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twisting to perpendicular folding, or it may remain parallel. 
The direction of folding onset is determined by the veloc-
ity profile and the elliptical shape of the thread cross sec-
tion in the channel that feeds the diverging part of the cell. 
Due to the high viscosity contrast and very low Reynolds 
numbers, direct numerical simulations of this two-phase 
flow are very challenging and to our knowledge these are 
the first three-dimensional direct parallel numerical simula-
tions of viscous threads in microchannels. Our simulations 
provide good qualitative comparison of the early time onset 
of the folding instability, however, since the computational 
time for these simulations is quite long, especially for such 
viscous threads, long-time comparisons with experiments 
for quantities such as folding amplitude and frequency are 
limited.

Keywords Three dimensional · Viscous folding · 
Diverging microchannel

1 Introduction

  The folding of viscous threads in diverging microchannels 
has recently attracted much attention due to the need to 
mix two fluids with very different viscosities. The dynam-
ics of viscous multiphase flows at small scales is important 
in industrial technology (oil recovery, biodiesel production, 
etc.). Microfluidic devices are well suited for studying pre-
cisely controlled flow geometries and finely manipulating 
the fluid and can be used to produce individual bubbles, 
droplets, and complex soft materials (Utada et al. 2005; 
Cubaud et al. 2005; Meleson et al. 2004). The effective 
mixing is of great importance in these various microfluidic 
applications. But microfluidic flows are usually laminar, 
so liquid streams are parallel and different fluids can only 
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folding in diverging microchannels reported by Cubaud 
and Mason (Phys Rev Lett 96(11):114,501, 2006a) are per-
formed using the parallel code BLUE for multiphase flows 
(Shin et al. in A solver for massively parallel direct numeri-
cal simulation of three-dimensional multiphase flows. 
arXiv:1410.8568). The more viscous liquid L1 is injected 
into the channel from the center inlet, and the less viscous 
liquid L2 from two side inlets. Liquid L1 takes the form of 
a thin filament due to hydrodynamic focusing in the long 
channel that leads to the diverging region. The thread then 
becomes unstable to a folding instability, due to the longitu-
dinal compressive stress applied to it by the diverging flow 
of liquid L2. Given the long computation time, we were 
limited to a parameter study comprising five simulations in 
which the flow rate ratio, the viscosity ratio, the Reynolds 
number, and the shape of the channel were varied relative 
to a reference model. In our simulations, the cross sec-
tion of the thread produced by focusing is elliptical rather 
than circular. The initial folding axis can be either paral-
lel or perpendicular to the narrow dimension of the cham-
ber. In the former case, the folding slowly transforms via 
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mix by diffusion. The time scale associated with diffusion, 
td = h2/D, where h is the characteristic length scale and D 
is the diffusion coefficient between the liquids, is typically 
much larger than the time scale associated with convec-
tion, tc = h/U, where U is the characteristic flow velocity. 
Therefore, diffusion alone is an extremely inefficient mix-
ing method.

There are different innovative strategies to enhance mix-
ing in microfluidics, which can be classified as either active 
or passive methods. In active methods, an external forcing 
is imposed by, e.g., rotary pumps (Chou et al. 2001), forced 
oscillatory transverse flows (Bottausci et al. 2004), or elec-
tric or magnetic fields (Paik et al. 2003a, b; Pollack et al. 
2002; Kang et al. 2007a, b; Rida and Gijs 2004). Passive 
methods rely on a particular design of the microchannel, 
including patterned surface relief (Chen et al. 2009; Bringer 
et al. 2004; Stroock et al. 2002a, b). However, industrial 
and biological fluids usually exhibit widely different vis-
cosities and the relative motions between the fluids are 
complex. In this article, we study one promising method, 
wherein periodic folding of viscous threads injected into 
microchannels enhances mixing by greatly increasing the 
specific surface area of the fluid/fluid interface.

The buckling (folding or coiling) of slender viscous 
threads is familiar to anyone who has ever poured honey or 
molten chocolate onto toast. Taylor (1969) investigated the 
viscous buckling problem and suggested that the instability 
requires an axial compressive stress, like the more familiar 
‘Euler’ buckling of a compressed elastic rod. Since then, 
viscous buckling has been studied by numerous authors 
using experimental, theoretical, and numerical approaches 
(Cruickshank and Munson 1982a, b, 1983; Cruickshank 
1988; Griffiths and Turner 1988; Tchavdarov et al. 1993; 
Mahadevan et al. 1998; Skorobogatiy and Mahadevan 
2000; Tome and Mckee 1999; Ribe 2004; Ribe et al. 2006; 
Maleki et al. 2004; Habibi et al. 2014; Brun et al. 2014). 
The primary result of this work is that buckling can occur 
in four distinct modes (viscous, gravitational, inertio-
gravitational, and inertial) depending on the force that bal-
ances the viscous resistance to bending as a function of fall 
height.

With the exception of Griffiths and Turner (1988), all 
the studies cited above consider ‘non-immersed’ fold-
ing/coiling that occurs when the influence of the external 
fluid (typically air in experiments) is negligible. Recently, 
Cubaud and Mason (2006a) have studied the immersed 
buckling that occurs when two fluids with different viscosi-
ties are injected into a diverging microchannel. The thread 
is produced by hydrodynamic focusing of a viscous fluid 
flow by a less viscous fluid injected from the sides. Silicone 
oils with different viscosities were used to obtain different 
viscosity ratios. On the basis of their experimental results, 
Cubaud and Mason (2006a) proposed that f ∼ γ̇, where f 

is the folding frequency and γ̇ = U1/(h/2) is the charac-
teristic shear rate. The thread of radius R1 can be assumed 
to flow at nearly constant velocity, U1 = Q1/(πR

2
1), like a 

solid plug, inside a sheath of the less viscous liquid, similar 
to the flow in a circular channel. In this case, U1 represents 
the maximum velocity of the surrounding liquid. Down-
stream, the thread and surrounding liquid enter the diverg-
ing channel creating a decelerating extensional flow. Exten-
sional viscous stresses cause the thread to bend and fold, 
rather than dilate, in order to minimize dissipation and con-
serve mass. As the thread folds, it reduces its velocity and 
mixes with the outer liquid. In addition to folding, many 
other potentially useful flow phenomena are obtained, 
including oscillatory folding, folding modified by strong 
diffusion, heterogeneous folding, and subfolding (Cubaud 
and Mason 2006b).

Chung et al. (2010) performed numerical and experi-
mental studies on viscous folding in diverging microchan-
nels similar to those of Cubaud and Mason (2006a). How-
ever, it is important to note that the numerical simulations 
of Chung et al. (2010) are two dimensional, unlike their 
or Cubaud’s experiments which are fully three dimen-
sional. Chung et al. (2010) obtained a regime diagram 
for the flow pattern observed (stable, folding, or chaotic) 
as a function of the flow rate ratio, the viscosity ratio, and 
the channel shape. In addition to the divergence angles 
α = π/2 and α = π, Chung et al. (2010) also performed 
simulations for a channel with walls of hyperbolic shape, to 
obtain a more uniform compressive stress along the chan-
nel’s centerline. The hyperbolic channel generated folding 
flows with smaller frequency and amplitude, as well as a 
delay of onset of the folding. There are two main differ-
ences between Chung’s simulations and Cubaud’s experi-
ments. First, Chung et al. (2010) found the existence of an 
upper bound of viscosity ratio for folding instability. Sec-
ondly, Chung et al. (2010) obtained a power-law relation 
f ∼ γ̇ 1.68, which is quite different from the Cubaud and 
Mason (2006a) law f ∼ γ̇.

For fluids with a large viscosity ratio, the thread gener-
ated by hydrodynamic focusing requires a long focusing 
channel to become thin. The existence of an upper bound 
of viscosity ratio for the folding instability could be owed 
to the thick thread, because the focusing channel is short 
in the study of Chung et al. (2010). Three-dimensional 
simulations promise to be helpful in understanding such 
details of the viscous folding phenomenon. To this end, we 
use the parallel code BLUE for multiphase flow based on 
the front tracking method (developed by Shin et al. 2014) 
to simulate three-dimensional viscous folding in diverg-
ing microchannels. The computational domain includes a 
focusing channel sufficiently long to allow the full forma-
tion of threads as in the experiments of Cubaud and Mason 
(2006a).
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2  Methods

2.1  Mathematical formulation

Here, we describe the basic solution procedure for the 
Navier–Stokes equations with a brief explanation of the 
interface method. The governing equations for an incom-
pressible two-phase flow can be expressed by a single field 
formulation as follows:

where ρ is the density, u is the velocity, P is the pressure, g 
is the gravitational acceleration, η is the viscosity, and F is 
the local surface tension force at the interface.

The fluid properties such density or viscosity are defined 
in the entire computational domain:

Where the subscripts 1 and 2 stand for the respective 
phases. The indicator function I(x, t), a numerical Heavi-
side function, is zero in one phase and unity in the other 
phase. Numerically, I is resolved with a sharp but smooth 
transition across 3 to 4 grid cells and is generated using 
a vector distance function computed directly from the 
tracked interface (Shin and Juric 2009a, b).

The surface tension F can be described by the hybrid 
formulation

where σ is the surface tension coefficient, κH is twice the 
mean interface curvature field calculated on the Eulerian 
grid using

Here, xf  is a parameterization of the interface Ŵ(t), and δ(t) 
is a Dirac distribution that is nonzero only when x = xf . nf  
is the unit normal vector to the interface and ds is the length 
of the interface element. κf  is again twice the mean inter-
face curvature, but obtained from the Lagrangian interface 

(1)∇ · u = 0,

(2)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇P + ρg+∇ · η(∇u+∇uT )+ F.

(3)ρ(x, t) = ρ1 + (ρ2 − ρ1)I(x, t),

(4)η(x, t) = η1 + (η2 − η1)I(x, t).

(5)F = σκH∇I ,

(6)κH =
FL · G

σG · G
,

(7)FL =

∫

Ŵ(t)

σκf nf δf (x − xf )ds,

(8)G =

∫

Ŵ(t)

nf δf (x − xf )ds.

structure. The geometric information, unit normal nf  and 
length of the interface element ds in G, F are computed 
directly from the Lagrangian interface and then distrib-
uted onto an Eulerian grid using the discrete delta function. 
The details following Peskin’s (Peskin 1977) well-known 
immersed boundary approach and a description of our 
procedure for calculating the force F and constructing the 
function field G can be found in Shin and Juric (2007).

The Lagrangian elements of the interface are advected 
by integrating

with a second-order Runge–Kutta method where the inter-
face velocity V is interpolated from the Eulerian velocity.

2.2  Numerical method

The treatment of the free surface uses the Level Contour 
Reconstruction Method (LCRM), a hybrid Front Tracking/
Level Set technique. The LCRM retains the usual features 
of classic Front Tracking: to represent the interface with a 
triangular surface element mesh, to calculate the surface 
tension and advect it. A major advantage of the LCRM, 
compared with standard Front Tracking, is that all the 
interfacial elements are implicitly instead of logically con-
nected. The LCRM periodically reconstructs the interface 
elements using a distance function field, such as the one in 
the Level Set method, thus allowing an automatic treatment 
of interface element restructuring and topology changes 
without the need for logical connectivity between interface 
elements.

The Navier–Stokes solver computes the primary vari-
ables of velocity u and pressure P on a fixed and uniform 
Eulerian mesh by means of Chorins projection method 
(Chorin 1968) with implicit solution of velocity. For the 
spatial discretization, we use the well-known staggered 
mesh, MAC method (Harlow et al. 1965). The pressure and 
the distance function are located at cell centers, while the 
components of velocity are located at cell faces. All spatial 
derivatives are approximated by standard second-order cen-
tered differences.

The code structure consists essentially of two main 
modules: (1) a module for solution of the incompressible 
Navier–Stokes equations and (2) a module for the interface 
solution including tracking the phase front, initialization 
and reconstruction of the interface when necessary. The 
parallelization of the code is based on algebraic domain 
decomposition, where the velocity field is solved by a par-
allel generalized minimum residual (GMRES) method for 
the implicit viscous terms and the pressure by a parallel 
multigrid method motivated by the algorithm of Kwak and 

(9)
dxf

dt
= V
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Lee (2003). Communication across process threads is han-
dled by message passing interface (MPI) procedures.

Further detailed informations can be found in Shin et al. 
(2014).

2.3  Problem definition

Figure 1 shows the computational domain, whose geom-
etry is similar to that used by Cubaud and Mason (Cubaud 
and Mason 2006a). The computational domain is com-
posed of two subdomains: the flow-focusing part and the 
flow-diverging part. The more viscous liquid L1 with vis-
cosity η1 is injected into the channel from the center inlet 
at a volumetric rate Q1, and the less viscous liquid L2 with 
viscosity η2 from two side inlets at a total volumetric rate 
Q2. The interfacial tension between two liquids is γ. In our 
simulations, the width of the inlets and the microchannel is 
w = 0.25 mm rather than 0.1 mm in Cubaud’s experiments 
(Cubaud and Mason 2006a). The dimensions of the simu-
lation domain are 8w× w× 20w (i.e., 2× 0.25× 5mm ). 
Moreover, the length of the long focusing channel is 
Lf = 10w = 2.5mm to obtain well-developed threads 
like Cubaud’s another work (Cubaud et al. 2011). We use 
a Neumann boundary condition on the outlet, where the 
velocity derivatives are set to 0.

Some important dimensionless numbers are defined as 
follows:

(10)χ =
η1

η2
,

(11)φ =
Q1

Q2

,

(12)Re1 =
ρ1LV1

η1
,

(13)Re2 =
ρ2LV2

η2
,

Here χ is the viscosity ratio of two liquid, φ is the flow rate 
ratio. Re1 and Re2 are the Reynolds numbers of liquid L1 
and L2, respectively, where the characteristic length scale 
L = 0.5w and the characteristic velocities V1 and V2 are 
the average velocities and can be calculated from the vol-
ume flow flux and geometry parameters V1 = Q1/w

2 and 
V2 = 0.5Q2/w

2. The capillary numbers Ca1 and Ca2 are 
calculated in the long focusing channel, and the character-
istic velocity is the average velocity in this long channel 
as V̄ = (Q1 + Q2)/w

2. Furthermore, we designed differ-
ent channel geometries with two different diverging angles 
α = π and α = π/2 for the main chamber.

A reference simulation (case 1) is chosen, and its 
detailed parameters and dimensionless numbers are shown 
in Table 1. In our parameter study, five simulations are 
performed. The dimensionless quantities for these cases 
are given in Table 2. In all five simulations, the capillary 
number Ca1 is kept constant at 330.64, and the surface ten-
sion force is small compared to the viscous force for the 
liquid L1. All the simulations are implemented using 64 
(4× 2× 8) computational cores (subdomains) in paral-
lel, and for each subdomain we use a 64× 32× 64 mesh 
resolution. So the global mesh resolution for the domain is 
256× 64× 512, the grid size is w/32× w/64× 5w/128 . 
Thus, the ratio between the maximum grid size and the 
channel width is 5/128 ≈ 0.04, and there are adequate grids 
in the microchannels. We have also done these simulations 

(14)Ca1 =
η1V̄

γ
,

(15)Ca2 =
η2V̄

γ
.

Liquid L1
Q1

Q2/2

Q2/2

Liquid L2

w

Lf α/2

z

y
x

z/w= 16 12 10 8.8

Fig. 1  The calculation domain of the microchannel. The width of 
the inlets and the microchannel is w and the length of the focusing 
microchannel is Lf . Four different position at z/w = 8.8, z/w = 10, 
z/w = 12 and z/w = 16 are indicated by the dashed lines

Table 1  Dimensional and nondimensional parameters for the simula-
tion case 1 with χ = 2174, φ = 1/12 and α = π/2

Variables Units Values

ρ kg/mm3 0.8× 10−6

η1 kg/mm/s 4864.28× 10−6

η2 kg/mm/s 2.24× 10−6

Q1 mm3/s 0.83333

Q2 mm3/s 10

γ kg/s2 2.55× 10−3

Re1 2.74× 10−4

Re2 3.57

Ca1 330.64

Ca2 0.15

φ 1/12

χ 2174

α π/2
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under lower mesh resolution (half as much). By comparing 
the results of high resolution and low resolution, we think 
the mesh resolution 256× 64× 512 here is enough.

3  Numerical results

3.1  Thread formation

In our simulations, the threads are produced by hydro-
dynamic focusing. The liquid is injected from a central 
channel, and flows that ensheath the liquid are introduced 
from side channels. Downstream from the junction, the 
fluids flow side by side, and the width and location of the 
stream can be controlled through the injection flow rates. 
The hydrodynamic focusing technique provides an effec-
tive means of controlling the passage of chemical reagent 
or bio-samples through microfluidic channels and has given 
rise to many studies aimed at understanding its physical 
mechanisms. Various flow-geometry relationships have 
been studied to create different effects, including the influ-
ence of the channel aspect ratio (Lee et al. 2006), the injec-
tion geometry for detaching the central stream from the 
walls (Simonnet and Groisman 2005; Chang et al. 2007), 
the fluid driving mechanisms (Stiles et al. 2005) and the 
effect of small and moderate viscosity contrasts between 
the fluids (Wu and Nguyen 2005).

The more viscous liquid L1 passes the junction and 
begins to detach from the top and bottom walls. The irregu-
lar shapes on the thread near the inlet are due to graphi-
cal artefacts. The contact line has a ‘V’-like shape which is 
strongly stretched at the bottom. After the detachment from 
the walls, the liquid L1 becomes thinner to form a thread. 
To analyze the focusing process more clearly, four cross 
sections across the depth at different positions z/w = 8.8, 
z/w = 10, z/w = 12 and z/w = 16 (case 2) are shown in 
Fig. 2.The liquid L1 flows at an almost uniform velocity 
(plug flow) at the beginning of hydrodynamic focusing and 
is accelerated by the side flow. The thread becomes thinner 
(from Fig. 2a–c) and then is nearly stable (from Fig. 2c, d). 
Moreover, it is noted that the cross section of the thread is 
an ellipse rather than a circle.

To be clear, the minor axis of the thread ε1 and the 
major axis of the thread ε2 along the flow direction up to 
the diverging point are plotted in Fig. 3. The final devel-
oped state of the hydrodynamic focusing (the stretching) 
should have the maximum velocity at the centerline. Due 
to the large viscosity ratio here, this focusing process needs 
a very long channel to be complete. It is shown in Fig. 3 
that the stretching or thinning of the thread is dramatic at 
the beginning of the focusing process, then become smaller 
and smaller. Finally, the stretching will vanish to the final 
state and the shape of the thread will become stable if the 
focus microchannel is much longer. Though the stretching 

Table 2  Dimensional and nondimensional parameters for the five 
simulations

Cases Re1 φ χ α

1 (reference) 2.74× 10−4 1/12 2174 π/2

2 1.64× 10−3 1/12 2174 π/2

3 2.74× 10−4 1/12 1000 π/2

4 2.74× 10−4 1/5 2174 π/2

5 2.74× 10−4 1/12 2174 π

Fig. 2  The dimensionless velocity (V/V1) contour of cross 
sections across the depth at different positions a z/w = 16, 
b z/w = 12, c z/w = 10 and d z/w = 8.8 for case 2 
(Re1 = 1.64× 10−3,φ = 1/12,χ = 2174,α = π/2), the black line 
is the thread interface

10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ε1 ε2w

z/w

ε/
w

ε2 (case2)
ε1 (case2)
ε2 (case3)
ε1 (case3)

Fig. 3  The minor axis ε1 and major axis ε2 of 
the thread along the flow direction for case 2 
(Re1 = 1.64× 10−3,φ = 1/12,χ = 2174,α = π/2) and case 3 
(Re1 = 2.74× 10−4,φ = 1/12,χ = 1000,α = π/2)
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still exists in our simulations (in Fig. 2d), the thinning of 
the thread has been small enough and the shape of the 
thread varies little downstream in Fig. 3. Thus, a well-
developed thread is obtained in our simulations and the 
width of this thread can be assumed as the one of the thread 
at final state. From Fig. 3, the stable minor axis and major 
axis of the thread produced by focusing are ε1/w = 0.226 
and ε2/w = 0.412 for case 2. Besides, it suggests that liq-
uid L1 detaches completely from the walls near the position 
z/w = 16.8. The minor axis and major axis of the thread as 
well as the ratios ε1/w, ε2/w and ε1/ε2 for all five cases are 
listed in Table 3.

According to the velocity profile for the annular 
flow in a circular tube of diameter R directly calculated 
from the Stokes equations (Joseph and Renardy 1993), 
a simple scaling for the thread can be found with small 
threads εc/w ≪ 1 and large viscosity ratios χ−1 ≪ 1: 
εc/R ∼ (φ/2)0.5. Although this analysis is only valid for 
a circular tube, Cubaud (Cubaud and Mason 2009) sug-
gests that the relationship between εc/w and φ is essen-
tially the same for square tubes when χ−1 ≪ 1 and scales 
εc/w ∼ (φ/2)0.5 as for small threads. For the case of a 

square micro channel of width w, εc/w for comparing cir-
cular diameter and square cross section instead of εc/R 
is used. It is noted that the thread is assumed circular, so 
εc is used as the diameter of the thread. Cubauds experi-
ments (Cubaud and Mason 2006a) suggest that the thread 
minor axis (diameter) ε1/w was independent of χ and fol-
lows ε1/w ∼ φ0.6. In Cubaud’s experiments, they took 
photos from above with a high-speed camera, so that only 
the minor axis (diameter) ε1 of the thread could be meas-
ured (Thus, it is not clear whether the thread cross sec-
tion was circular or not). In Fig. 4, the estimating lines 
εc/w ∼ (φ/2)0.5, ε1/w ∼ φ0.6 and values ε1/w, ε2/w from 
our simulations are presented. When φ is small, the two 
power-law predictions are close. From Fig. 4a, the slope 
of ε1/w from our simulation results agrees well with both 
power-law relationships εc/w ∼ (φ/2)0.5 and ε1/w ∼ φ0.6, 
the minor axis (the thread width from the top view) is only 
dependent on the flow ratio φ. However, for the major axis 
ε2 of the thread in Fig. 4b, the situation seems more com-
plicated in that ε2/w depends on not only the flow rate ratio 
φ but also on other parameters such as the viscosity ratio 
χ. For the same φ, the lower viscosity ratio χ decreases 
the major axis and the thread cross section appears more 
circular.

As explained above, the cross section of threads become 
almost stable at z/w = 10 (case 2) and z/w = 12 (case 3) 
in Fig. 3. The long focusing microchannel is necessary for 
fluids with a large viscosity ratio to produce a thread thin 
enough. Chung et al. (2010) found the thread width ε1/w 
also increased with increasing viscosity ratio χ and predicts 
the existence of the upper bound of χ for viscous folding. 
This is due to the short focusing microchannel, only 2w in 
their study. Consequently, the hydrodynamic focusing pro-
cedure is not completely finished and the thread is too thick 

Table 3  The minor and major axes ε1 and ε2, their ratios ε1/ε2, and 
ratios with the inlet width ε1/w and ε2/w of the stable thread pro-
duced by focusing for all five cases

Cases ε1 (mm) ε2 (mm) ε1/w ε2/w ε1/ε2

1 (base case) 0.0573 0.0836 0.2292 0.3344 0.69

2 0.0565 0.103 0.226 0.412 0.55

3 0.0578 0.057 0.2312 0.228 1.01

4 0.088 0.111 0.352 0.444 0.793

5 0.06 0.088 0.24 0.352 0.73

10−2 10−1 100
10−1

100

case 4 (L φ )

φ

ε /
w

εc/w∼ (φ /2)0.5

ε1/w∼φ 0.6

ε1/w

(a)

10−2 10−1 100
10−1

100

case 1

case 2 (L Re1)

case 3 (S χ )

case 5 (Lα )

case 4 (L φ )

φ

ε/
w

εc/w∼ (φ /2)0.5

ε1/w∼φ 0.6

ε2/w

(b)

Fig. 4  The ratio ε/w versus flow rate ratio φ for a thread in plug flow in a square microchannel. The solid and dashed lines are the power-law 
predictions, and the circle and triangle marks are ε1/w and ε2/w, respectively, from our simulation results
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to undergo viscous folding or buckling instability in the 
diverging region.

3.2  Viscous folding

The thread produced by hydrodynamic focusing continues to 
flow in the diverging region, and a folding instability appears 
due to the compressive stress. For our five simulation cases, dif-
ferent flow patterns have been observed. In the reference case 
1 with Re1 = 2.74× 10−4,φ = 1/12,χ = 2174,α = π/2 
as shown in Fig. 5, the thread begins to fold about an axis in 
the y-direction in Fig. 5b, and then the folding plane rotates in 
Fig. 5c. In Fig. 5d, the new folds appear mainly in the x-direc-
tion. For case 5 in which only the diverging angle is changed 
from π/2 to π, the flow pattern is similar to the reference case 
1.

For simulation case 2 
(Re1 = 1.64× 10−3,φ = 1/12,χ = 2174,α = π/2), as 
shown in Fig. 6a, the thread begins to fold in the x-direc-
tion. The folding frequency and amplitude then vary 
slightly after the thread exits the computation domain in 
Fig. 6b, and finally, the folding frequency and amplitude 
become stable in Fig. 6d, e. It is noted that the folding only 
happens in the x-direction in simulation case 2.

In case 3 with Re1 = 2.74× 10−4,φ = 1/12,χ = 1000,

α = π/2, the onset of folding appears in the y-direction 
in Fig. 7b. For this case, there is not only folding instabil-
ity but also strong shrinking when the thread is subject to 

the compressive stress. The thread is squeezed, so that the 
thread becomes fatter and the folding wavelength decreases 
as the thread flows downstream (from Fig. 7b, c). Conse-
quently, the amplitude of newly appearing folds decreases 
to zero slowly and its wavelength becomes larger. Finally, 
the folding phenomenon disappears and the thread is com-
pletely straight in Fig. 7d.

The folding is induced by the viscous compressional 
stress. The velocity of the flow in the long focusing chan-
nel and near the diverging point is nearly in the z-direction, 
i.e., u = (0, 0, uz). Thus, the nonzero components in the vis-
cous stress are

where ηi is the viscosity of liquid L1 or L2. On the cross 
section of the thread, the viscous stress is longitudinal 
stress, σxz = σyz = 0 due to the plug flow. In Chung’s study 
(Chung et al. 2010), the longitudinal stress is defined as 
2ηi∂uy/∂y along the centerline. In their Fig. 4d (Chung 
et al. 2010), the longitudinal stress is highly compres-
sional. Here, our simulations are three dimensional, the 

(16)σxz =
1

2
ηi
∂uz

∂x
,

(17)σyz =
1

2
ηi
∂uz

∂y
,

(18)σzz = −p+ ηi
∂uz

∂z
,

Fig. 5  The flow patterns and contours of the dimensionless velocity derivative (∂uz/∂z)/(V1/w) at different times for case 1 with 
Re1 = 2.74× 10−4,φ = 1/12,χ = 2174,α = π/2. a t/(w/V1) = 12.36, b t/(w/V1) = 13.75, c t/(w/V1) = 14.79, d t/(w/V1) = 15.83
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longitudinal stress is proportional to the derivatives ∂uz/∂z.  
The derivatives ∂uz/∂z of the velocity uz with respect to z 
along the thread are shown in Fig. 8, and it is clear the lon-
gitudinal stress is compressional in the diverging region, 
especially near the diverging point.

On the thread interface, the viscous force per unit area 
by liquid L2 can be obtained by σ · n, where n is the unit 
normal vector to the interface. Since the major axis and 
minor axis become stable near the diverging point, the unit 
normal vector is in the x − y plane n = (nx, ny, 0). Thus, the 
viscous force per unit area on the interface is

The viscous force on the interface is proportional to the 
normal derivative ∂uz/∂n. Then, the bending moment 
on the cross section of the thread induced by the viscous 

(19)fin = σ · n = (0, 0, σxznx + σyzny) =
1

2
η2

(

0, 0,
∂uz

∂n

)

.

force on the interface can be calculated, and it has two 
components

Where the integrals are done along the bounding line of 
cross section C, xc, yc are the coordinates of the center on the 
cross section. Here, the bending moment is presented by the 
integral part, i.e., Mx = 2ωx/η2 and My = 2ωy/η2. For case 
1 with Re1 = 2.74× 10−4,φ = 1/12,χ = 2174,α = π/2, 
the bending moments of the thread Mx and My on the cross 
section at z/w = 6.8 are plotted from the onset of the fold-
ing instability in Fig. 8a. At first the moment Mx domi-
nates, the cross section rotates about the x-axis resulting in 

(20)ωx =
1

2
η2

∫

C

∂uz

∂n
(y(s)− yc)ds,

(21)ωy =
1

2
η2

∫

C

∂uz

∂n
(x(s)− xc)ds.

Fig. 6  The flow patterns and contours of the veloc-
ity derivative (∂uz/∂z)/(V1/w) at different times for  
case 2 with Re1 = 1.64× 10−4,φ = 1/12,χ = 2174,α = π/2.  

a t/(w/V1) = 4.1, b t/(w/V1) = 4.58, c t/(w/V1) = 5.49, d 
t/(w/V1) = 5.9, e t/(w/V1) = 7.36, f t/(w/V1) = 10.14
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folding in the y-direction. Then, the moment My increases, 
the folding slowly transforms via twisting to folding in the 
x-direction. When the ratio ε1/ε2 of the thread is much less 
than one the moment Mx is always very small compared to 
My, so that the folding only appears in the x-direction. This 
is just what we observe in simulation case 2 (similar bend-
ing moments over time are presented in Fig. 8b).

Due to the high viscosity contrast and very low Reyn-
olds numbers involved, numerical simulations of this two-
phase flow are very challenging and to our knowledge these 
are the first three-dimensional parallel numerical simula-
tions of viscous threads in microchannels. However, since 

the computational time for these simulations is quite long, 
especially for such viscous threads, the simulations present 
only the early time onset of the buckling instability of the 
threads; thus, long-time comparisons with experiments 
for quantities such as folding amplitude and frequency are 
limited.

4  Conclusions

The parallel code BLUE for multiphase flows was used to 
simulate three-dimensional viscous folding in diverging 

Fig. 7  The flow patterns and contours of the velocity derivative (∂uz/∂z)/(V1/w) at different times for case 3 with 
Re1 = 2.74× 10−4,φ = 1/12,χ = 1000,α = π/2. a t/(w/V1) = 10.0, b t/(w/V1) = 12.57, c t/(w/V1) = 15.21, d t/(w/V1) = 16.6

31.2176.8
−0.2

−0.1

0

0.1

0.2

t/(V1/w)

M
/(
w
V 1
)

Mx

My

38.891.3

−0.05

0

0.05

t/(V1/w)

M
/(
w
V 1
)

Mx

My

(a) (b)

Fig. 8  The dimensionless bending moment at z/w = 6.8 for a case 1 with Re1 = 2.74× 10−4,φ = 1/12,χ = 2174,α = π/2 and b case 2 with 
Re1 = 1.64× 10−3,φ = 1/12,χ = 2174,α = π/2 when the folding instability occurs



 Microfluid Nanofluid (2016) 20:140

1 3

140 Page 10 of 11

microchannels. Liquid L1 takes the form of a thin filament 
due to hydrodynamic focusing in the long channel that 
leads to the diverging region. The thread becomes unstable 
to a folding instability after its entry into the main chamber, 
due to the longitudinal compressive stress applied to it by 
the diverging flow of liquid L2. Given the long computation 
time for such a low Reynolds number flow, we were limited 
to a parameter study comprising five simulations in which 
the flow rate ratio, the viscosity ratio, the Reynolds number, 
and the shape of the channel were varied relative to a refer-
ence model.

During the hydrodynamic focusing, the shape of the 
thread vary dramatically at first and then evolve slowly and 
finally achieve a nearly stable state, which implies that a 
well-developed thread is obtained in the sufficiently long 
focusing channel. Moreover, the cross section of the thread 
is elliptical rather than circular. There is a power-law rela-
tion between the dimensionless minor axis ε1/w and the 
flow ratio φ, and our results are in good agreement with 
experimental and theoretical predictions of other research-
ers. For the major axis ε2, the situation is more compli-
cated. The lower viscosity ratio χ decreases the major axis, 
and the thread cross section appears more circular. Addi-
tionally, the interfacial tension plays important role in the 
thread formation after the liquid L1 detaches from walls. 
Future study will be undertaken to understand the role of 
interfacial tension on the major axis of the thread produced 
by hydrodynamic focusing and the following viscous fold-
ing instability.

Unlike the previous two-dimensional simulations of 
Chung et al. (2010), our simulations are fully three dimen-
sional and thus do not constrain the axis along which the 
folding instability could occur. The initial folding axis can 
be either parallel or perpendicular to the narrow dimension 
of the chamber. In the former case, the folding slowly trans-
forms via twisting to perpendicular folding, or may remain 
parallel. The direction of folding onset is determined by the 
velocity profile and the ellipticity of the thread cross sec-
tion in the channel that feeds the diverging part of the cell.

Due to the high viscosity contrast and very low Reyn-
olds numbers involved, numerical simulations of this two-
phase flow are very challenging and to our knowledge these 
are the first three-dimensional parallel numerical simula-
tions of viscous threads in microchannels. However, since 
the computational time for these simulations is quite long, 
especially for such viscous threads, the simulations present 
only the early time onset of the buckling instability of the 
threads, thus long-time comparisons with experiments for 
quantities such as folding amplitude and frequency are lim-
ited. In the future, more long-time simulations with a larger 
range of viscosity ratio, Reynolds number, flow rate ratio 
and with different channel geometries will be implemented 
in order that exhaustive comparisons with experiments can 

help in improving the understanding of viscous folding in 
microchannels.
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