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Abstract The stability of a system of two thin liquid films

under AC electroosmotic flow is studied using linear sta-

bility analysis for long-wave disturbances. The system is

bounded by two rigid plates which act as substrate. Boltz-

mann charge distribution is assumed for the two electrolyte

solutions. The effect of van der Waals interactions in these

thin films is incorporated in the momentum equations

through the disjoining pressure. The base-state velocity

profile from the present study is compared with simple

experiments and other analytical results. Parametric study

involving various electrochemical factors is performed and

the stability behaviour is analysed using growth rate, mar-

ginal stability, critical amplitude and maximum growth rate

in phase space. An increase in the disjoining pressure is

found to decrease stability of the system. On the other hand,

increasing the frequency of the applied electric field is

found to stabilize the system. However, the dependence of

the stability on parameters such as viscosity ratio, permit-

tivity ratio, interface zeta potential and interface charge

depends not only on the value of individual parameters but

also on the rest of the parameters. Design of experiments

(DOE) is used to observe the general trend of stability with

different parameters.

Keywords AC electroosmosis � Linear stability analysis �
Microfluidics � Deby-Hückel � Maxwell stress

1 Introduction

Microfluidics is finding applications in diverse fields

ranging from life science to aerospace and even extending

to the development of nanofluidics (Chang et al. 2012;

Stone et al. 2004). Its importance is also being recognized

in the synthesis of nanoparticles and for simulating in vivo

microenvironments (Lim and Karnik 2014). Huge empha-

sis is being laid on developing micro total analysis system

(lTAS) or lab-on-chip (LOC) which can perform as point-

of-care (POC) devices with steep reduction in the amount

of sample required for the analysis, elimination of artefacts

introduced due to mishandling of samples in a laboratory

and reduction in time required for analysis (Mairhofer et al.

2009; Toner and Irimia 2005).

These applications require pumping and mixing of

reagents. Electroosmosis is one of the basic principles

which uses an electric field and can be used for pumping.

The applied electric field can be a steady (DC) field which

results in plug-type velocity profile for thin Debye layers or

time-periodic (AC) field which results in an oscillating

velocity profile. However, in case of DC electroosmotic

flow (EOF), bubble formation due to electrolysis can cause

serious issues if the electrodes are inside the microfluidic

channel. These issues can be avoided with the use of an AC

field (Wang et al. 2009). Symmetrical electrodes can pro-

duce local flow with AC field (Ramos et al. 1999), but

when used with a travelling wave, a net bulk flow can be
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achieved (Ramos et al. 2005). Both these cases use planar

microelectrodes placed at the wall of the microchannel.

The use of electrokinetic instability induced by a time-

periodic electric field with electrodes at the inlet and outlet

of microchannel to enhance mixing has also been experi-

mentally observed (Oddy et al. 2001). The base state for

AC EOF of a single fluid between two parallel plates has

been investigated by assuming a Boltzmann charge distri-

bution (Dutta and Beskok 2001).

However, the use of electric field to generate an EOF is

restricted only to conductive fluids. The small levels of

conductivity in the biological fluids such as blood, serum

and insulin may pose a problem. To address this concern,

there have been studies to develop a two-liquid system in

which the non-conductive liquid takes a ride on an

immiscible conductive liquid (Brask et al. 2003).

Enhancement in discrimination of DNA molecules can be

achieved by taking multiple measurements using nanopore

sensors and requires the polarity of a DC electric field to be

switched periodically (Sen et al. 2012). One of the direct

applications of the present study can be to replace this DC

field with an AC field and to achieve enhanced discrimi-

nation of two species without bubble formation at the

electrodes, avoiding thus an unstable regime.

Previous studies on AC EOF show interesting results. But,

they were either based on a single fluid flow in a channel

(Toner and Irimia 2005) or based on thin films with a flat

interface (Mayur et al. 2014). Efforts have been made to

understand instability in liquid–gas interface for DC field

(Ganchenko et al. 2015). Base-state analysis by taking inter-

facial electrostatics in the two-fluid system into consideration

is available (Choi et al. 2011; Gao et al. 2005). Also, the

stability analysis by considering the Maxwell stress in the

momentum balance can be found in Thaokar and Kumaran

(2005) and Shankar and Sharma (2004) for DC field and in

Gambhire and Thaokar (2010) for a transverse AC field.

Stability for a two-liquid systemunderDCEOFwithMaxwell

stress consideration has been studied inNavarkar et al. (2015).

Base state for two-liquid AC electroosmotic system has been

analysed in Navarkar et al. (2016), but, to our knowledge, the

stability analysis for this case has not been considered yet and

constitutes the purpose of the present study.

The first section describes the physical system under

consideration. In the second section, the electric potential

profile developed due to the space charge distribution is

derived with the Debye–Hückel approximation. The

hydrodynamic governing equations and boundary conditions

are described in the third section. The base state is then

obtained with suitable assumptions. Linear stability proce-

dure in the long-wave limit is employed in the fourth section

wherein small perturbations are added to the hydrodynamic

variables and Floquet theory is used to extract the time

component from these perturbations. Finally, growth rate

andmarginal stability curves are presented in the fifth section

to analyse the stability of the system.

2 Mathematical formulation

2.1 Electric potential due to ionic charge

distribution

The physical system under consideration consists of two

thin films of immiscible liquids having constant density qi,
viscosity li and electric permittivity ei, where i = 1 and 2

correspond to the lower and upper liquids, respectively.

The system is confined between two infinite and rigid

parallel plates at y ¼ 0 and y ¼ h2 (see Fig. 1). The inter-

face is represented by y ¼ h x; tð Þ. A time-periodic electric

field E0sin xtð Þ is applied, where E0 and x are the ampli-

tude and the frequency of the electric field, respectively.

The zeta potential of the substrate at the upper and lower

walls is represented by fu and fb, respectively; fI and QI

are the zeta potential and the surface charge density present

at the interface, respectively (Choi et al. 2011), and are

considered as independent parameters. Previous studies of

Baygents and Saville (1991) and later that of Schnitzer and

Yariv (2015) have shown that the surface charge and

potential are closely related to the total adsorption of ions

at the interface, for dielectric liquids. This leads to the

formation of multiple double layers near the interface,

which largely follow the Poisson–Boltzmann description,

under weak field and weak advection approximations

(Schnitzer and Yariv 2012; Saville 1977). However, in

later experimental studies of the interface between two

immiscible electrolyte solutions (ITIES), Samec et al.

(1985) showed that for a given interface zeta potential (fI),
the surface charge density (QI) can be varied by varying

the electrolyte concentrations. The water/nitrobenzene

interface with LiCl in water and TBATPB (tetrabutylam-

monium tetraphenylborate) in nitrobenzene can be con-

sidered as an example of ITIES (Senda et al. 1991).

The liquids are considered to have a low concentration

of ions in order to ignore the Joule heating effect (Tang

Fig. 1 Schematics of two-liquid AC EOF system
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et al. 2004), and hence, it ensures that the properties of the

liquids remain constant even if large electric fields are

applied. It is also assumed that the ionic distribution is not

affected by the liquid flow. For a symmetrical electrolyte,

combining the Boltzmann charge distribution,

qe;i ¼ �2zieq0;iSinh
ezi/sc;i

kBT

� �
ð1Þ

and the Poisson equation for the potential distribution,

d2/sc;i

dy2
¼ �

qe;i
ei

ð2Þ

the Poisson–Boltzmann equation for the potential field can

be derived as,

d2/sc;i

dy2
¼

2zieq0;i
ei

Sinh
ezi/sc;i

kBT

� �
ð3Þ

where /sc;i is the electric potential due to the space charge

distribution for liquid ‘‘i’’ and q0;i, zi, kB, T and e are,

respectively, the bulk ionic density (number of ions/m3),

the valence of the ions in the aqueous phase for liquid ‘‘i’’,

the Boltzmann constant, the temperature and the electronic

charge. Using the non-dimensional parameters

Usc;i ¼
/sc;i

fb
; Y ¼ y

h1
, Eq. (3) can be written as,

d2Usc;i

dY2
¼ bSinh vUsc;i

� �
ð4Þ

where b ¼ h2
1

vk2Di
; v ¼ ezifb

kBT
is the ionic energy parameter and

kDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eikBT

2z2
i
e2q0;i

q
is the Debye length. For v\1, which cor-

responds to fb\25 mV at 25 �C, the Debye–Hückel lin-

earization can be applied and Eq. (4) can be written as,

d2Usc;i

dY2
¼ Usc;i

De2i
ð5Þ

where Dei ¼ kDi
h1

is the Debye number which represents the

relative extent of the electric double layer with respect to the

characteristic length scale h1. Note that the electric potential

depends on the ionic energy parameter v ¼ ezifb
kBT

� �
. While

using the Debye–Hückel linearization, this parameter is

assumed to be less than one and does not appear in the sub-

sequent equations. Equation (5) represents two second-order

homogeneous linear differential equations, one for each

liquid. The four non-dimensional boundary conditions

required to solve this set of equations are,

Usc;1 0ð Þ ¼ 1 ð6Þ

Usc;2 H2ð Þ ¼ �fu ð7Þ

Usc;1 1ð Þ � Usc;2 1ð Þ ¼ �fI ð8Þ

dUsc;1 1ð Þ
dY

� eR
dUsc;2 1ð Þ

dY
¼ �QI ð9Þ

where �fu ¼ fu=fb; �fI ¼ fI=fb; �QI ¼ QIh1ð Þ= e1fbð Þ; eR ¼
e2=e1 and H2 ¼ h2=h1. The expressions for Usc;1 and Usc;2

are given in ‘‘Appendix 1’’.

At this stage, it is important to discuss the validity of the

Poisson–Boltzmann model applied herein. Note that the

charge density, concentration and the potential are gov-

erned by the Poisson–Nernst–Planck equations (Saville

1977). The Poisson–Boltzmann model can only be derived

by assuming the advection of ions as well as the applied

field strength to be small. As Saville (1977) has pointed

out, the strength of advection is dictated by ionic Peclet

number as follows: Pe ¼ ek2BT
2=z2e2lD, where l is the

fluid viscosity and D is the ionic diffusivity. For field-

driven phenomena, this number can be O 1ð Þ at most. In the

present analysis, we assume the ionic Peclet number to be

small enough (Pe � 1) so that the effects of ionic advec-

tion on the charge density and potential can be neglected.

Further, one can also define an external field strength

variable as follows (Saville 1977; Khair and Squires 2008;

Schnitzer and Yariv 2012): } ¼ E0Hze=kT . For linearized

Poisson–Boltzmann model to hold, the applied field

strength must be such that }�O 1ð Þ at most.

2.2 Electric potential due to applied electric field

An external electric field (Eapp) is applied to both the liq-

uids and can be written in terms of the gradient of an

externally applied potential /app

� �
as,

�
d/app

dx
¼ Eapp ¼ Im E0e

ixt
� �

ð10Þ

Upon using non-dimensional parameters as Uapp ¼
/app=fb;X ¼ x=h1; h ¼ xt, Eq. (10) can be written as,

dUapp

dX
¼ � 1

ER

Im eih
� �

ð11Þ

where ER ¼ fb= E0h1ð Þ is the relative strength of the zeta

potential to the applied electric field. Therefore, the solu-

tion of Uapp Xð Þ with boundary conditions Uapp 0ð Þ ¼ 0 is

obtained as,

Uapp Xð Þ ¼ � X

ER

Im eih
� �

ð12Þ

The external electric field does not affect the potential

due to space charge distribution (Dutta and Beskok 2001),

and by applying the superposition principle, the total

electric potential for the ith liquid can be written as,

Ui X; Y ; hð Þ ¼ Uapp X; hð Þ þ Usc;i Yð Þ ð13Þ

where Ui is the dimensionless total electric potential for

i ¼ 1 and 2.
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3 Hydrodynamic equations

3.1 Governing equations

When subjected to an externally applied electric field, the

liquid experiences Maxwell stress (RM
i ) along with the

hydrodynamic stress (RM
i ). The total stress corresponding

to the sum of both stresses can be written as,

RT
i ¼ RH

i þ RM
i

¼ � pi þ
ei Eij j2

2

 !
I þ li rui þruTi

� �
þ eiEi � Ei

ð14Þ

where Ei ¼ �rUi is the electric field vector, ui ¼ uiiþ vij

is the liquid velocity vector, pi is hydrostatic pressure in the

liquid and I is the unit tensor. In case of thin films, the

intermolecular van der Waals interactions cannot be

ignored, and it manifests in the form of a disjoining pres-

sure (Mayur et al. 2012) given by,

pd;i ¼ � ai

6pd3i
ð15Þ

where ai is the Hamaker’s constant for liquid ‘‘i’’ and di is

the film thickness. Hence, for the lower film d1 ¼ h1 and

for upper film d2 ¼ h2 � h1. For an incompressible flow,

the conservation of mass and momentum leads to the fol-

lowing equations,

r � ui ¼ 0 ð16Þ

qi
oui

ot
þ ui � rð Þui

� �
¼ rpd;i �rpi þ lir2ui þr � RM

i

ð17Þ

The substrate plates at y ¼ 0 and y ¼ h2 are assumed to

be rigid and impermeable, and hence, we impose the

conditions of no slip and no penetration,

u1 0ð Þ ¼ v1 0ð Þ ¼ u2 h2ð Þ ¼ v2 h2ð Þ ¼ 0 ð18Þ

The perturbed form of the interface between the two

liquids is represented by y ¼ h x; tð Þ. At the interface, the

continuity of tangential and normal components of the

velocity leads to the following equations,

u1 � s ¼ u2 � s; u1 � n ¼ u2 � n ð19Þ

where n and s are unit vectors along the normal and tan-

gential direction, respectively, at the interface:

n ¼
oh
ox
i� jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ oh
ox

� �2q ; s ¼ �
iþ oh

ox
j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2q

Considering the force balance at the interface, there is a

continuity of shear stress in the tangential direction and a

jump in the normal stress created by the capillary forces,

s � RT
i � n

	 
2
1
¼ 0 ð20Þ

n � RT
i � n

	 
2
1
¼ cj ð21Þ

where ½�21 denotes the jump in variables at the interface and

j ¼ r � n is the curvature of the interface. Since the two

liquids are immiscible, there is no mass transfer across the

interface; hence, the fluid velocity at the interface is equal

to the velocity of the interface. This is given by the fol-

lowing kinematic condition,

oh

ot
þ ui

oh

ox
¼ vi ð22Þ

By using the non-dimensional parameters, X ¼ x
h1
; Y ¼

y
h1
;Ui ¼ ui

Uref
; h ¼ xt;Pi ¼ pih1

l1Uref
; H x; tð Þ ¼ h x;tð Þ

h1
;Hi ¼ hi

h1
;

lR ¼ l2
l1
, the corresponding non-dimensional conservation

of mass and momentum equations can be written as,

oUi

oX
þ oVi

oY
¼ 0 ð23Þ

For liquid 1,

Wo21
oU1

oh
þ Re1 U1

oU1

oX
þ V1

oU1

oY

� �

¼ � oP1

oX
þ 3A1

H4

oH

oX
þ o2U1

oX2
þ o2U1

oY2

þ cR;1ER

oU1

oX

o2U1

oX2
þ o2U1

oY2

� �
ð24Þ

Wo21
oV1

oh
þ Re1 U1

oV1

oX
þ V1

oV1

oY

� �

¼ � oP1

oY
þ o2V1

oX2
þ o2V1

oY2
þ cR;1ER

oU1

oY

o2U1

oX2
þ o2U1

oY2

� �

ð25Þ

For liquid 2,

Wo22
oU2

oh
þ Re2 U2

oU2

oX
þ V2

oU2

oY

� �

¼ �1

lR

oP2

oX
� 3A2

H2 � Hð Þ4
oH

oX
þ o2U2

oX2
þ o2U2

oY2

þ cR;2ER

oU2

oX

o2U2

oX2
þ o2U2

oY2

� �
ð26Þ

Wo22
oV2

oh
þ Re2 U2

oV2

oX
þ V2

oV2

oY

� �

¼ �1

lR

oP2

oY
þ o2V

oX2
þ o2V

oY2
þ cR;2ER

oU2

oY

o2U2

oX2
þ o2U2

oY2

� �

ð27Þ

where Wo2i ¼
xh2

1

mi
is the Womersley number and mi is the

kinematic viscosity for liquid ‘‘i’’. The dimensionless

boundary conditions are as follows: no slip and no pene-

tration at the two walls:
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U1ð0Þ ¼ U2ðH2Þ ¼ V1ð0Þ ¼ V2ðH2Þ ¼ 0 ð28Þ

And at the interface, the continuity of normal velocity,

U1 � U2ð Þ oH
oX

� V1 � V2ð Þ ¼ 0 ð29Þ

and the continuity of tangential velocity,

U1 � U2ð Þ þ V1 � V2ð Þ oH
oX

¼ 0 ð30Þ

The kinematic condition can be written as,

Wo2i
Rei

oH

oh
þ Ui

oH

oX
¼ Vi ð31Þ

And finally, the continuity of shear stress,

oU1

oY
þ oV1

oX

� �
1� oH

oX

� �2
 !

� 4
oH

oX

oU1

oX

þ cR;1ER

oU1

oX

oU1

oY
1� oH

oX

� �2
 ! !

� oH

oX

oU1

oX

� �2

� oU1

oY

� �2
 !

¼ lR
oU2

oY
þ oV2

oX

� �
1� oH

oX

� �2
 !

� 4
oH

oX

oU2

oX

(

þ cR;2ER

oU2

oX

oU2

oY
1� oH

oX

� �2
 ! 

� oH

oX

oU2

oX

� �2

� oU2

oY

� �2
 !)

ð32Þ

and normal stress balance,

In addition to the above-mentioned control parameters

(lR; eR; mR ¼ m2
m1
;H2;Dei; �QI ; �fI ; �fu), the problem is now

described by the following additional ten control

parameters,

cR;i ¼
eifbE0

liUref

; Rei ¼
qiUrefh1

li
;Ai ¼

ai

6liph
2
1Uref

;

ER ¼ fb
E0h1

;Ca ¼ l1Uref

c
;Woi ¼

xh21
mi

Here, cR;i is the electroosmotic number, Rei is the

Reynolds number, Ai is the disjoining pressure parameter,

ER is the relative strength of the zeta potential to the

applied electric field and Ca is the capillary number.

3.2 Base-state solution

The base-state solution is obtained by assuming the flow to

be uniform and only in the X-direction (Vi ¼ 0) without a

pressure-driven component. Hence, there is no velocity

gradient in the X-direction. Initially, the interface is flat

and is represented by the equation Y ¼ 1. These assump-

tions result in the following base-state equations for i ¼ 1

and 2,

oUi;b

oX
¼ 0 ð34Þ

Wo2i
oUi;b

oh
¼ o2Ui;b

oY2
þ cR;iER

oUi

oX

o2Ui

oY2

� �
ð35Þ

0 ¼ � oP1

oY
þ cR;1ER

oU1

oY

o2U1

oY2

� �
ð36Þ

� P1 þ
cR;1ER

2

oU1

oX

� �2

þ oU1

oY

� �2
 ! !

þ 2

1þ oH
oX

� �2� � oU1

oX

oH

oX

� �2

�1

 !
� oH

oX

oU1

oY
þ oV1

oX

� � !8<
:

þ
cR;1ER

1þ oH
oX

� �2� � oH

oX

� �2
oU1

oX

� �2

þ oU1

oY

� �2

�2
oH

oX

oU1

oX

oU1

oY

 !9=
;

� � P2 þ
lRcR;2ER

2

oU2

oX

� �2

þ oU2

oY

� �2
 ! !(

þ 2lR

1þ oH
oX

� �2� � oU2

oX

oH

oX

� �2

�1

 !
� oH

oX

oU2

oY
þ oV2

oX

� � !

þ
lRcR;2ER

1þ oH
oX

� �2� � oH

oX

� �2
oU2

oX

� �2

þ oU2

oY

� �2

�2
oH

oX

oU2

oX

oU2

oY

 !9=
; ¼

o2H
oX2

Ca 1þ oH
oX

� �2� �3
2

ð33Þ
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0 ¼ � 1

lR

oP2

oY
þ cR;2ER

oU2

oY

o2U2

oY2

� �
ð37Þ

The corresponding boundary conditions to the base state

take the following form,

U1;b 0; hð Þ ¼ 0; U2;b H2; hð Þ ¼ 0 ð38Þ

U1;b 1; hð Þ ¼ U2;b 1; hð Þ ð39Þ
oU1;b

oY
1; hð Þ � cR;1sin hð Þ oU1

oY
1; hð Þ

¼ lR
oU2;b

oY
1; hð Þ � cR;2sin hð Þ oU2

oY
1; hð Þ

� �
ð40Þ

Equation (35) represents a set of two linear partial dif-

ferential equations, and the solution can be obtained by

decomposing the velocity into time- and space-dependent

functions as,

Ui;b Y; hð Þ ¼ Im Fi Yð Þeih
� �

ð41Þ

With this form of the velocity, Eq. (35) reduces to a set

of two non-homogeneous ordinary differential equations:

iWo2i Fi Yð Þ ¼ d2Fi Yð Þ
dY2

� cR;i
d2Usc;i

dY2

� �
ð42Þ

with the following four boundary conditions,

F1 0ð Þ ¼ 0;F2 H2ð Þ ¼ 0;F1 1ð Þ ¼ F2 1ð Þ ð43Þ
dF1

dY
1ð Þ � cR;1

dUsc;1

dY
1ð Þ ¼ lR

dF2

dY
1ð Þ � cR;2

dUsc;2

dY
1ð Þ

� �

ð44Þ

The solution to Eqs. (42–44) is found as a superposition

of the general solution of the homogeneous equation and

the particular solution of the full equation.

The general solution can be written as,

Fi Yð Þ ¼ FCF;i Yð Þ þ FCP;i Yð Þ

The complementary function can be written as,

FCF;i Yð Þ ¼ Cie
ffi
i

p
WoiY þ Die

�
ffi
i

p
WoiY

where Ci and Di are the constants of integration. The

particular integral can be obtained as,

FPI;i Yð Þ ¼
cR;i

2
ffiffi
i

p
Woi

e
ffi
i

p
WoiY

Z
e�

ffi
i

p
WoiY

d2Usc;i

dY2

� �
dY

�

�e�
ffi
i

p
WoiY

Z
e
ffi
i

p
WoiY

d2Usc;i

dY2

� �
dY

�

After superposition,

Fi Yð Þ ¼ Cie
ffi
i

p
WoiY þDie

�
ffi
i

p
WoiY þ

cR;i
2
ffiffi
i

p
Woi

� Ai

Mi

e
Y 1

Dei

� �
� Bi

Ni

e
�Y 1

Dei

� �
� Ai

Ni

e
Y 1

Dei

� �
þ Bi

Mi

e
�Y 1

Dei

� � !

ð45Þ

where Ni ¼ Dei þ De2i
ffiffi
i

p
Woi

� �
and Mi ¼ Dei � De2i

�
ffiffi
i

p
WoiÞ. The coefficients Ci and Di can be found by using

the boundary conditions (43–44) and using Mathematica’s

simultaneous equations solver package, and Ai and Bi are

the same constants defined for the potential Usc;i (see

‘‘Appendix 1’’). The solution for Ui;b can then be found by

taking the imaginary part of Fi Yð Þeih.

4 Linear stability analysis

The system is subjected to small perturbations,

Ui ¼ Ui;b þfUi ;Vi ¼ eVi ;Pi ¼ Pi;b þ ePi ;H ¼ 1þ ~H ð46Þ

where the variables with a tilde correspond to perturbation

variables. Velocity components are converted to their

corresponding stream function representation as fUi ¼ oeWi

oY

and eVi ¼ � o ~Wi

oX
to reduce the number of variables. The

normal modes approach is then used to represent the

perturbations,

fWi X; Y ; hð Þ ¼ �Wi Y ; hð ÞeiaX; ~H X; hð Þ
¼ �H hð ÞeiaX ; ~Pi X; Y ; hð Þ ¼ �Pi Y; hð ÞeiaX ð47Þ

where a is the wave number. Upon substitution of the

perturbed variables and linearization, the base-state equa-

tions are subtracted from the perturbed equations. The

pressure term is eliminated by taking derivative of X-mo-

mentum and Y-momentum equations with respect to Y and

X, respectively, and subtracting one from the other. Using

Floquet theory, the stream function and the interface height

can be written as,

�Wi Y ; hð Þ ¼ Ŵi Y ; hð Þerh; �H hð Þ ¼ Ĥ hð Þerh ð48Þ

where Ŵi Y ; hð Þ; Ĥ hð Þ are periodic functions and r is the

Floquet exponent. This Floquet exponent will be used to

comment on the stability of the system. The following

equation for the stream function is then obtained,

o2

oY2
� a2

� �2

Ŵi Y; hð Þ

� Wo2i
o

oh
þ iaReiUi;b

� �
o2

oY2
� a2

� �
Ŵi Y; hð Þ

þ iaRei
o2Ui;b

oY2
Ŵi Y; hð Þ

¼ rWo2i
o2

oY2
� a2

� �
Ŵi Y; hð Þ ð49Þ

The boundary conditions at the interface are to be

applied at Y ¼ 1þ ~H and can be written as Taylor series

expansion around Y ¼ 1 as follows:
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oŴ1

oY
0; hð Þ ¼ 0; Ŵ1 0; hð Þ ¼ 0;

oŴ2

oY
H2; hð Þ ¼ 0; Ŵ2 H2; hð Þ ¼ 0

ð50Þ

Ŵ1 1; hð Þ ¼ Ŵ2 1; hð Þ ð51Þ

Ĥ hð Þ oU1;b 1; hð Þ
oY

� oU2;b 1; hð Þ
oY

� �

þ o

oY
Ŵ1 1; hð Þ � Ŵ2 1; hð Þ
� �

¼ 0

ð52Þ

iaŴ1

Wo21
Re1

oĤ hð Þ
oh

þ rĤ hð ÞWo21
Re1

þ Ĥ hð ÞU1;b 1; hð Þia ¼ 0

ð53Þ

o2

o2Y2
þ a2

� �
Ŵ1 1; hð Þ þ Ĥ hð Þ o

2U1;b 1; hð Þ
oY2

þ cR;1ERĤ hð Þ oU1 1ð Þ
oX

o2U1 1ð Þ
oY2

� iacR;1ERĤ hð Þ oU1 1ð Þ
oX

� �2

� oU1 1ð Þ
oY

� �2
 !

¼ lR
o2

o2Y2
þ a2

� �
Ŵ2 1; hð Þ þ Ĥ hð Þ o

2U2;b 1ð Þ
oY2

�

þcR;2ERĤ 1; hð Þ oU2 1ð Þ
oX

o2U2 1ð Þ
oY2

�iacR;2ERĤ hð Þ oU2 1ð Þ
oX

� �2

� oU2 1ð Þ
oY

� �2
 !!

ð54Þ

Wo21
o2Ŵ1 1; hð Þ

ohoY
þ rWo21

oŴ1 1; hð Þ
oY

þ iaRe1 U1;b 1; hð Þ oŴ1 1; hð Þ
oY

� Ŵ1 1; hð Þ oU1;b

oY

 !

þ 3a2 � o2

oY2

� �
oŴ1 1; hð Þ

oY

¼ iaĤ hð Þ � a2

Ca
þ 3A1

H1

þ lR
3A2

H2 � H1ð Þ

� �

þ lR Wo22
o2Ŵ2 1; hð Þ

ohoY
þ rWo22

oŴ2 1; hð Þ
oY

(

þiaRe2 U2;b
oŴ2 1; hð Þ

oY
� Ŵ2

oU2;b 1; hð Þ
oY

 !

þ 3a2 � o2

oY2

� �
oŴ2 1; hð Þ

oY

)
ð55Þ

The stability information of thin film systems can be

recovered without solving the complete set of equations.

Yih’s method (Yih 1963) (long-wave expansion method)

can be used to expand the dependent variables Ŵi Y; hð Þ;
Ĥ0 hð Þ and r in powers of a,

Ŵi � Ŵi;0 þ aŴi;1 þ a2Ŵi;2; Ĥ0 hð Þ� Ĥ0 þ aĤ1

þ a2Ĥ2; r� r0 þ ar1 þ a2r2 ð56Þ

The lengthy equations corresponding to zero, first and

second order in a are given in ‘‘Appendix 2’’. An additional
assumption is made that the capillary forces are large, i.e.

a2=Ca�O 1ð Þ (Mayur et al. 2012). The expression for the

real part of the growth rate, rR, is found by calculating the

real part of r2, and the critical wave number can then be

obtained by equating the growth rate to zero which in turn

gives the marginal stability curves for the system.

5 Results

5.1 Base-state profiles

In the following results, we have assumed that the two-

liquid layers are of same thickness which implies H2 ¼ 2.

By assuming the electroosmotic number, the Womersley

number and the Reynolds number for the lower liquid

(i ¼ 1), as cR, Wo and Re, respectively, these numbers for

the upper liquid turn out to be eR
lR
cR;

Woffiffiffiffi
mR

p and Re
mR
, respec-

tively, where mR ¼ m2
m1
corresponds to the kinematic viscosity

ratio. Also, the disjoining pressure parameters are assumed

to be the same: A1 ¼ A2 ¼ A. The quantity
cR
ER

represents

the applied electric field and cRER represents the wall zeta

potential (at y ¼ 0). The zeta potential of the wall in con-

tact with liquid 2 (fu) is assumed to be same as the zeta

potential of the wall in contact with liquid 1 (fb). There-
fore, �fu ¼ 1. The relaxation time of ionic species in a

homogeneous dielectric media is given by the Maxwell–

Wagner–O’Konski relaxation time (Delgado et al. 2007),

and the corresponding frequency can be written as,

xMWO ¼ 1

sWMO

	 2Di

k2D

where kD is the Debye length. In the limit of x\xMWO,

charges relax to the equilibrium distribution faster than the

time-dependent external perturbation and hence polariza-

tion effects are negligible and the permittivity can be

assumed constant as e xð Þ 	 e (Mayur et al. 2014). Con-

sequently, for kD ranging from 1 to 100 nm and with ref-

erence length (h1) equal to 100 nm, the Wo number has an

approximate range of 0.05 to 5.

The dimensional electric potential depends on the ionic

energy parameter v ¼ ezifb
kBT

� �
. While using the Debye–

Hückel linearization, this parameter is assumed to be less

than one and does not appear in the subsequent equations.

Dutta and Beskok (2001) derived the electric potential

without applying the Debye–Hückel linearization but with
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constraints of thin EDL which entails a zero centre-line

potential.

The accuracy of the obtained velocity profile in this

study is validated with the work from Dutta and Beskok

(2001) on AC EOF in a channel. The two-liquid system can

be converted to a single liquid system by assuming that

there is no jump in the parameters such as permittivity,

kinematic viscosity and density (eR ¼ 1; mR ¼ 1 and

lR ¼ 1). The interface is also free from any interface zeta

potential and charge. Figure 2a shows the velocity profile

(Ub) for two values of the Womersley number (Wo ¼ 1 and

Wo ¼ 10) for the present case and the one reported by

Dutta and Beskok (2001). There is a small difference

between the half-channel velocity profile extracted from

the work of Dutta and Beskok (2001) and the velocity

profile in our case, particularly for high frequency

(Wo ¼ 10) due to the values of the ionic energy parameter

v considered in the two studies.

In addition to the above comparison, the results from the

present work are also compared with experimental results

for DC EOF (Mayur 2013). In Fig. 2b, small value for Wo

is chosen which corresponds to small value of the excita-

tion frequency so as to consider a DC case with reversing

polarity. The reference length (h1) is equal to the half-

channel height, i.e. 50 lm. In this figure, the reference

velocity is taken as Uref ¼ �UHS, where UHS ¼
�e1fbE0=l1 is the Helmholtz–Smoluchowsky velocity.

With this assumption, cR ¼ e1fbE0=l1Uref ¼ �UHS

=Uref ¼ 1. For the two values of the magnitude of applied

electric field considered, 50 and 70 V/cm, the reference

velocity is 0.0885 and 0.198 mm/s, respectively. Also,

since the Debye length is small, a plug-type velocity profile

is observed. A quite well agreement with the experimental

results is observed in Fig. 2b except very close to the solid

boundary where the experimental velocity vanishes a bit

far from the boundary. This could be due to the experi-

mental accuracy of the images of the tracer particle near

the boundary (see Mayur 2013). But in the bulk, our the-

oretical results are perfectly matching to the experimental

data.

Figure 3a represents the base-state velocity profile at

different time instances for Wo ¼ 0:1. Except the dynamic

viscosity, all other parameters are assumed to be same for

both liquids. Liquid 2 has higher viscosity and hence shows

lower magnitude of velocity as compared to liquid 1. As

the Womersley number is increased, the wavy nature of the

velocity profile increases (see Fig. 3b). At certain time

instances, the velocity is not completely unidirectional. For

example, at h ¼ p=8 in Fig. 3b, the lower liquid has neg-

ative velocity, whereas a major portion of the upper liquid

has positive velocity.

5.2 Growth rate

The stability behaviour of this system depends on complex

interplay of various parameters defined in this study. For

instance, the way the viscosity ratio affects the stability

depends on interface charge when all other parameters are

fixed. Figure 4 shows the variation of the real part of the

growth rate for different values of viscosity ratio, lR.
Stability in this case is governed by the difference in the

forces experienced by the upper and the lower liquid. The

greater is this difference, the greater will be the instability.

The interface charge and potential contribute in the

momentum equation through cR;iER
o2Ui

oY2 (for i = 1, 2)

which, in this example, is equal to o2U1

oY2 and eR
lR

o2U2

oY2 for lower

and upper liquids, respectively. In these expressions, since

rest of the parameters are held constant, o2Ui

oY2 may be

thought of as representing the net charge.

Fig. 2 a Comparison of velocity profile with Dutta and Beskok

(2001), for De1 ¼ De2 ¼ De ¼ 0:01; �fu ¼ 1; �fI ¼ 0; �QI ¼ 0; lR ¼
1; eR ¼ 1; mR ¼ 1; cR ¼ 1, h ¼ p=2, v ¼ 5 for (Dutta and Beskok

2001) and v\1 in the present study. b Experiments (Mayur 2013), for

De1 ¼ De2 ¼ 0:01; �fu ¼ 1; �fI ¼ 0; �QI ¼ 0; lR ¼ 1; eR ¼ 1; mR ¼ 1;
cR ¼ 1, Wo ¼ 0:01; h ¼ 3p=2 and for two values of E0 and fb
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In Fig. 4a, the interface charge ( �QI) is assumed to be

nonzero and the instability increases as lR increases. Since

the rest of the parameters are held constant, an increase in

lR actually implies that l1 is fixed and l2 is increased. At

the interface, o
2U1

oY2 ¼ 55 for the lower liquid and o2U2

oY2 ¼ �45

for the upper liquid. For lR [ 1, the difference between
o2U1

oY2 and eR
lR

o2U2

oY2 increases even further which leads to

instability. Physically, as the upper liquid is experiencing

less electric force, an increase in its viscosity enhances the

force difference experienced by the two liquids and hence

leads to instability. However, for �QI ¼ 0, stability trend

gets twisted and is shown in Fig. 4b. In this case, o2U1

oY2 ¼
50:0091 for the lower liquid and o2U2

oY2 ¼ �49:9909 for the

upper liquid. As the value of o2Ui

oY2 is almost same for the two

liquids, for the extreme values of viscosity ratio (lR ¼ 0:1

and lR ¼ 10) the difference between o2U1

oY2 and eR
lR

o2U2

oY2

increases as eR ¼ 1. This makes the system more unsta-

ble as compared to lR ¼ 1. This can also be concluded by

observing the high velocity gradient at the interface which

is highlighted in Fig. 4c. For lR ¼ 1, the growth rate curve

is same for both �QI ¼ 1 and �QI ¼ 0. Hence, the effect of �QI

is significant only when lR is away from 1.

In Fig. 5, the applied electric field represented by
cR
ER

¼
e1E2

0
d

l1Uref
is varied, with the rest of the parameters being same

as in Fig. 4a. The system is unstable even for very low

values of
cR
ER
, and the growth rate behaviour remains the

same even for
cR
ER

equal to unity. For very large values of
cR
ER
,

there is a significant increase in the instability of the sys-

tem. This points out a threshold value of
cR
ER

above which

Fig. 4 Variation of the real part of growth rate with the wave number

for different values of viscosity ratio and with De1 ¼ De2 ¼ 0:1; �fI ¼
1; eR ¼ 1; mR ¼ 1;Re ¼ 0:001; Wo ¼ 0:1; Ca ¼ 0:01;A ¼ 0:1;ER ¼
1; cR ¼ 1; and for two values of the electric field: a QI ¼ 1 and b
QI ¼ 0. c Velocity profile, Ub, for different values of viscosity ratio,

and for De1 ¼ De2 ¼ 0:1; �fI ¼ 1; eR ¼ 1; mR ¼ 1;Re ¼ 0:001;Wo

¼ 0:1;Ca ¼ 0:01;A ¼ 0:1; cR ¼ 1and QI ¼ 0

Fig. 3 a Velocity profile, Ub, at different values of non-dimensional

time, h, and for De1 ¼ De2 ¼ 0:1; �fu ¼ 1; �fI ¼ 1; �QI ¼ 0; lR ¼
2; eR ¼ 1; mR ¼ 1; cR ¼ 1 and a Wo ¼ 0:1. b Wo ¼ 1
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the applied electric field starts affecting the system

significantly.

In Fig. 6, increasing the permittivity ratio eRð Þ decreases
the stability of the system. The lower liquid is less viscous

than the upper liquid. When eR is increased, the permit-

tivity of the upper liquid (e2) is increased, thus the upper

liquid experiences greater Maxwell stress as compared to

the lower liquid. This can be expressed in terms of elec-

troosmotic (EO) number which is eR
lR
cR for the upper liquid

and cR for the lower liquid and corresponds to the coeffi-

cient of the Maxwell stress term in the momentum equation

(see Eqs. 24, 26). So, when eR is increased the EO number

for liquid 1 remains the same while that of liquid 2

increases. Because of this disparity, i.e. the difference in

the forces experienced by the two liquids, the instability of

the system increases. Figure 6 also shows very small effect

of eR on stability of the system when eR is raised from 0.1

to 1. This indicates that, for the given set of parameters, the

effect eR saturates below a certain value. Stability of the

system is also greatly influenced by electrostatics at the

interface. The negative charge present at the interface is

stabilizing the system in Fig. 6a, while the positive charge

in Fig. 6b has a destabilizing effect. This can be better

understood with the help of marginal stability curves.

5.3 Marginal stability

Marginal stability curves provide insight to the stability

behaviour through critical wave number. Large critical

wave number implies that all the wave numbers below it

are unstable. Hence, the larger is the critical wave number,

the greater is the instability of the system. The region

below the marginal stability curve marks the unstable re-

gion and vice versa.

The effect of the interface charge �QIð Þ depends not only
on the polarity of the charge itself but also on the polarity

of the interface zeta potential (�fI). With zero �fI , the effect

of �QI on the critical wave number is negligible as com-

pared to the case with nonzero �fI (see Fig. 7). The critical

wave number increases with magnitude of �QI when
�fI and

�QI are of the same polarity and decreases when �fI and �QI

are of opposite polarity. This is true for the given set of

parameters. There is also a threshold value of �QI at which

the instability sets in or the point at which the critical wave

number becomes nonzero. In this case, the magnitude of

the threshold value is around |0.18| for both �fI ¼ 1 and
�fI ¼ �1. It can be noted that, in this case and for �fI ¼ 1, a

negative charge of magnitude greater than 0.18 at the

interface will stabilize the system as it happened in Fig. 6

for �QI ¼ �1. Similarly for �fI ¼ �1, with the given

Fig. 5 Variation of the real part of growth rate with the wave number

for different values of applied electric field and with De1 ¼ De2 ¼
0:1; �fI ¼ 1; eR ¼ 1; lR ¼ 2; mR ¼ 1;Re ¼ 0:001; Wo ¼ 0:1; Ca ¼
0:01; A ¼ 0:1;QI ¼ 0

Fig. 6 Variation of the real part of growth rate with the wave number

for different values of permittivity ratio and with De1 ¼ De2 ¼
0:1;lR ¼ 2; mR ¼ 1; Re ¼ 0:001; Wo ¼ 0:1; A ¼ 0:1; ER ¼ 1; cR ¼
1;Ca ¼ 0:01; �fI ¼ 1 and a QI ¼ �1, b QI ¼ 1

Fig. 7 Marginal stability curve showing the critical wave number as

a function of interface charge for different values of interface zeta

potential and with De1 ¼ De2 ¼ 0:1;lR ¼ 2; eR ¼ 1; mR ¼ 1;Re ¼
0:001; Wo ¼ 0:1; A ¼ 0:1; ER ¼ 1; cR ¼ 1;Ca ¼ 0:01
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parameters, positive charge of magnitude greater than 0.18

will also stabilize the system.

Figure 8 shows the critical wave number plotted against

the interface zeta potential �fI
� �

. The permittivity and

kinematic viscosity are same for both liquids. For the given

set of parameters, the system shows similar tendency as for

DC field (Navarkar et al. 2015). When the two liquids have

the same viscosity, instability escalates with increment in
�fI (with polarity).

Figure 9 shows dependence of the critical wave number

on the capillary number Cað Þ. As the capillary number

increases, the surface tension force decreases. Hence, the

stability of the system decreases with an increase in Ca.

Also raising the value of the applied electric field further

pushes the marginal stability curve upwards thereby

enlarging the unstable region. But the change is negligible

when the
cR
ER

is raised from 0.01 to 1. As observed in Fig. 5,

this also points out the possibility that there exists a

threshold value for the applied electric field above which it

starts to make significant changes in the behaviour of the

system.

Similarly, there exists a threshold value for dimension-

less Hamaker constant Að Þ and can be observed in Fig. 10.

A large value of the Hamaker constant is needed and in this

case the critical value is 8.5 for the lowest value of lR. The
threshold values for a particular case are dependent on the

rest of the parameters of the system. For the other value of

lR considered, the threshold value is zero, i.e. the system

will be unstable even with zero disjoining pressure. The

disjoining pressure A constitutes a destabilizing force, i.e. a

decrease in stability is observed with an increase in A.

Figure 11 shows the marginal stability curve for dif-

ferent values of applied electric field. As the electric field is

increased, the system becomes more unstable as the

Maxwell stress experienced by the liquid increases. The

same was experimentally observed by Oddy et al. (2001).

But the effect of the applied electric field is negligible as it

is raised from 0 to 2. This is also noted in Fig. 9 (note that

the curves in Fig. 9 for
cR
ER

¼ 0:01 and
cR
ER

¼ 1 are very

close). Increasing the frequency of oscillation has a stabi-

lizing effect. For very large frequency, the liquids are not

able to cope up with the rapid change in direction of the

electric field and hence lose their momentum. The system

becomes static except near the Debye layer where there is a

higher concentration of net charge. Also the charge at the

Fig. 8 Marginal stability curve showing the critical wave number as

a function of interface zeta potential for different values of viscosity

ratio and with De1 ¼ De2 ¼ 0:1;QI ¼ 0; mR ¼ 1; eR ¼ 1; Re ¼
0:001; Wo ¼ 0:1; A ¼ 0:1; ER ¼ 1; cR ¼ 1; Ca ¼ 0:01

Fig. 9 Marginal stability curve showing the critical wave number as

a function of the capillary number for different values of applied

electric field and with De1 ¼ De2 ¼ 0:1; �fI ¼ 1; QI ¼ 0; eR ¼
2; lR ¼ 2; mR ¼ 1;Re ¼ 0:001; A ¼ 0:1; Wo ¼ 0:1 assuming theð
applied wall zeta potential to be constantÞ

Fig. 10 Marginal stability curve showing the critical wave number as

a function of the dimensionless Hamaker constant for different values

of viscosity ratio and with De1 ¼ De2 ¼ 0:1; �fI ¼ 1; QI ¼ 0; eR ¼
2; mR ¼ 1;Re ¼ 0:001; Wo ¼ 0:1; cR ¼ 1; ER ¼ 1;Ca ¼ 0:01

Fig. 11 Marginal stability curve showing the critical wave number as

a function of the electroosmotic number for different values of

Womersley number and with De1 ¼ De2 ¼ 0:1; �fI ¼ 1; QI ¼
0; eR ¼ 1;lR ¼ 2; mR ¼ 1;Re ¼ 0:001; A ¼ 0:1; ER ¼ 1=cR;Ca ¼
0:01 assuming the applied wall zeta potential to be constant, i:e ERð
cR¼ 1Þ

Microfluid Nanofluid (2016) 20:149 Page 11 of 17 149

123



interface is assumed to be zero. These factors lead to

increased stability for the case of Wo ¼ 2.

In Fig. 12, the system responds in a slightly complicated

way to the changes in viscosity ratio. As expected, the

system becomes more unstable as the applied electric field

(
cR
ER
) is increased. And as the viscosity ratio increases, the

stability of the system decreases for small values of applied

electric field. Even though the critical wave number can be

seen to increase with the applied electric field, the incre-

ment is small with a maximum change in the order of 0.05.

Also there is jump in the potential at the interface due to

space charge distribution �fI ¼ 1
� �

. Since the electric per-

mittivity of both liquids is same, they experience the same

amount of electric force. For small values of electric field,

viscous forces dominate. So, as the viscosity ratio is

increased, the viscosity of the upper liquid gets increased,

and it becomes difficult for the upper liquid to keep up with

lower liquid. This leads to the decrease in the stability. On

the other hand, for very strong electric field, the system is

more stable when the two liquids share the same viscosity

as compared to the extreme values of the viscosity ratios.

It is difficult to predict how the system will behave when

one of the parameters is changed without knowing the

values for the rest of the parameters. Figure 13 is an

example which shows the complex interplay of the

parameters. The critical wave number is plotted against the

applied electric field for different values of interface zeta

potential (�fI). The interface charge is assumed to be zero.

The upper liquid is twice as viscous as the lower liquid, and

the rest of the parameters are same for both the liquids.

When �fI ¼ �5, the system is highly stable and the transi-

tion to instability occurs only when the applied electric

field is raised beyond the threshold value (cR ¼ 52:8 in this

case). When �fI ¼ �1, the applied electric field switches

role and stabilizes the system. Its effect gets saturated

beyond cR ¼ 44. For �fI ¼ 0; and �fI ¼ 1, the electric field

has a classical effect of destabilizing the system as a

function of electroosmotic number.

Figure 14a shows the neutral curve obtained by setting

the real part of growth rate equal to zero, i.e. rR ¼ 0, and

the critical value of cR is plotted against the critical wave

number. This plot shows the value of cR required to achieve

a particular critical wave number and whether it is possible

to achieve it. It is similar to the marginal stability curve

which is also obtained by setting rR ¼ 0. Figure 14a shows

that for lR ¼ 0:1 and lR ¼ 0:5, with the given set of

parameters, the system becomes unstable only above a

nonzero threshold value of cR, whereas, for lR [ 1, this

threshold value is equal to zero. This is verified using the

growth rate curves in Fig. 14b, c.

As observed in Fig. 7, the effect of interface zeta

potential and charge on the stability of the system is closely

interlinked. Figure 15 shows a clearer picture of this

interaction through a plot of maximum growth rate rmaxð Þ
in the �QI � �fI plane. For lR\1, the system is unsta-

ble when �QI and
�fI are of opposite polarity, whereas, for

lR [ 1, the system is unstable when �QI and
�fI are of the

same polarity. This can be attributed to the force difference

mentioned in the explanation of Fig. 4a.

5.4 Design of experiments (DOE)

In the results discussed above, the stability behaviour is

observed by changing one of the parameters while keeping

all other parameters constant. Marginal stability curves and

maximum growth rates in phase space aided in studying the

stability behaviour while considering two factors simulta-

neously. However, the way a particular parameter affects

the system depends not only on its value but also on the rest

of the parameters. So, if the system is stable for �fI ¼ 1 with

a particular set of parameters, the same may not be true if

Fig. 12 Marginal stability curve showing the critical wave number

as a function of the electroosmotic number for different values

of viscosity ratio and with De1 ¼ De2 ¼ 0:1; �fI ¼ 1; QI ¼ 0;
eR ¼ 1; mR ¼ 1;Re ¼ 0:001; A ¼ 0:1; ER ¼ 1=cR;Ca ¼ 0:01; Wo ¼
0:1 assuming the applied wall zeta potential to be constant, i:e ERð
cR¼ 1Þ

Fig. 13 Marginal stability curve showing the critical wave number as

a function of the electroosmotic number for different values of

interface zeta potential and with De1 ¼ De2 ¼ 0:1;QI ¼ 0; eR ¼
1; lR ¼ 2; mR ¼ 1;Re ¼ 0:001; A ¼ 0:1;ER ¼ 1=cR;Ca ¼ 0:01; Wo

¼ 0:1 assuming the applied wall zeta potential to be constant, i:eð
ERcR¼ 1Þ
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the value of this set is changed. Even if only five of the

control parameters mentioned after Eq. (33) are considered

at five levels, then in order to study the entire solution

behaviour 55 iterations will be needed. This is a common

issue in design and optimization problems and can be dealt

with using Taguchi’s design of experiments (DOE).

Using DOE, an orthogonal array is obtained (see ‘‘Ap-

pendix 3’’) using the fact that which of the solution space

mentioned above can be covered with 25 iterations. It also

helps in identifying how the system output (in our case max

growth rate, rmax) changes when one of the parameters is

changed. For example, to find the variation with �fI , the

mean value of rmax is taken for each level of �fI . Figure 16

shows the results using DOE. The variation with Wo is

monotonic and has a stabilizing effect. However, its effect

is negligible beyond Wo ¼ 0:5. The effect of �fI is also

monotonic till 0.5 and saturates beyond this value. �QI; lR
and cR have non-monotonic variation, which suggests

strong interaction between these parameters. The system is

more unstable when �0:5\ �QI\0:5 and 0:5\lR\1.

However, it must be noted that these results were obtained

using a statistical method and gives only a general idea

about the stability variation.

Fig. 14 a Neutral curves showing the critical electroosmotic number

as a function of the critical wave number for different values of

interface viscosity ratio and with De1 ¼ De2 ¼ 0:1;QI ¼ 1; �fI ¼
1; eR ¼ 1; mR ¼ 1;Re ¼ 0:001; A ¼ 0:1; ER ¼ 1=cR;Ca ¼ 0:01; Wo

¼ 0:1 assuming the applied wall zeta potential to be constantð Þ.
Variation of the real part of growth rate with the wave number for

different values of applied electric field and with De1 ¼ De2 ¼
0:1; �fI ¼ 1; eR ¼ 1; mR ¼ 1;Re ¼ 0:001; Wo ¼ 0:1; ER ¼ 1=cR;Ca ¼
0:01;A ¼ 0:1;QI ¼ 1; b lR ¼ 0:1; c lR ¼ 10

Fig. 15 a Variation rmax in the phase space of �QI � �fI and with

De1 ¼ De2 ¼ 0:1; eR ¼ 1; mR ¼ 1;Re ¼ 0:001; Ca ¼ 0:01;A ¼ 0:1;
Wo ¼ 0:1; lR ¼ 0:5; cR ¼ 1;ER ¼ 1. b Variation rmax in the phase

space of �QI � �fI and with De1 ¼ De2 ¼ 0:1; eR ¼ 1; mR ¼ 1;Re ¼
0:001; Ca ¼ 0:01;A ¼ 0:1;Wo ¼ 0:1;lR ¼ 2; cR ¼ 1;ER ¼ 1
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6 Conclusion

Stability of a system of two thin liquid films under AC

electroosmotic flow is a result of complex interplay

between the viscous forces, electric forces, disjoining

pressure and capillary forces. The greater is the difference

between the forces experienced by the two liquids, the

greater will be the instability. Interfacial electrostatics also

plays an important role in determining the stability of the

system. Disjoining pressure has a destabilizing effect, and

capillary forces have stabilizing effect. But the effect of a

particular parameter on the stability of the system depends

not only on its own value but also on the rest of the

parameters. According to the results obtained using design

of experiments, the system is relatively unstable when

Wo\0:5;�0:5\ �QI\0:5, 0:5\lR\1 and �fI [ 0:5. The

applied electric field can have a stabilizing or destabilizing

effect depending on its operating range. However, these are

approximate ranges and can be used to arrive at a prelim-

inary set of parameters based on application requirements

and can be further fine-tuned by analysing the actual sta-

bility behaviour using growth rate curves.
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Appendix 1

The electric potential Usc;i (i = 1, 2) due the space charge

distribution can be written as follows:

0\Y\1 : Usc;1 ¼ A1e
Y

De1 þ B1e
� Y

De1 ð57Þ

1\Y\H2 : Usc;2 ¼ A2e
Y

De2 þ B2e
� Y

De2 ð58Þ

Fig. 16 DOE by means of the

maximum growth rate for the

five control parameters
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Appendix 2

The set of equations with a0 order is as follows:

o4Ŵ1;0

oY4
�Wo21

o3Ŵ1;0

ohoY2
¼ r0Wo21

o2Ŵ1;0

oY2
ð59Þ

o4Ŵ2;0

oY4
�Wo22

o3Ŵ2;0

ohoY2
¼ r0Wo22

o2Ŵ2;0

oY2
ð60Þ

with the corresponding boundary conditions,

No slip and no penetration:

oŴ1;0

oY
0; hð Þ ¼ 0; Ŵ1;0 0; hð Þ ¼ 0;

oŴ2;0

oY
H2; hð Þ ¼ 0; Ŵ2;0 H2; hð Þ ¼ 0

ð61Þ

Shear stress balance:

o2Ŵ1;0 1;hð Þ
oY2

þ Ĥ0 hð Þo
2U1;b 1;hð Þ

oY2
þ cR;1ERĤ0 hð ÞoU1

oX

o2U1 1ð Þ
oY2

¼ lR
o2Ŵ2;0

oY2
1;hð Þþ Ĥ0 hð Þo

2U2;b 1ð Þ
oY2

þ cR;2ERĤ0 hð ÞoU2

oX

o2U2 1ð Þ
oY2

 !

ð62Þ

Normal stress balance:

o3Ŵ1;0 1; hð Þ
oY3

�Wo21
o2Ŵ1;0 1; hð Þ

ohoY
� r0Wo21

oŴ1;0 1; hð Þ
oY

¼ lR
o3Ŵ2;0 1; hð Þ

oY3
�Wo22

o2Ŵ2;0 1; hð Þ
ohoY

� r0Wo22
oŴ2;0 1; hð Þ

oY

 !

ð63Þ

Continuity of normal and tangential velocity:

Ŵ1;0 H1; hð Þ ¼ Ŵ2;0 H1; hð Þ ð64Þ

Ĥ0 hð Þ oU1;b 1; hð Þ
oY

� oU2;b 1; hð Þ
oY

� �

þ oŴ1;0 1; hð Þ
oY

� oŴ2;0 1; hð Þ
oY

 !
¼ 0 ð65Þ

Kinematic conditions:

Wo21
Re1

oĤ0 hð Þ
oh

þ r0
Wo21
Re1

Ĥ0 hð Þ ¼ 0 ð66Þ

The set of equations with a1 order with r0 ¼ 0 and Ĥ0 ¼
1 is as follows:

o4Ŵ1;1

oY4
�Wo21

o3Ŵ1;1

ohoY2
� iRe1U1;b

o2Ŵ1;0

oY2
þ iRe1

o2U1;b

oY2
Ŵ1;0

¼ r1Wo21
o2Ŵ1;0

oY2
ð67Þ

o4Ŵ2;1

oY4
�Wo22
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o2Ŵ2;0

oY2
þ iRe2
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oY2
Ŵ2;0

¼ r1Wo22
o2Ŵ2;0

oY2
ð68Þ

with the following boundary conditions:

No slip and no penetration:

oŴ1;1

oY
0; hð Þ ¼ 0; Ŵ1;1 0; hð Þ ¼ 0;

oŴ2;1

oY
H2; hð Þ

¼ 0; Ŵ2;1 H2; hð Þ ¼ 0 ð69Þ

Shear stress balance:

o2Ŵ1;1 1; hð Þ
oY2

þ Ĥ1 hð Þ o
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ð70Þ
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Normal stress balance:

o3Ŵ1;1 1; hð Þ
oY3

�Wo21
o2Ŵ1;1 1; hð Þ

ohoY
þ r1

oŴ1;0 1; hð Þ
oY

 !

� iRe1 U1;b 1; hð Þ oŴ1;0 1; hð Þ
oY

� Ŵ1;0 1; hð Þ oU1;b 1; hð Þ
oY

 !

¼ i
a2

Ca
� 3A1

H1

� lR
3A2

H2 � H1ð Þ

� �

lR
o3Ŵ2;1 1; hð Þ

oY3
�Wo22

o2Ŵ2;1 1; hð Þ
ohoY

þ r1
oŴ2;0 1; hð Þ

oY

 !(

� iRe2 U2;b 1; hð Þ oŴ2;0 1; hð Þ
oY

� Ŵ2;0 H1; hð Þ oU2;b 1; hð Þ
oY

 !)

ð71Þ

Continuity of normal and tangential velocity:

Ŵ1;1 1; hð Þ ¼ Ŵ2;1 1; hð Þ ð72Þ

Kinematic conditions:

Wo21
Re1

oĤ1 hð Þ
oh

þ r1
Wo21
Re1

þ iU1;b 1; hð Þ ¼ �iŴ1;0 1; hð Þ ð73Þ

The kinematic condition in the first and second set of

equations entails r0 ¼ 0 and r1 ¼ 0, respectively. Without

loss of generality, Ĥ0 hð Þ ¼ 1 (Kamachi and Honji 1982).

The periodic function Ŵi;0 can be found by representing it

as Im Gi;0 Yð Þeih
� �

.

Kinematic condition corresponding to a2 order with

r0 ¼ 0 and Ĥ0 ¼ 1:

Wo21
oĤ2 hð Þ
oh

þ r2Wo21 þ iRe1 Ĥ1U1;b 1; hð Þ þ Ŵ1;1 1; hð Þ
� �

¼ 0

ð74Þ

Since Ĥ2 hð Þmust be periodic in time, r2 can be derived using

only the steady part of Ŵ1;1. A set of time-independent equa-

tions is hence obtained from the second set (equations corre-

sponding to a1). Since the two sets of equations are

complicated owing to the number of parameters involved, they

are solved by substituting the numerical values of the param-

eters withMathematica’s differential equation solver package.

Considering the steady part of the above equation,

expression for growth rate:

r2 ¼ � iRe1

Wo21
�H11

�F1 1ð Þ
2i

þ H12

F1 1ð Þ
2i

þ Ŵ1;1s 1ð Þ
� �

ð75Þ

Ŵ1;1s is the steady part of Ŵ1;1. H11 and H12 are defined

as follows:

H11 ¼
iRe1

2Wo21
F1 H1ð Þ þ G1;0 H1ð Þ
� �

;H12

¼ iRe1

2Wo21
F1 H1ð Þ þ �G1;0 H1ð Þ
� �� �

G1,0 (Y)is defined for Ŵi;0 Y ; hð Þ as follows:

Ŵ1;0 Y ; hð Þ ¼ Im G1;0 Yð Þeih
� �

And F1 Yð Þ is same as defined for the base state:

U1;b Y; hð Þ ¼ Im F1 Yð Þeih
� �

and �F1 Yð Þ and �G1;0 Yð Þ are the complex conjugates of

F1 Yð Þ and G1;0 Yð Þ, respectively.

Appendix 3

Sr. no. �QI
�fI Wo lR cR rmax

1 -1 -1 0.1 0.1 0.01 0

2 -1 -0.5 0.5 0.5 0.1 0

3 -1 0 1 1 1 3.77E-08

4 -1 0.5 2 2 10 0

5 -1 1 5 10 25 0

6 -0.5 -1 0.5 1 10 0

7 -0.5 -0.5 1 2 25 2.79E-07

8 -0.5 0 2 10 0.01 1.04E-07

9 -0.5 0.5 5 0.1 0.1 1.76E-07

10 -0.5 1 0.1 0.5 1 0.0001329

11 0 -1 1 10 0.1 4.14E-07

12 0 -0.5 2 0.1 1 9.99E-09

13 0 0 5 0.5 10 1.23E-09

14 0 0.5 0.1 1 25 0.0001339

15 0 1 0.5 2 0.01 0

16 0.5 -1 2 0.5 25 7.25E-09

17 0.5 -0.5 5 1 0.01 1.50E-09

18 0.5 0 0.1 2 0.1 6.14E-06

19 0.5 0.5 0.5 10 1 0

20 0.5 1 1 0.1 10 0

21 1 -1 5 2 1 0

22 1 -0.5 0.1 10 10 0

23 1 0 0.5 0.1 25 0

24 1 0.5 1 0.5 0.01 0

25 1 1 2 1 0.1 9.38E-09
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