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effect on the stability behavior of CNTs, in which increas-
ing nonlocal parameter results in the decrease in stability 
region. Furthermore, it was shown that the stability behav-
ior of CNT is strongly affected by different boundary con-
ditions. Finally, the validity of the present analysis is con-
firmed by comparing the results with those obtained from 
the literature.
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1  Introduction

With review of studies presented in the past two decades 
about cylindrical type of nano-structures composed of 
carbon atoms called carbon nanotubes (CNTs) that were 
discovered by Iijima (1991), strange and effective applica-
tion of using CNTs can be seen in engineering and medi-
cine nano-/microstructures such as energy conversion 
devices and biosensors (Baughman et  al. 2002; Katz and 
Willner 2004), electronics (Arnold et al. 2006) and versa-
tile drug delivery systems (Foldvari and Bagonluri 2008). 
Because of the different excellent properties of CNTs such 
as mechanical, thermal, fluid-transport and high elasticity 
and flexibility geometry, CNTs can also be used as fluid-
conveying pipes in nanoscale.

Up to now, many studies have been carried out to inves-
tigate the mechanical properties of CNTs under buckling, 
bending and vibration. Firstly, by expanding molecular 
dynamics simulations of the fluid flow inside CNTs, the 
interaction between carbon nanotube and fluid is shown 
by Tuzun et  al. (1996). Then, using an elastic Euler–Ber-
noulli beam model developed by Païdoussis and Li (1993) 

Abstract  This paper deals with nonlocal divergence and 
flutter instability analysis of carbon nanotubes (CNTs) 
conveying fluid embedded in an elastic foundation under 
magnetic field. Nonlocal constitutive equations of Eringen 
and Euler–Bernoulli beam theory are used in the formula-
tions. Also, the foundation is described by the Winkler and 
Pasternak models. The governing equation of motion and 
boundary conditions are derived using extended Hamilton’s 
variational principle. The extended Galerkin’s approach 
is adopted to reduce the partial differential equation gov-
erning the dynamics of the CNTs to a system of coupled 
ordinary differential equations. In the present study, four 
different boundary conditions are considered, namely 
the pined–pined (P–P), clamped–pined (C–P), clamped–
clamped (C–C) and clamped–free (C–F). A detailed para-
metric study is conducted to elucidate the effects of the 
nonlocal effect, longitudinal magnetic field, elastic Winkler 
and Pasternak foundations and geometrically boundary 
conditions on the instability characteristic of CNTs. It was 
observed that the only instability type for the investigated 
CNT with clamped–free boundary condition (cantilever) 
is flutter, while CNT conveying fluid with both ends sup-
ported loses its stability by divergence first and then by 
flutter with increase in fluid velocity. It was also found that 
the magnetic field and the Winkler and Pasternak founda-
tions increase the stiffness of the system. Therefore, flutter 
instability region is enlarged significantly due to the exist-
ence of springs, shear foundations and magnetic field. Also, 
results show that the nonlocal parameter has a prominent 
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and Païdoussis (1998) to analysis of dynamics and stability 
of flexible pipes including flowing fluid, Yoon et al. (2005) 
investigated the effect of internal moving fluid on structural 
instability and vibration of CNTs for two boundary condi-
tions (simply supported and clamped at both ends). They 
applied Galerkin method to demonstrate the dependence of 
vibration behavior of CNTs on the flow velocity and indi-
cated that buckling phenomenon occurs when the velocity 
of flow reaches the critical value and frequency of CNTs 
becomes zero. In another work, based on the classic elas-
ticity mechanics theory, Yoon et  al. (2006) studied free 
vibration and flow-induced flutter instability phenomenon 
of cantilevered CNTs conveying fluid. They demonstrated 
when CNTs are embedded in stiff elastic medium the influ-
ence of velocity of internal fluid on structural instability of 
cantilevered CNTs significantly decreases. Based on the 
classic continuum theory, differential quadrature method 
(DQM) was used to discretize the equation of motion of 
carbon nanotubes conveying fluid by Wang and Ni (2008). 
Static and dynamic study of liquids inside CNTs was per-
formed by Mattia and Gogotsi (2008). By taking into 
account the geometric nonlinearity and nonlinearity of van 
der Waals force, Chang (2013) developed a size-dependent 
model for thermomechanical vibration of double-walled 
carbon nanotubes. Based on the classical Euler–Bernoulli 
beam theory for modeling the nanotubes as a continuous 
structure, Khosravian and Rafii-Tabar (2007) put forwarded 
a model to viscous fluid flow in carbon nanotubes to inves-
tigate the fluid flow effects on the system stability. They 
showed that the nanotube-containing viscous flow is more 
stable than that with nonviscous flow. Also, the vibrational 
behavior of a viscous nano-flow-conveying carbon nano-
tube was investigated by Sadeghi-Goughari and Hosseini 
(2015). In their work, nonuniformity of the flow velocity 
distribution caused by the viscosity of fluid and the small-
size effects on the flow field was considered. Ansari et al. 
(2016a), in the context of the von Karman hypothesis and 
Timoshenko beam theory, examined the effect of surface 
stress and internal moving fluid on the nonlinear free vibra-
tion and instability of embedded nanoscale pipes.

It is well known that the assumption of classical Euler–
Bernoulli beam theory may be justified for macroscale 
beam structures. In other words, this assumption is less 
valid for nanoscale beam structures. In fact, ignoring the 
small-size effects in a nanoscale problem might generate 
erroneous results. In order to capture size effect relating to 
atoms and molecules that make up the materials of struc-
tures, higher-order continuum theories such as nonlocal 
elasticity theory were introduced by Eringen (1983), modi-
fied couple stress theory presented by Yang et  al. (2002) 
and modified strain gradient theory developed by Lam 
et al. (2003). The significant effect of the Eringen’s nonlo-
cal parameter on the elastic behavior of nano-structures has 

been demonstrably confirmed in the work of Ansari et  al. 
(2015a); Ansari and Gholami (2016); Ansari et al. (2016c). 
In another work by Ansari et al. (2016b), nonlinear vibra-
tion response of fractional viscoelastic nano-beams has 
been investigated based on the nonlocal elasticity theory. 
Also, Ansari et al. (2015d) analyzed the dynamic stability 
of multi-walled carbon nanotubes resting on elastic foun-
dation and subjected to the thermal environment effects. 
The effects of nano-size of both fluid flow and nanotube 
on vibration of a CNT conveying nano-flow embedded in 
biological soft tissue were considered by Hosseini et  al. 
(2014). Wang (2010) showed that the natural frequencies 
and critical speeds of simply supported nanotube were 
significantly dependent on the nonlocal elasticity and the 
surface effects. Rafiei et  al. (2012) investigated vibration 
analysis of fluid-conveying nonuniform carbon nanotubes 
resting on a viscoelastic medium. Fluid-induced flutter 
instability of cantilevered multi-walled CNT conveying 
fluid base on the classical Timoshenko and Euler beam the-
ories was performed by Yun et al. (2012). They illustrated 
the effects of the radius ratio, transverse shear and van der 
Waals (vdW) forces on natural frequencies and flutter insta-
bility of the system. The influences of nonlocal effect, slip 
condition and structural damping coefficient on the dimen-
sionless eigenvalues and flutter boundaries of the cantilever 
CNT conveying fluid were investigated by Bahaadini and 
Hosseini (2016). In microscale pipes, Xia and Wang (2010) 
analyzed the vibration and instability of fluid-conveying 
microscale pipes based on the nonclassical Timoshenko 
beam theory. Also, Ansari et  al. (2014) studied nonlinear 
vibration response and instability behavior of fluid-con-
veying single-walled boron nitride nanotubes under ther-
mal environment employing the theory of modified strain 
gradient elasticity. The size-dependent stability analysis of 
cantilever micro-pipes containing following flow investi-
gated based on the modified strain gradient theory by Hos-
seini and Bahaadini (2016). In their work, the effects of the 
length scale parameter, outside diameter and aspect ratio 
on the natural frequencies and the flutter critical speeds 
were examined. Ansari et  al. (2015b) used modified cou-
ple stress theory in conjunction with the classical first-order 
shear deformation shell model to investigate the vibration 
and instability characteristics of functionally graded micro-
shells conveying fluid. The effect of material length scale 
parameter, nonuniform profile of the flow velocities and 
nonlinear electrostatical force on vibration and instability 
characteristics of the microbeam was also investigated by 
Dai et al. (2014).

Magnetically sensitive CNTs in external magnetic field 
have a wide applicability in the fields of NEMS, MEMS, 
spintronics and nano-composite (see, e.g., Murmu et  al. 
2012; Narendar et  al. 2012; Wang et  al. 2010). There-
fore, it is vital to find the effect of the magnetic field on 
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transverse vibration and stability of the magnetically sensi-
tive CNTs. According to nonlocal beam theory, Narendar 
et  al. (2012) studied the influence of longitudinal mag-
netic field on the ultrasonic wave dispersion properties of 
single-walled carbon nanotubes surrounded by the elastic 
Pasternak substrate. It was shown that with the increase in 
longitudinal magnetic field, the velocity of flexural wave in 
CNTs increases. Murmu et al. (2012) studied the effect of 
a longitudinal magnetic field on the transverse vibrations 
of double-walled CNTs and reported that with increasing 
magnetic field parameters, the natural frequency increases. 
Additionally, longitudinal magnetic field was found to be 
led to less nonlocal effects on double-walled nanotubes. 
Wang et  al. (2010) evaluated wave propagation manner 
of elastic matrix embedded fluid-conveying CNTs under 
longitudinal magnetic field. They also studied the wave 
propagation velocity in CNTs along with longitudinal mag-
netic field exerted on the CNTs in some frequency regions. 
Ghorbanpour Arani et  al. (2014) analyzed vibrations of 
double-bonded carbon nanotube conveying flow under 
longitudinal uniform magnetic field considering surface 
effect and visco-Pasternak foundation based on Euler–Ber-
noulli beam theory. They reported the effect of the longi-
tudinal uniform magnetic field, Knudsen number, surface 
effect, visco-Pasternak foundation on the real and imagi-
nary components of frequency and critical flow speed. By 
using Timoshenko and the third-order shear deformation 
beam theories, Ansari et al. (2015c, e) studied the nonlin-
ear forced vibration of magneto-electro-thermo-elastic 
nano-beams. Amiri et al. (2016) studied the vibration and 
instability of micro-tube conveying fluid according to the 
magneto-electro-elasticity beam model. The free vibration 
analysis of CNTs conveying fluid under magnetic field was 
also addressed by Hosseini and Sadeghi-Goughari (2016).

The study of the elastic foundation effect on vibration 
and stability of CNTs conveying fluid is one of the main 
topics arousing a lot of interest. Chellapilla and Simha 
(2007) studied the flow critical speed of pipe containing 
fluid on Pasternak foundation for three simple boundary 
conditions. In their work, the influence of Pasternak foun-
dation on the flow critical speed of pipe conveying fluid 
was shown. Pradhan and Murmu (2009) used both Winkler 
and Pasternak substrate models for vibration analysis of 
CNT. Additionally, they applied Eringen nonlocal elastic-
ity and Timoshenko beam theory for the modeling of the 
continuous CNT. They showed the influence of the nonlo-
cal parameters and Winkler and Pasternak modulus on the 
frequency of the system. Vibration and structural instability 
of fluid-conveying carbon nanotubes embedded in viscoe-
lastic Winkler foundation regardless of the effect of nonlo-
cal parameters are studied by Ghavanloo et al. (2010). They 
investigated damping and elastic properties of the founda-
tion and fluid speed on the resonant frequencies. Soltani 

et al. (2010) studied nonlocal Euler–Bernoulli beam theory 
to predict transverse vibrations and buckling instability of 
single-walled carbon nanotubes containing viscous flow 
surrounded by visco-elastic medium and supported on both 
ends. They showed that the vibrational frequency and criti-
cal flow speed were dependent on the surrounding medium 
properties and boundary conditions.

The vibrational behavior of a cantilever CNT contain-
ing following flow is very different from CNTs under other 
boundary conditions, because former is a nonconservative 
system and its stability is lost by flutter. However, in com-
parison with the nonlocal cantilever CNT, a significant num-
ber of investigations have been conducted on the macroscale 
cantilever pipe conveying fluid. Benjamin (1961) was the 
first who derived the equation of motion using the Lagran-
gian equations to analyze dynamic behavior of cantilever 
pipe conveying fluid. Flutter of cantilevered pipes contain-
ing fluid flow was analyzed theoretically and experimentally 
by Gregory and Paidoussis (1966). Païdoussis and Issid 
(1974) addressed the dynamics and instability of pipe con-
veying fluid for both of steady and pulsatile flows. Hosseini 
and Fazelzadeh (2011) analyzed the stability of functionally 
graded cantilever pipe carrying fluid under axial end force 
and thermal field. Yu et al. (2013) studied the stability of the 
periodic cantilever pipe carrying fluid. Firouz-Abadi et  al. 
(2013) analyzed the flutter instability of cantilevered pipe 
conveying fluid with an inclined terminal nozzle.

The foregoing literature survey shows that no case has 
been reported for the CNT conveying fluid based on the 
nonlocal elasticity theory and incorporating the effects of 
nonlocal parameter, longitudinal magnetic field and vari-
ous boundary conditions on flutter and divergence insta-
bility. Therefore, the present study deals with the flutter 
and divergence instability of CNTs containing fluid lying 
on elastic substrate medium subjected to a magnetic field. 
The Eringen’s nonlocal constitutive relations are used to 
develop the equation of motion and boundary conditions 
via extended Hamilton’s principle. Then, application of the 
extended Galerkin’s method is used to transform the result-
ing equations into a general eigenvalue problem. Finally, 
having solved the resulting nonlocal magneto-structural-
fluid eigenvalue system of equations, the effects of nonlo-
cal parameter, longitudinal magnetic field, elastic substrate 
medium and boundary conditions on the instability region 
are investigated.

2 � Mathematical modeling

Consider a CNT model conveying fluid which is shown in 
Fig.  1. It is proposed to use the nonlocal beam model to 
analyze the dynamic behavior of the CNT conveying fluid 
with velocity U. The CNT has geometric characteristic of 
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length L, outside diameter D, the nanotube cross-sectional 
area A, with bending rigid body of EI. Its mass per unit 
length of the CNT and mass per unit length of fluid are mc 
and mf, respectively. It is assumed that gravity effects and 
the externally imposed tension and pressure are disregarded 
in CNT.

According to Païdoussis (1998), Ryu et al. (2002), equa-
tions of motion and boundary conditions can be driven from 
extended Hamilton principle as shown in the following

In which TCNT, Tf and Ee denote kinetic energy of CNTs, 
kinetic energy of fluid and potential energies, respectively. 
Also, Wmf and Wb represent the work done by the longi-
tudinal magnetic field and elastic foundation, respectively. 
Moreover, (·)L denotes the values of the corresponding 
quantities (·) at x = L. In addition, in the above equation, 
wL �= 0 for a cantilevered CNT and wL = 0 for a fully sup-
ported CNT conveying fluid.

The first vibrational of kinetic energy of CNT and fluid 
is demonstrated in the following:

Also, the variation of strain energy is obtained by

where σxx and εxx represent nonlocal axial stress and strain 
in x direction, respectively. For a nanotube, nonlocal con-
stitutive relation of linear elasticity in the one-dimensional 

(1)

δ

∫

t2
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−

∫
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∫ L

0

∫

A

σxxδεxxdAdx

case for homogeneous and isotropic material is expressed 
as (Eringen 1983):

where e0 is a material constant, a is an internal characteris-
tic length and E is the Young’s modulus.

In addition, Lorentz magnetic force due to the presence 
of an externally applied longitudinal magnetic field can be 
obtained according to Maxwell equations. Murmu et  al. 
(2012) define the variation of work of longitude magnetic 
field in z direction as

where Hx and ηm = 4π × 10−7 are magnetic field strength 
and magnetic field permeability, respectively.

It is well known that the components of the variational 
work of Winkler and Pasternak foundations model are writ-
ten as:

where Kw is Winker’s substrate elasticity modulus and KG 
is Pasternak substrate shear modulus.

Substituting Eqs.  (2–4), (6) and (7) into Eq.  (1), per-
forming integration by parts and noticing that for every 
admissible variation (δw) the coefficient of this varia-
tion must be zero, one may find the governing equation of 
motion as

Here, M is nonlocal bending moment about z-axis and can 
be obtained by the same method in (Kazemi-Lari et  al. 
2012) as:

(5)σxx − (e0a)
2 ∂

2σxx

∂x2
= Eεxx

(6)δWmf =

L
∫
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δwdx
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KG
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dx
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Fig. 1   Geometry of fluid-
conveying CNT resting on 
elastic foundations subjected to 
an externally applied magnetic 
field
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The boundary conditions for nanotubes can be expressed as 
follows:

(a)	 fully supported CNT

(b)	 cantilevered CNT

For convenience, the following dimensionless quantities 
are defined:

By substituting Eq.  (9) into Eq.  (8) with regard to 
Eq. (12), the dimensionless equation of motion of the CNT 
is obtained as:

(9)

M =

∫

A
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∂2w

∂x2
+ (e0a)

2

[
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Consequently, the dimensionless boundary conditions 
are obtained as:

(a)	 fully supported CNT

(b)	 cantilevered CNT

It can be seen that when µ = 0, above equation is reduced 
to equation of motion for classic Euler–Bernoulli beam car-
rying fluid flow.

3 � Solution by extended Galerkin method

In this section, the extended Galerkin method is used to 
solve the governing equation. In this technique, we must 
choice weighting functions that are only essential to satisfy 
boundary conditions. The normalized transverse displace-
ment W is approximated as:

(14a)
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where qr(T) and n are the generalized coordinates and the 
number of modes, respectively. Also, ϕr(X) represents free 
vibration natural modes of bending, which are expressed as 
(Reddy 1986):

where σr represent r th dimensionless eigenvalue of the r th 
flexural mode ϕr(X) and C1,C2,C3,C4 are constant coeffi-
cients that obtained from the boundary conditions. By sub-
stituting the displacement field in the governing equation 
and using extended Galerkin method, the discretized form 
of the governing equation of motion for the CNT convey-
ing fluid can be obtained as:

where {q(T)} is the vector of generalized coordinates and 
the dot notation refers to derivative with respect to time. 
[M], [C] and [K] correspond to the mass, damping and stiff-
ness matrices of CNT conveying fluid, respectively, with 
the following elements:

The eigenfrequencies for this system are found by rewrit-
ing Eq.  (16) in first-order form and solving the associate 
eigenvalue problem numerically. The stability and instabil-
ity zones and type of instability can be examined based on 
the sign and magnitude of the real (�) and imaginary (Ω) 
parts of the eigenvalues (Bahaadini and Hosseini 2016).

4 � Numerical Results and Discussion

It is known that fluid-conveying cantilevers are noncon-
servative in nature, and no divergence can occur. Instead, 
they lose stability by flutter. However, for other boundary 
condition, CNT may experience both divergence and flut-
ter instability when its fluid speed exceeds certain critical 
values. In this section, a parametric study is carried out to 

(16)W(X, T) =

n
∑

r=1

qr(T)ϕr(X)

(17)

ϕr(X) = C1 sin σrX + C2 cos σrX + C3 sinh σrX + C4coshσrX

(18)[M]{q̈(T)} + [C]{q̇(T)} + [K]{q(T)} = 0

(19)

M(r, s) =

∫

1

0

[

ϕr(X)ϕs(X)− µ2ϕ′′r (X)ϕs(X)

]

dX

C(r, s) =

∫

1

0

2

√

βu

[

ϕ′r(X)ϕs(X)− µ2ϕ′′′r (X)ϕs(X)

]

dX

K(r, s) =

∫

1

0

ϕ′′r (X)ϕ
′′
r (X)dX + (u2 − ψ − kG)(1− µ2)

×

∫

1

0

[

ϕ′′r (X)ϕs(X)+ ϕ
(4)
r (X)ϕs(X)

]

dX + kw(1− µ2)

×

∫

1

0

[

ϕr(X)ϕs(X)+ ϕ′′r (X)ϕs(X)
]

dX

investigate the influence of various parameters on the vibra-
tion and instability behavior of a CNT conveying fluid with 
different boundary conditions. First of all, in Sect.  4.1, a 
model validation is performed. After that, Sect.  4.2 ana-
lyzes the effect of the nonlocal parameter and longitudinal 
magnetic field on the flutter instability of a cantilever (C–F) 
CNT conveying fluid. In Sect.  4.3, the effect of the elas-
tic foundation on the stability region of a cantilever CNT 
is examined. Finally, Sect.  4.4 is devoted to consider the 
effects of end-boundary conditions on the stability region. 
As it will be shown, the latter investigation allows to found 
different stability behaviors between clamped–free bound-
ary condition and other boundary conditions.

For numerical study, the outer radius and the aspect 
ratio of nanotube are assumed to be Ro = 3 nm and 
L
2Ro

= 50, respectively. The mass density of nanotube is 
ρc = 2300 kg/m3 with Young’s modulus E = 3.4 TPa 
(Murmu et al. 2012).

4.1 � Model Validation

In order to assess the validation of the proposed model, 
the numerical results are presented to compare with those 
available in the literature. Also, eight number of modes 
(n = 8) are taken to be used for analysis. The nonlocal 
effect, magnetic field and elastic Winkler and Pasternak 
foundations of the CNT are neglected for comparison 
with the results presented by Païdoussis and Li (1993) in 
Fig.  2. Also, the critical flow velocities of pipes convey-
ing fluid with different boundary conditions obtained by 
Galerkin method are listed in Table 1 and compared with 
the results given by Païdoussis (1998) and Ni et al. (2011). 

Fig. 2   Comparison of the flutter instability boundary with Païdoussis 
and Li (1993) for µ = ψ = kG = kw = 0
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In addition, the comparison of the frequencies without con-
sidering the magnetic field, the internal fluid and the elastic 
Winkler and Pasternak foundation effect of the cantilevered 
CNT is presented in Table 2 for different nonlocal param-
eters against results presented by Kazemi-Lari et al. (2012). 
It is clearly seen from Fig. 2, Tables 1 and 2 that the present 
model is actually in good agreement with previous models.

4.2 � Effect of the nonlocal parameter and longitudinal 
magnetic field

Preventing any vibration and instability of CNTs conveying 
fluid is an important requirement for the proper application 
of the nano-fluid systems and devices. Therefore, the study 
of vibration and stability of the CNTs containing fluid flow 
is of great importance.

Figure  3a, b, respectively, indicates real and imaginary 
components of eigenvalues as a function of flow velocity 
without considering Winkler and Pasternak foundations for 
different dimensionless magnetic fields with nonlocal param-
eter µ = 0.05. The real part of eigenvalues is connected with 
the damping, and the imaginary part of eigenvalues is related 
to frequency. It can be seen that by increasing dimensionless 
magnetic field, natural frequency for both modes increases. 
Also, the second natural frequency increases more when com-
pared to its first natural frequency. Results show that with 
increasing dimensionless magnetic field, the bifurcation point 
for the real parts of the first eigenvalue occurs at higher speeds. 
Therefore, with considering the dimensionless magnetic field, 
over-damping in CNT occurs in higher fluid speed. It means 
that the application of magnetic field makes the CNT stiffer.

As mentioned before, cantilevered CNT carrying fluid is 
a nonconservative system and loses its stability via flutter at 
u = ucr. Critical flutter speed, ucr, occurs when the real part 
of the eigenvalue changes its sign from negative to positive 
and the imaginary part of the eigenvalue is not zero. For 
modeling the nonlocality effect, different values of nonlo-
cal parameter for CNT have been reported by researchers. 
It was found that various parameters such as aspect ratio, 
mode shapes and boundary conditions have a consider-
able influence on the proper values of nonlocal parameter 
(Hu et al. 2011; Duan et al. 2007). Therefore, choice of the 
proper value for nonlocal parameter is crucial to calibrate 
the nonlocality effect. While there are no experiments con-
ducted to determine the value of nonlocal parameter, one 
can use the discreet methods such as molecular dynam-
ics/mechanics (MD/MM) to extract the proper values of 
nonlocal parameter (Ansari et  al. 2012). In this paper, a 
conservative range of dimensionless nonlocal parameter 
0 < µ < 0.2 is used for analysis. Graphs shown in Fig. 4 
illustrate critical flutter boundary of cantilever CNT con-
veying fluid with respect to mass ratio. These curves sepa-
rating the stable area from unstable areas are called flutter 
instability boundary. At speed below the flutter speed any 
vibrations are damped, and at higher than the flutter speed 
any vibrations will grow rapidly. Figure 4a, b, respectively, 
shows dimensionless critical flutter fluid speed and dimen-
sionless critical frequency for a set of nonlocal parameters 
µ = 0, 0.05, 0.1, 0.15 and ψ = kw = kG = 0. The dimen-
sionless critical flutter speed and critical frequency of the 
cantilever CNT decrease by increasing nonlocal parameter 
which indicates a loss of stability region. In other words, 

Table 1   Comparison of the divergence and couple mode flutter speeds obtained from the present model with the results presented in Païdoussis 
(1998) and Ni et al. (2011) for µ = ψ = kw = kG = 0

Boundary conditions Divergence velocity at first mode Coupled-mode flutter

Present study Païdoussis (1998) Ni et al. (2011) Present study Païdoussis (1998) Ni et al. (2011)

P–P (β = 0.1) 3.1416 π 3.1416 6.3941 ≈6.38 6.3941

C–P (β = 0.5) 4.4939 ≈4.49 4.4934 7.7744 – 7.7743

C–C (β = 0.5) 6.2836 2π 6.2832 9.3031 ≈9.3 9.2946

Table 2   Comparison of the 
mode sequences obtained 
from the present model 
with the results presented 
in Kazemi-lari et al. (2012) 
for a cantilevered CNT with 
u = ψ = kw = kG = 0

µ Mode sequences

Present study Kazemi-Lari et al. (2012)

1st 2nd 1st 2nd

0 0 + 3.515625i 0 + 22.033635i 0 + 3.515625i 0 + 22.033635i

0.05 0 + 3.519407i 0 + 21.675156i 0 + 3.519408i 0 + 21.675267i

0.1 0 + 3.530882i 0 + 20.678840i 0 + 3.530895i 0 + 20.680320i

0.15 0 + 3.550442i 0 + 19.237572i 0 + 3.550512i 0 + 19.243078i

0.2 0 + 3.578797i 0 + 17.567651i 0 + 3.579027i 0 + 17.579087i
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the flutter speeds and stability regions given by the Erin-
gen’s nonlocal model are smaller than those obtained by 
the local continuum results. This is because increasing the 
nonlocal parameter causes the interaction force between 
nanotube atoms decreases and makes structure more flex-
ible than classical one. As seen from the figures, the curves 
for nonlocal parameter µ = 0 have three S-shaped seg-
ments. These segments represent three different dynamic 
behaviors of CNT that is related to the instability–restabi-
lization–instability sequence, which has previously been 
observed by Gregory and Paidoussis (1966). In addition, 
the curves in the figure 4(a) describe the relation between 
the dimensionless flutter speed and the critical mass ratio 
βcr related to the transference of the two unstable modes. 
For example, for µ = 0 in the range 0 < β < 0.3, flut-
ter instability of cantilevered CNT occurs on the second 
eigenvalue mode. The mass ratio at which the transference 
of the instability occurs from the second to the third mode 
is βcr ∼= 0.3. In the range, 0.3 < β < 0.7, 0.7 < β < 0.92 
and 0.92 < β < 1, flutter occurs on the third, fourth and 
fifth modes, respectively, and corresponding critical mass 

ratio at which transference of the instability modes occurs 
is shown to be βcr ≅  0.7 (for third to fourth mode) and 
βcr ≅ 0.92 (for fourth to fifth mode). It is found from the 
figure that the decreases in the interaction force between 
nanotube atoms cause the system to become flexible and 
that S-shape segments occur at lower mass ratios with 
increase in nonlocal parameter.

In order to better illustrate the effects of nonlocal 
parameter on the critical speed, similar calculation is also 
performed, and the corresponding result is depicted in 
Figs.  5a, b. In Fig.  5a, critical speeds of cantilever CNTs 
for three different mass ratios in terms of nonlocal param-
eter are shown. As it can be seen, for µ < 0.18 the system 
is stable below a critical speed for different mass ratios. 

Fig. 4   Influence of nonlocal parameter µ on the stability boundaries, 
as a function of nondimensional mass ratio β for ψ = kG = kw = 0:  
a dimensionless flutter speed, b dimensionless flutter frequency

Fig. 3   Dimensionless two first eigenvalues in terms of dimension-
less fluid velocities for various values of magnetic field parameters 
(kG = kw = 0,µ = 0.05): a imaginary part, b real part
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The results show that for µ > 0.18 cantilever CNT contain-
ing fluid flow is unstable for low fluid flow. As it can be 
seen, there are two curves for each mass ratio, upper curve 
and lower curve. For µ > 0.18, the stable region is further 
limited by these two curves. Thus, system is stable when 
parameters are in the region below the upper curve and 
above the lower curve. Outside of the stable region, except 
at the u = 0, CNT loses its stability by flutter. The results 
show that the starting point of the lower curve is approxi-
mately at µ ∼= 0.18, regardless of mass ratio. Figure  5b 
shows dimensionless critical fluid speed in terms of nonlo-
cal parameter μ for various values of magnetic parameter 
ψ. As is clear from this figure, regardless of the magnetic 
field parameter, after a certain value of nonlocal parameter 

system loses its stability through flutter for low fluid flow 
speed. One can see that the increase in the magnetic field 
intensity involves the increase in the critical flow speeds. 
Therefore, increasing the stability region of the CNT carry-
ing fluid is caused by increasing the magnetic field param-
eter. This is also verified by Fig. 6, which shows the effects 
of varying the strength of the longitudinal magnetic field 
on the dimensionless critical speeds of a cantilever CNT 
conveying fluid for different values of nonlocal param-
eters. The strength of the magnetic field is considered vary-
ing from Hx = 10−4 to 5× 108 (A/m) with logarithmic 
scale on the horizontal axis. From this figure, it is observed 
that for the strength of the longitudinal magnetic field in the 
range 0 < Hx < 107 A/m, the flutter speeds are nearly con-
stant versus Hx, and the magnetic field is not effective on 
the flutter speeds. For 107 < Hx < 108 A/m, the effects of 
magnetic field and nonlocal parameter on the flutter speed 
are significant, while by increasing Hx higher than 108 A/m 
the effect of the magnetic field increases while the impact 
of nonlocal parameter decreases. This may be related to 
the coupling effect of vibrating CNTs and the longitudinal 
magnetic field.

4.3 � Effect of the elastic foundation

The effect of the elastic Winkler modulus and shearing 
modulus of Pasternak foundation on the stability analysis 
of a cantilever CNT conveying fluid is investigated in this 
section. Figure 7a, b shows the dimensionless critical flow 
velocities and the corresponding frequencies for flutter of a 
cantilever CNT conveying fluid, respectively. In these fig-
ures, flutter instability boundaries as a function of the elastic 

Fig. 5   Dimensionless critical speeds as a function of dimen-
sionless nonlocal parameter for various values of: a mass ratio β 
(kG = kw = 0,ψ = 0), b magnetic field ψ (kG = kw = 0,β = 0.1)

Fig. 6   Flutter speed as a function of magnetic field parameters for 
different nonlocal parameters µ and for β = 0.5, kG = kw = 0
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Winkler modulus are displayed for different values of mass 
ratio, i.e., β = 0.1, 0.3, 0.5, 0.7, with ψ = 12 , kG = 0 and 
µ = 0.05. The effect of foundation modulus is to increase 
the critical flutter fluid speed and the corresponding fre-
quencies. This is due to the fact that increasing Winkler 
modulus increases the CNT stiffness, which, in turn, leads 
to greater system stability. In addition, the flutter instability 
occurs at β = 0.1 for second eigenvalue mode. For β = 0.7, 
flutter occurs on the third and fourth eigenvalue modes, and 
critical value of Winkler modulus at which transference of 
the instability modes occurs is kcrw ∼= 220.

The effects of the nonlocal parameters on flutter speed 
and flutter frequency as a function of the elastic Winkler 

modulus are shown in Fig.  8a, b, respectively. As shown, 
a decrease in the number of S-shaped segments (and sub-
sequently different instability modes) is observed at lower 
nonlocal parameters, such that the flutter occurs on the 
third eigenvalue mode for µ = 0 and on third and fourth 
eigenvalue modes for µ = 0.1.

Figure 9a, b examines the flutter instability boundaries 
graph of cantilever CNT in the kw − ucr plane for differ-
ent values of magnetic field parameter ψ = 0, 12, 48 with 
β = 0.5, kG = 0 and µ = 0.05. As expected, increasing the 
magnetic field parameter leads the stable region to become 
greater. In addition, it is remarkable to notice that the can-
tilevered CNT loses its flutter instability on the third and 

Fig. 7   Influence of dimensionless mass ratio β on the stability 
boundaries, as a function of dimensionless Winkler foundation kw 
for µ = 0.05, ψ = 12, and kG = 0: a dimensionless flutter speed,  
b dimensionless flutter frequency

Fig. 8   Influence of nonlocal parameter μ on the stability bounda-
ries, as a function of dimensionless Winkler modulus kw for ψ = 12,  
β = 0.3 and kG = 0: a dimensionless flutter speed, b dimensionless 
flutter frequency
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fourth eigenvalue modes for investigated parameters at this 
figure.

Figure  10a presents the stability map of the CNT in 
the kG − ucr plane for different values of mass ratios and 
for µ = 0, ψ = 48 and kw = 600. Moreover, for all given 

Fig. 9   Influence of dimensionless magnetic parameter on the stabil-
ity boundaries, as a function of dimensionless Winkler modulus kw 
for µ = 0.05, β = 0.5 and kG = 0: a dimensionless flutter speed, b 
dimensionless flutter frequency

Fig. 10   Flutter speed ucr as a function of dimensionless shearing 
modulus of Pasternak foundation: a for different mass ratios and 
µ = 0, ψ = 48, kw = 600, b for different nonlocal parameters, and 
ψ = 12 kw = 150, β = 0.5, c for different magnetic field parameters 
and kw = 150, µ = 0.05, β = 0.5

▸
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values of kG, an increment of dimensionless flutter speed 
is noticeable under the influence of mass ratios. Figure 10b 
illustrates the stability curves for various values of nonlo-
cal parameters and for ψ = 48, kw = 600 and β = 0.5 . 
Over the whole range of kG, the nondimensional critical 
speed decreases as the nonlocal parameter increases. In 
addition, the number of S-shape segments in the stability 

boundaries is reduced by increasing the nonlocal param-
eter. Figure 10c shows the nondimensional critical speed of 
a CNT as a function of kG, for different values of magnetic 
field and for µ = 0.05, kw = 150 and β = 0.5. The flutter 
speed increases with the increase in magnetic field, and the 
CNT becomes more stable. Further, as it can be seen from 
figure 10, by increasing the shearing modulus (kG) the flut-
ter velocity of cantilevered CNT increases. This physically 
implies that the influence of shearing modulus of the Pas-
ternak foundation is to stiffen the CNT, and consequently, 
the critical speed and stability region increase. In addition, 
it is deduced that the influence of the shearing modulus of 
Pasternak foundation on the flutter velocity is more promi-
nent compared to elastic Winkler modulus.

4.4 � Effect of the boundary conditions

The critical velocity of CNT conveying fluid resting on elas-
tic foundation under longitudinal magnetic field is shown 
as a function of the mass ratio in Fig. 11 for the P–P, C–P 
and C–C boundary conditions. Depending on the values 
of the fluid velocity and mass ratio, occurrence of diver-
gence or flutter instability or both instabilities is possible. 
Critical flutter and divergence velocities are represented 
by solid lines and dashed lines, respectively. It is observed 
that the as mass ratio increases, the critical flutter velocities 
decrease until a certain mass ratio, after which flutter veloci-
ties increase. However, the critical divergence velocities are 
not changed by an increase in the mass ratio, because diver-
gence instability is independent of the mass ratios. Also, it is 
observed that for fluid-conveying CNTs with P–P supported 
the stable region is smaller than the C–P and C–C boundary 
conditions because it is stiffer than other two boundary con-
ditions. It was also demonstrated that increasing fluid veloc-
ity in CNTs with both ends supported causes first divergence 
and then flutter instability. The lower and upper divergence 
zones are associated with the first and second divergence 
modes, respectively. Consequently, divergence instability is 
more important for CNTs with both end supported.

5 � Conclusion

In this paper, the vibration and stability characteristics of 
CNT carrying fluid on an elastic foundation under the mag-
netic field were studied. The equation of motion and bound-
ary conditions were derived via extended Hamilton’s princi-
ple. The influence of some system physical parameter, such 
as the nonlocal effect, magnetic field, Winkler and Paster-
nak foundations and boundary conditions on the instability 
region is discussed. Having mentioned that, these param-
eters significantly affect the eigenvalues, critical speeds and 
frequencies. The major conclusions are as follows:

Fig. 11   Critical speed ucr in terms of dimensionless mass ratios for 
µ = 0.05, ψ = 12,kw = 100 and kG = 20: a for P–P, b for C–P, c for 
C–C boundary conditions
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•	 One can see that the nonlocal parameter plays a key 
role for stability of the cantilever CNT. The dimension-
less critical speed and dimensionless critical frequency 
decrease as the nonlocal parameter increases. When 
the nonlocal parameter decreases, the stable region in 
β − ucr stability plane is seen to increase. This indicates 
that the classical CNT is more stable. In other words, as 
nonlocal parameter increases, cantilever CNT loses its 
stability at low fluid velocities. So, for nonlocal param-
eters greater than a certain value even with infinitesi-
mally small velocities flutter instability occurs.

•	 Nondimensional critical speed (ucr) and natural fre-
quencies of the CNT with magnetic field are larger than 
that of CNT without magnetic field. Critical speed was 
increased significantly as strength of longitudinal mag-
netic field is between (107 < Hx < 5× 108 A/m). Also, 
as a result of magnetic field effect, it has its greatest 
effect in enlarging the region of stability.

•	 The foundation stiffness leads to increase in the fluid 
critical flutter speed and flutter frequency. Therefore, as 
the Winkler modulus and shearing modulus of Pasternak 
foundation increase, the region of stability increases. In 
addition, the effect of the Winkler modulus becomes 
less than the shearing modulus of Pasternak foundation.

•	 It is also observed that the S-shape segments in the 
stability curves that related to the instability–restabi-
lization–instability sequence disappear slowly, as the 
mass ratio decreases in both kw − ucr and µ− ucr sta-
bility planes. Also, the number of S-shaped segments 
is increased by increasing of nonlocal parameter in 
kw − ucr stability plane.

•	 Also, number of S-shaped segments is reduced by increas-
ing of nonlocal parameter in kG − ucr stability plane.

•	 For CNTs with positively supported end, the system 
loses its stability first by divergence and then by flutter 
as fluid velocity increases. Thus, it can be interpreted 
that the fluid-conveying pipes with supported end can 
lose its stability by either divergence or flutter, whereas 
for cantilever CNT only flutter instability is observed.
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