetic 
moments. Let �µi be the magnetic moment of the ith nano-
particle, and �µj the magnetic moment of the jth nanoparti-
cle, both with uniaxial anisotropy. The energy of the dipo-
lar magnetic interaction between the two nanoparticles (i 
and j) is given by the relation (Haase and Nowak 2012):

where μ0 is the vacuum magnetic permeability; Dij is again 
the distance between the centres of the two nanoparticles; 
n̂ij is again the versor of the direction that connects the nan-
oparticles i and j; µ̂i and µ̂j are the unit vectors of the mag-
netic moments of the nanoparticles i and j, respectively.

The dipolar magnetic force exerted between the mag-
netic moments of the nanoparticles i and j is given by 
Haase and Nowak (2012):

(23)�µi = MsViµ̂i

(24)

Vmd,ij =
µ0

4π
·
µiµj

D3
ij

[

µ̂i · µ̂j − 3
(

µ̂i · n̂ij
)(

µ̂j · n̂ij
)]

the difficulties brought by the non-analytical aspect of 
βi,tr/rot(t) in the equations of motion (1) and (3), we 
replace the delta function in (6) and (8) with a set of rec-
tangular pulses of mean-squared size 

√

2kBTαi,tr/rot/dt,  
each of which acting over the centred time interval 
(tn − dt/2, tn + dt/2).

We randomly initialize the nanoparticle positions in 
simple centred cubic (scc), or body centred cubic (bcc), or 
face centred cubic (fcc) lattices. We also initialize the linear 
speeds using the Maxwell–Boltzmann distribution. We use 
discrete notation for time-dependant variables rni = ri(tn), 
vni = vi(tn) and f ni = fi(r

n
i , tn), for the ith nanoparticle. The 

algorithm starts by integrating the Langevin Eq. (1) over a 
small time interval dt between time tn and tn+1 = tn + dt 
(Grønbech-Jensena and Faragoa 2013) and considering the 
following approximation:

The integration algorithm for Eq. (1) provides

(28)rn+1
i − rni ≈

dt

2
(vn+1

i + vni )

(29)rn+1
i = rni + bi,trdtv

n
i +

bi,trdt
2

2mi

f ni +
bi,trdt

2mi

βn+1
i,tr

with bi,tr = 1

1+
αi,trdt

2mi

. On the other hand, the equation 

vn+1
i =

rn+1
i −rni
dt

 has been used, with:

We scale the linear speeds to establish the temperature 
set point

with vscalei =
√

3kBT

miv̄
2  where v̄2 is the mean-square veloc-

ity. We extended the algorithm presented in Grønbech-
Jensena and Faragoa (2013) for translational and rotational 
LD. In order to define the integration algorithm for Eq. (3), 
we initialize the rotation angles and the angular rotation 
speeds of the magnetic moments of nanoparticles. Then, 
the integration algorithm for Eq. (3) is:

(30)

vn+1
i = vni +

dt

2mi

(f ni + f n+1
i )−

αi,tr

mi

(rn+1
i − rni )+

1

mi

βn+1
i,tr

(31)vn+1
i = vn+1

i · vscalei

(32)φn+1
i = φn

i + bi,rotdtω
n
i +

bi,rotdt
2

2Ii
Tn
i +

bi,rotdt

2Ii
βn+1
i,rot

(25)�Fmd,ij = −∇Vmd,ij =
3µ0

4πD5
ij

[

( �µi · �Dij) · �µj + ( �µj · �Dij) · �µi + ( �µi · �µj) · �Dij −
5( �µi · �Dij) · ( �µj · �Dij)

D2
ij

�Dij

]

2.1.5  The magnetic torque

It is well known that the torque acting on an ith nanoparti-
cle can be obtained from:

where �Hi is the local magnetic field on ith nanoparticle, 
expressed as the vectorial sum between the external mag-
netic field applied �Hext and the internal dipolar magnetic 
field �Hid. The latter is determined by the magnetic dipolar 
interactions among the nanoparticles:

3  Algorithm for simulating the Langevin 
dynamics

In order to numerically solve Eqs. (1) and (3) of motion, 
we use the effective Verlet-type algorithm introduced by 
Grønbech-Jensena and Faragoa (2013), for the general 
simulation of Langevin Dynamics. In order to overcome 

(26)�τi = µ0( �µi × �Hi)

(27)�Hi = �Hext + �Hid
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with bi,rot = 1

1+
αi,rotdt

2Ii

. On the other hand, the equation 

ωn+1
i =

φn+1
i −φn

i

dt
 has been used, with

We scale the angular speeds to establish the temperature 
set point

where ω̄2 is the mean-square of the angular velocities. 
Then, we update the orientation of the ith nanoparticle 
magnetic moment, i.e.

4  Results and discussion

4.1  Simulation conditions

For this study, we consider the case of a colloid with elec-
trosteric stabilization. We consider that the system com-
prises 100 spherical nanoparticles of magnetite with spon-
taneous magnetization of 4.46 × 105 A/m, having sizes and 
effective magnetic anisotropy constants with lognormal 
distributions. Nanoparticles are dispersed in water having a 
dynamic viscosity of 8.9 × 10−4 Pa s, and the relative elec-
tric permittivity is 78.5. The Hamaker constant for magnet-
ite in water is 39 × 10−20 J (Faure et al. 2011). We fixed the 
temperature at 298 K, the coating thickness at 4 nm. The 
resulting ion concentration in solution is 1026 ions/m3, and 
ions have valence Z = 1. The surface density of the poly-
mers is fixed at ξ = 10−18 m−2, and the surface charge is 
1.6 × 10−15 C. The average diameter of the nanoparticles 
has been fixed at dm = 20 nm, with a standard deviation 
of 0.1 × dm. We consider that the volume fraction of the 
nanoparticles is f = 0.1. We set the external magnetic field 
intensity to 15 kA/m along the Z-axis.

Initially, we consider a random placement of the nano-
particles in an fcc grid. Since our interest is to inspect the 
physical phenomenon of aggregation, we have to consider 
moving nanoparticles. In this case, it is not possible to 
exploit the Ewald summation to simulate long-range mag-
netic dipolar interactions (Wang and Holm 2001). In fact, 
Ewald summation rearranges the issue of approximating 
long-range magnetic interactions in a Fourier-like domain. 

(33)

ωn+1
i

= ωn

i
+

dt

2Ii
(Tn

i
+ T

n+1
i

)−
α
i,rot

Ii

(φn+1
i

− φn

i
)+

1

Ii

βn+1
i,rot

(34)ωn+1
i = ωn+1

i · ωscale i,

(35)with ωscale i =

√

3kBT

Iiω̄2

(36)�µn+1
i = �µn

i +
(

�ωn+1
i × �µn

i

)

· dt

This implies that nanoparticles are fixed when located in 
a grid, i.e. in a lattice. In our case, instead, nanoparticles 
move and no spatial constant among possible positions of 
nanoparticles is present. It means that, when nanoparticles 
move, the same concept of “grid” vanishes. Therefore, we 
simulate the magnetic dipole–dipole interactions (refer-
ring to potentials and forces) by using direct summation 
technique.

4.2  The integrator stability

Some of the desired attributes required by a Langevin 
integrator are: accuracy, stability and efficiency. Accuracy 
means that the trajectories of nanoparticles obey to the 
equations of motion with good approximation. Theoreti-
cally, the accuracy could be improved by reducing the time 
integration step dt. Unfortunately, the Lyapunov instabil-
ity (Liang et al. 2016) introduces constraints on the time 
integration step dt. Constraints are heightened by limits in 
viscous approximation when accounting random transla-
tions and rotations of nanoparticles (Tanygi et al. 2015). 
Therefore, time step cannot be reduced too far. For our 
simulations, the lower limit of the time integration step 
is 2.154876419097160e−10 s, because of viscous limit 
approximation. Figure 1 shows the positions of a single 
nanoparticle during the simulating time, for 3 different val-
ues of the time integration step.

Figure 1 provides well-defined data about the impact of 
dt on the positions of simulated nanoparticles. As it is pos-
sible to notice, reducing the time step affects the precision 
of positions. In any case, they are located around defined 
central positions. This occurs above all when time step 
assumes values of 10−7 and 10−8 s, with a sort of cloud of 
positions assumed by the considered nanoparticle during 
the time. Reducing the time step to 10−9 s introduces some 
sparse agglomerations, emphasizing that the influence of 
time step on the nanoparticle behaviour is local, affected 
by approximations of simulation and it does not involve 
the general spatial behaviour of nanoparticles during the 
simulation. The accuracy is determined by the magnitude 
of errors. The total energy drift is defined as the gradual 
change in the total energy of a closed system over time:

where E is the total energy in the current step and Ei is total 
initial energy. Figure 2 shows the energy drift versus time, 
for three different values of the time integration step. We 
can see that the energy drift fluctuations increase as the 
time integration step increases, but the increases do not 
exceed 0.5%.

Figure 3 shows the average energy drift versus the 
time integration step. The average energy drift varies 

(37)Energy drift =
E − Ei

Ei
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from 0.9 × 10−3 to 1.85 × 10−3. The average energy drift 
increases with the increasing of the time integration step, 
more pronounced when the time integration step has low 
values. We can see that the average energy drift remains 
approximately constant when the time integration step goes 
over 5 × 10−8 s.

The algorithm efficiency refers to the efficiency in time 
of the algorithm itself. The increasing of the algorithm 
efficiency primarily involves the simplification of proce-
dures applied to assess the forces and moments in each 
integration step. The stability implies that the algorithm 
does not lead to large variations of energy during time. 
Figure 4 shows the total energy of the system versus time, 
for 3 values of the time integration step dt. For dt = 10−9 s, 
the total energy varies in time from 1.47 × 10−14 to 
1.4725 × 10−14 J. For dt = 10−8 s, the total energy varies 

Fig. 1  Positions assumed by a single nanoparticle during the simulating time, for 3 values of the time integration step: a dt = 10−7 s, b 
dt = 10−8 s, c dt = 10−9 s
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Fig. 2  Energy drift versus time, for 3 values of the time integration 
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in time from 1.47 × 10−14 to 1.476 × 10−14 J, except a 
single value found at the beginning. For dt = 10−7 s, 
the energy variation in time ranges from 1.47 × 10−14 
to 1.48 × 10−14 J. The three subfigures of Fig. 4 depict 
a clear behaviour: refining the time integration step dec-
rements the errors of approximations, but they are not so 
intense to justify an extreme increasing of computing time 
and complexity. Therefore, the use of a lower dt reduces 
the errors of approximation but increases the computing 
time of simulation. If errors are not relevantly reduced; as 
in our case, the approximation of dt with one or two orders 
of magnitude higher than 10−9 s provides similar results 
with lower computational times. The first value obtained 
for dt = 10−8 s, appearing as a simulation outlier, could 
be resulted from a strange behaviour of the simulation 
algorithm due to the random choice of initial conditions. 
It does not affect the general considerations, as above 
described.

Figure 5 shows the a) average potential and total 
energy versus time integration step and b) the average 
kinetic energy versus time integration step. The aver-
age potential and total energies show a slight increase 
from 1.471 × 10−14 to 1.475 × 10−14 J, with an approxi-
mately constant trend from 5 × 10−8 s, while the aver-
age kinetic energy slightly decreases from 1.234 × 10−18 
to 1.228 × 10−18 J, as integration time step increases. We 
conclude that, the integrator we have used is quite stable 
for the time integration steps dt = 10−7 s or dt = 10−8 s. 
Therefore, in order to have a good balance between pre-
cision and computational costs, we used dt = 10−8 s with 
good accuracy, stability and efficiency.

4.3  Results

We considered a system composed by 100 spherical mag-
netite nanoparticles, having the physical properties speci-
fied in Sect. 4.1. Initially, we set the external magnetic field 
intensity to 15 kA/m along the z-axis. Nanoparticles have 
been placed in a fcc lattice (please, refer to Sect. 4.1 for 
details), therefore simulating a sort of box containing the 
colloidal suspension of nanoparticles. We refer to this box 
with the name of “test cube”, too.

Figures 6 and 7 show the positions of nanoparticles 
inside the test cube, in a) starting time of simulation and b) 
after 1 ms. We found that the nanoparticle agglomeration is 
time dependent: as time elapses, agglomeration increases.

Initially, the nanoparticles move in random directions 
and small groups of nanoparticles are formed in differ-
ent locations. Then nanoparticles are able to minimize 
the energy via self-assembly into aggregate structure. 
Thus, as Fig. 6b shows, an aggregate structure consist-
ing either of linear chains or dense globes and rings are 
formed after 1 ms. This behaviour could be attributed to 
isotropic attractives forces like van der Waals and aniso-
tropic dipole–dipole interactions. The slow forming of the 
branched chains can be explained as a cooperative effect 
of the attractive magnetic interactions among nanoparti-
cles. These chains can be curved due to Brownian motion 
and different dimensions of nanoparticles. In weak exter-
nal magnetic field, the nanoparticles easily rotate and form 
clusters arrangement. These results are also confirmed by 
other contemporary studies about the same matter (Tanygi 
et al. 2015; Margabandhul et al. 2016; Iyengar et al. 2016; 
Usanov et al. 2016). In fact, Tanygi et al. (2015) proposed 
their simulation results by exploiting an Euler method 
based on finite differences. These results provide fine 
structures of the transitions from “linear chains” to “dense 
globes” through the ring assembly structure. Margaband-
hul et al. (2016) experimentally observed the aggrega-
tion of nanoparticles along the applied magnetic field in a 
Co-Mn ferrofluid, with diameters of nanoparticles between 
88 and 71 nm. Iyengar et al. (2016) reported the develop-
ment of ultra-stable aqueous colloidal dispersions of mag-
netite nanocrystals produced by aqueous “coprecipitation 
method”. TEM images of tetramethylammonium hydrox-
ide coated magnetite nanocrystals indicate the presence of 
nanoparticle clusters. Usanov et al. (2016) found that the 
length of agglomerates in a magnetic nanofluid subjected 
to an external magnetic field substantially increases with 
weak or strong fields, with a sharp intensification in the lat-
ter case.

In Fig. 7, we can see that the nanoparticle magnetic 
moments are not fully aligned with the external magnetic 
field when the external magnetic field intensity is 15 kA/m. 
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Initially, orientations of the magnetic moments of the nano-
particles are random (Fig. 7a). After 1 ms, many circular 
arrangements can be detected, with magnetic moments of 
the arrangements rotating in both directions (clockwise and 
counterclockwise, Fig. 7b). These approximately circular 
arrangements are probably due to the action of long-range 
attractive forces. The experimental observations of forma-
tion and annihilation of vortices are reported in the scien-
tific literature (Pinilla-Cienfuegos et al. 2016), with 25-nm 
molecular-based magnetic nanoparticles, inspected by low-
temperature, variable-field magnetic force microscopy. 
Authors remark that the switching of the vortex structure 
can be induced with very small values of the applied static 
magnetic field. The observations of a resonant toroidal 
response in metamaterials are already known (Papasima-
kis et al. 2016). These observations have enabled the sys-
tematic study of a number of phenomena: e.g. the toroidal 

electrodynamics with a wide-range toroidal order, the mag-
netoelectric effect, the ferrotoroidic order and the hysteretic 
effects of these kinds of materials. These studies open new 
perspectives for understanding the behaviour of nanofluids, 
with applications in engineering and medicine.

If we increase the external magnetic field intensity to 
150 kA/m along the z-axis, we obtain aggregate structures 
consisting of several chains oriented more or less along the 
external magnetic field (Fig. 8). Figure 8 shows that the 
magnetic moments of nanoparticles are generally aligned, 
being the orientation of the local magnetic fields closer to 
the external magnetic field. A high external magnetic field 
breaks circular structures and forms chains, almost oriented 
along the direction of the external field.

Figure 9 presents the positions of nanoparticles inside 
the test cube after 5 and 10 ms, with an intensity of the 
external magnetic field equal to 150 kA/m. We can see 
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Fig. 4  Total system energy versus time: a dt = 10−9s, b dt = 10−8 s, c dt = 10−7 s
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that chain structures persist and grow in size during time. 
When simulation time increases, more nanoparticles attach 
to these chains. As it is possible to see by Fig. 9, the aggre-
gate structures, such as linear chains, are oriented along the 
external magnetic field direction (i.e. the direction of the 
z-axis in our simulation), while time elapses.

5  Conclusions

This paper presents a study about the agglomeration 
of nanoparticles in a magnetic nanofluid. We inspected 

long-range and short-range interactions, summarized in 
dissipative and conservative contributions in a Langevin-
type model for translation and rotation movements simul-
taneously, exploiting a self-implemented Verlet-type 
integrator.

Our method considers the case of a colloid with elec-
trosteric stabilization, lognormal distributions of sizes and 
effective magnetic anisotropy constants of magnetic nano-
particles, as well as the coating thickness of nanoparticles 
and long-range magnetic dipolar interactions. Our method 
enables time-by-time access to positions, velocities and 
energies of nanoparticles. This knowledge is useful in other 
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Fig. 6  Positions of nanoparticles inside the test cube in a initial moment and b after 1 ms (external magnetic field intensity 15 kA/m)
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studies related to possible applications like magnetic hyper-
thermia or heat transfer phenomena.

In our simulations, we noticed that there is a collective 
process of aggregation influenced by the local orientations 
of nanoparticles, subjected to the actions of complex result-
ing forces and torques acting within the physical system, 

during time. By applying this model to a nanofluid with 
magnetite nanoparticles, we obtained aggregate structures 
consisting of either linear chains or dense globes and rings 
in weak external magnetic field. These clusters, presenting 
circular rotations of the magnetic moments in both direc-
tions (clockwise and counterclockwise), are confirmed by 

Fig. 7  Orientation of the nanoparticle magnetic moments inside the test cube in a initial moment and b after 1 ms (external magnetic field inten-
sity 15 kA/m)

Fig. 8  Nanoparticles inside the test cube after 1 ms (external magnetic field intensity 150 kA/m): a positions and b orientation of magnetic 
moments
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the actual scientific literature (Pinilla-Cienfuegos et al. 
2016; Papasimakis et al. 2016) and open new perspectives 
for understanding the behaviour of nanofluids with inno-
vative uses in engineering and medicine. With high exter-
nal magnetic field, the aggregate structures, such as linear 
chains, grow in time and are oriented along the direction 
of the external magnetic field, as confirmed by experimen-
tal studies proposed in scientific literature (Margabandhul 
et al. 2016; Usanov et al. 2016). Therefore, the studies and 
results that we are actually proposing are confirmed by 
experimental studies already existing in scientific literature. 
Thus, we can assert that the collective motion of nanopar-
ticles is an organized process that can be simulated by our 
algorithm. The motion takes place over time and allows 
organized agglomerations of nanoparticles. The algorithm 
we have used can be easily implemented.

Controlling the assembly of nanoparticles in nanofluid is 
the key for a new class of magnetic materials with immediate 
applications in engineering and nanomedicine, for instance. 
Reliable computer simulations become really important 
within this framework, since they can provide a good knowl-
edge of physical behaviour of phenomena during time, con-
temporaneously allowing the reduction of costs.
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