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1  Introduction

Electroosmosis has become important in transporting or 
mixing fluids in MEMS, micro-fluidics and biosensors. The 
electrolyte can be efficiently driven by applying a steady 
or time-varying voltage due to the existence of electric 
double layer (EDL) developed on the wall. The present 
study is aimed to obtain analytical solutions for EO flow 
in ducts of some basic shapes, which were not obtained in 
the literature. Analytic solutions for EO flows are important 
because not only they reveal properties of basic micro-duct 
geometries, but also they serve as accuracy standards for 
approximate solutions, whether numerical or asymptotic. 
The few analytic solutions for steady EO flows are as fol-
lows. The steady EO flow in a parallel plate duct has long 
been known. Rice and Whitehead (1965) first obtained 
the closed-form solution to the circular duct and Yang and 
Li (1998) the series solution to the rectangular duct. The 
solution to the annular duct was found by Tsao (2000), 
the semicircular duct by Wang et al. (2008) and the sector 
duct by Chang and Wang (2009), and the polygonal duct 
by Wang and Chang (2011). Unsteady electroosmosis in 
micro-ducts includes starting flow when an axial electric 
field is suddenly applied, and the oscillatory flow due to 
an AC field. The previous literature on starting EO flows 
includes Soderman and Jonsson (1996) and Keh and Tseng 
(2001) who found exact solutions to the flow in the parallel 
plate channel and the circular tube. Gillespie et al. (2002) 
developed a one-dimensional model of coupling Poisson–
Nernst–Planck (PNP) and density functional theory (DFT) 
to calculate ion flux. The starting EO flow in an annulus 
and a rectangular duct was studied by Chang and Wang 
(2008) and the sector duct by Chang and Wang (2009). 
On the other hand, the EO flow due to an AC oscillating 
applied axial field was considered by Bhattacharyya et al. 
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(2003) for the circular tube, Campisi et  al. (2005) for the 
rectangular duct, Jian et al. (2010) and Moghadam (2014) 
for the annular duct. Recently, an analytical approach was 
presented by Moghadam (2016) to explore the EOF and 
associated heat transfer in a semi-annular micro-capillary. 
Another research related to the unsteady flow of fluid 
through a parallel rotating micro-channel was carried out 
by Gheshlaghi et  al. (2016). Gillespie (2015) examined 
several different continuum models (i.e., Poisson–Boltz-
mann) that attempt to include ion size, ion concentrations 
and surface charges. In addition, with regard to the possi-
ble interactions of electroosmotic slip and Navier slip con-
ditions, Goswami and Chakraborty (2011) first derived a 
general semi-analytical formalism for the implications of 
electroosmotic flows in the presence of Navier slip, corre-
sponding to micro-channel geometries with complex cross-
sectional shapes (elliptic, polygonal, point star-shaped, and 
annular micro-channel).

All the references mentioned above used the Debye–
Hückel approximation for low electric potential. Since the 
equations are linear, superposition methods such as sepa-
ration of variables, Laplace transform, Green’s functions 
can be used. Also, the cross-sectional geometries must be 
described by separable coordinates. We mention that for 
unsteady EO flow using the nonlinear Poisson–Boltzmann 
equation, it often requires fully numerical means (Zhang 
et  al. 2006; Kamali and Eslami 2008), patching approxi-
mations (Kang et al. 2002) or perturbation method (Chang 
et al. 2011).

This paper describes an eigenfunction superposition 
method to solve linear unsteady EO flows in ducts. The 
only requirement is that for the same cross-sectional geom-
etry there exist a complete set of eigenfunctions for the 
Helmholtz equation. The process is somewhat similar to the 
method of Green’s functions (Morse and Feshbach 1953; 
Riley et al. 2006), except that Green’s function itself is not 
needed. Previous reference using such a method include 
Wakasugi (1961a, b) who studied the buckling of sim-
ply supported triangular plates, and Aggarwala and Iqbal 
(1969) who investigated the heat convection in some trian-
gular ducts. The unsteady oscillatory flow in a right isosce-
les duct was solved by Tsangaris and Vlachakis (2003). As 
a matter of fact, flow in a pipe of various geometries is of 
fundamental interest in viscous flow; see, e.g., Landau and 
Lifshitz (1987, Sec. 17).

In this study, we consider a parallel EO flow. The longi-
tudinal velocity w′ is governed by (see, e.g., Bruus 2008, p. 
158)

Here t′ is the time, E is the longitudinal applied electric 
field, ρe is the charge density, ρ and μ are the fluid density 

(1)ρ
∂w′

∂t′
= µ∇′2w′ + ρeE(t

′)

and viscosity, respectively. The fluid flow on the wall is 
required to satisfy the no-slip condition.

On the other hand, we make the Debye–Hückel approxi-
mation; namely, the potential for the electric double layer 
ψ ′ is related to ρe by

where z is the valence, e is the electron charge, n0 is the 
bulk electrolyte concentration, kb is the Boltzmann constant 
and T is the absolute temperature. In particular, we assume 
a constant permittivity ɛ throughout the entire micro-duct. 
The EDL potential ψ ′ is assumed to have a constant zeta 
potential ψ0 on the wall (Stern layer). It is noted that the 
Debye–Hückel approximation is valid for dilute solution 
(say, n0 < 10−3 M) of point-like ions when the zeta poten-
tial ψ0 (or the applied voltage across the EDL) is much 
less than the thermal voltage kbT/e (see, e.g., Storey et al. 
2008). Moreover, due to low solid–liquid interactions, the 
zeta potential is somewhat smaller for slip flow (Papa-
dopoulos et  al. 2012), and thus, one may expect that the 
Debye–Hückel approximation is valid for most hydropho-
bic micro-ducts.

Let ψ0 be the constant potential on the wall, E0 be the 
magnitude of the unsteady applied potential and L be a 
characteristic cross-sectional length. Normalize the vari-
ables as follows

Equations (1, 2) become 

with the boundary conditions on the wall

where

is the important non-dimensional electrokinetic width with 
�D the Debye length of the electric double layer (EDL) for 
the potential.

It is worth mentioning the typical values of the impor-
tant parameters in the range of practical applications. For 
example, n0 =  10−4  M, T =  288  K (15  °C), the thermal 
voltage is kb T/e = 0.0248 V (kb = 8.62 × 10−5 eV K−1), 
ɛ =  7 ×  10−10  C2  J−1  m−1, and λD is around 3  nm. The 
potential value of 25 mV (either positive or negative) can 
be taken as a useful reference that separates low-charged 

(2)ρe = −ε∇′2ψ ′ =
−2z2e2n0

kbT
ψ ′

(3)ψ =
ψ ′

ψ0

, w =
w
′

−E0εψ0/µ
, t =

t
′

ρL2/µ
, F(t) =

E(t′)
E0

(4)wt = ∇2w+ K2ψF(t)

(5)∇2ψ = K2ψ

(6)ψ = 1,w = 0

(7)K = L/�D = zeL

√

2n0

εkbT
,
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surfaces from high-charged surfaces. Therefore, the zeta 
potential ψ0 =  2.50  mV which is within 10  % tolerance 
of the thermal voltage can be considered a valid case for 
the Debye–Hückel approximation. On the other hand, it is 
apparent from the definition that a large value of K denotes 
a relatively thin electric double layer and vice versa. The 
capillary electrophoresis applications usually have K at the 
orders of about 103–105 with the Debye lengths (�D) in the 
range of about 1–10  nm in a micro-fluidic channel (with 
characteristic widths: 10–100 μm). A smaller K (with over-
lapped EDLs) can be produced by fabricating a smaller 
cross section or decreasing the bulk electrolyte concen-
tration (low n0). However, for small K, the polarization of 
water dipoles in the vicinity would also severely alter the 
permittivity close to the wall. One may also refer to some 
recent studies for the practical ranges of the dimensional 
parameters involved (see, e.g., He et  al. 2009; Bandopad-
hyay and Chakraborty 2011, 2013; Kilic and Bazant 2007a, 
b; Peng and Li 2015; Iglic et al. 2010; Bandopadhyay et al. 
2015).

2 � General formulation for steady and unsteady 
electroosmotic flow

An important application of the Helmholtz equation is the 
vibration of elastic membranes. Existing exact solutions for 
various membrane shapes have been compiled in the book 
by Wang and Wang (2014), where the exact eigenvalues 
and eigenfunctions of isosceles right triangle, equilateral 
triangle and 30°–60°–90° triangle are given. These solu-
tions will be utilized for our EO flow problems.

We shall first briefly formulate the method for general 
duct cross sections. Let (�j,φj) be an eigenpair of the two-
dimensional Helmholtz equation,

with the homogeneous boundary condition on the wall,

Namely, �j denotes the (positive)jth eigenvalue and 
φj the corresponding eigenfunction. The eigenvalues are 
arranged in the ascending order of their magnitudes: 
0 ≤ �1 ≤ �2 ≤ · · ·, (each counted with its algebraic multi-
plicity). It can be shown that the set of eigenfunctions is 
complete, and any pair of eigenfunctions corresponding to 
distinct eigenvalues is mutually orthogonal to each other 
(Morse and Feshbach 1953).

2.1 � Steady flow

Let w̄ be the velocity for steady EO flow. Equations (4, 5) 
reduce to

(8)∇2φj + �jφj = 0

(9)φj = 0

The conditions in (6) gives w̄+ ψ = 1 on the wall, 
which must also be satisfied in the entire duct owing to the 
maximum principle for the Laplace equation (Strauss 2007, 
p. 154). In other words, we have the identity, ψ = 1− w̄ in 
the entire duct, and thus,

with w̄ = 0 on the boundary. Note that Eq.  (11), even the 
homogeneous part, is not the Helmholtz equation. A good 
advantage of using the eigenfunctions of the Helmholtz 
equation is that the operator −∇2 + K2 on the LHS of 
Eq. (11) is fully positive definite. Namely, it is assured that 
one may invert the operator to obtain the solution for the 
EO flow w.

First of all, we expand unity in terms of the Helmholtz 
eigenfunctions

Using the orthogonality property, inversion gives the 
coefficient aj

where the double integrations are over the cross-sectional 
area. Next, we express also the steady velocity in terms 
of the eigenfunctions which satisfy the zero boundary 
conditions

Equations (11, 12, 14) yield the coefficients

where �j + K2(>0) is called the signature of the EO flow 
differential operator −∇2 + K2 [cf. Eq.  (11)] associated 
with the eigenfunction φj. The steady flow rate is

It is known that for large K (or thin EDL) the velocity 
in the interior is almost unity and there exists a boundary 
layer near the wall. If η is the distance pointing inward 
from the wall, Eq. (11) can be approximated by

(10)∇2w̄+ K2ψ = ∇2(w̄+ ψ) = 0

(11)−∇2w̄ + K2w̄ = K2

(12)1 =
∞
∑

j=1

ajϕj

(13)aj =
Cj

Dj

, Cj =
�

ϕjdA, Dj =
�

ϕ2
j dA

(14)w̄ =
∞
∑

j=1

Ajϕj

(15)Aj =
K2aj

�j + K2

(16)Q̄ =
�

w̄dA =
∞
∑

j=1

K2C2
j

Dj(�j + K2)

(17)w̄ηη − K2w̄ = −K2
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with the solution

Thus, the velocity deficiency per lateral length due to the 
boundary layer is, asymptotically

The approximation of the flow rate for large K is thus

where A is the cross-sectional area and P is the perimeter 
length.

2.2 � Starting flow

Consider a suddenly applied constant axial electric field,

where H(t) is the unit step function. Let

that is, the transient solution w is written as the difference 
between the steady-state solution w̄(x, y) and the unsteady 
part w̃(x, y, t). The unsteady part, thus defined, can be con-
sidered as the “deficit” away from the steady-state solution. 
The unsteady part of Eq. (4) is therefore simply governed 
by

with the initial condition

Apparently the unsteady part in (22) is defined such that 
it decays as time evolves. By Eqs. (8, 14, 23, 24), the tran-
sient solution is

The analytic solution in terms of the Helmholtz eigenfunc-
tions is then

The instantaneous flow rate is

(18)w̄ = 1− e−Kη

(19)

∞
∫

0

e−Kη
dη =

1

K

(20)Q̄ = A−
P

K

(21)F(t) = H(t)

(22)w = w̄(x, y)− w̃(x, y, t)

(23)w̃t = ∇2w̃

(24)w̃|t=0 = w̄

(25)w̃ =
∞
∑

j=1

Ajϕje
−�j t

(26)w =
∞
∑

j=1

K2Cj

Dj(�j + K2)
ϕj

(

1− e−�j t
)

(27)Q =
�

wdA =
∞
∑

j=1

K2C2
j

Dj(�j + K2)

(

1− e−�j t
)

The first eigenvalue λ1 governs the rate of the EO flow 
approaching the steady state. For example, to find the time 
to approach 1 % of the steady state, we set �1t = 5, or

2.3 � Oscillatory flow

Next we consider an oscillatory applied electric field 
E0 cos(Ωt′), where Ω is the frequency. Equation  (4) then 
yields, preferably in complex form,

where i =
√
−1, s = ΩL2/ν is the normalized frequency. 

Let

Using ψ = 1− w̄ and Eqs. (14, 29, 30), after some alge-
bra, we obtain the coefficients

Thus, the induced oscillatory velocity is

The flow rate is

where

The amplitude of the oscillatory flow rate is

The phase lag is

The results for the steady EO flow in (16), transient flow 
in (27) and oscillatory flow in (33)–(36) are the general 

(28)t ≈
5

�1

(29)wt = ∇2w+ K2ψeist

(30)w =
∞
∑

j=1

Bjϕje
ist

(31)Bj =
K2aj�j

(�j + K2)(�j + is)

(32)w = Re

[

K2Cj�j

Dj(�j + K2)(�j + is)
ϕje

ist

]

(33)
Q =

�
wdA = Re

∑ K2C2
j �j

Dj(�j + K2)(�j + is)
eist

= G1 cos(st)+ G2 sin(st)

(34)

G1 =
∑ K2C2

j �
2
j

Dj(�j + K2)(�2j + s2)

G2 =
∑ K2C2

j �js

Dj(�j + K2)(�2j + s2)

(35)M =
√

G2
1 + G2

2

(36)β = tan
−1(G2/G1)
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formulas, and can be explicitly evaluated as long as the 
eigenpairs �j,φj of the Helmholtz equation for a given 
shape of duct are known.

2.4 � Discussion of the solution of the general 
formulation

It is conceivable that the key roles of the present method are 
played by the eigenpairs �j,φj of the Helmholtz equation. 
Associated with each eigenpair, the differential operator 
−∇2 + K2 [cf. Eq. (11)] of the EO flow has the signatures 
�j + K2(> 0). And thus 1/(�j + K2) is the system response 
to the component of the unit input in φj, i.e.,. aj = Cj/Dj, 
whence yielding the result in (15) for the steady flow [note 
that the input of Eq.  (11) is K2]. In the cases of transient 
flow, the system simply responds by an additional factor 
1− e−�j t in each eigencomponent [cf. Eq. (26)]; hence, the 
first eigenvalue λ1 of the Helmholtz equation governs the 
rate of EO flow approaching the steady state. On the other 
hand, the oscillatory flow responds with a different factor 
�j

�j+is
 [cf. Eq. (32)] in each eigencomponent, which contrib-

utes to the changes in the magnitude as well in the phase 
change in response to the external forcing eist. The resultant 
phase lag is complicated although each �j

�j+is
 is simply cou-

pling between λj and s.
The analytical solutions enable us to ascertain sev-

eral salient features of the flow rates. It must be 
noted that λj,  Cj,  Dj and φj as well are all shape fac-
tors; they are determined once the geometry of the 
duct is specified. Given a duct, the steady EO flow rate 

Q̄ =
�

w̄dA =
∑∞

j=1

K2C2
j

Dj(�j+K2)
 [Eq.  (16)] may only vary 

with changing the electrokinetic width K. In the limit of 

small K, all each summand behaves like 
C2
j

Dj�j
K2, and thus, 

the flow rate is small of order K2. In the limit of large K, 

the first few summands are approximately 
C2
j

Dj�j
, which are 

simply combinations of the geometric factors, and thus, the 
flow is expected to approach its maximum at very large K. 
In the intermediate range of K, we expect that the steady 
flow rate Q̄ increases monotonically with increase in K, for 
there are more and more terms turning from the behavior of 
C2
j

Dj�j
K2 to that of 

C2
j

Dj�j
. Next we examine the transient flow 

rate Q =
�

wdA =
∑∞

j=1

K2C2
j

Dj(�j+K2)

(

1− e−�j t
)

 [Eq.  (27)]. 

It is noted that everything said about the steady flow rate 
applies to the transient flow rate except that each sum-
mand is multiplied by the shape determined transient factor 
1− e−�j t. The larger the first eigenvalue �1 is, the faster the 
flow approaches the steady state. Finally, we examine the 
oscillatory flow, which has the EO flow rate [Eq. (33)],

The facts about the non-shape factor K said above still 
apply, yet the additional non-shape parameter s reduces 
the flow rate through all the summands, especially for the 
modes with �j < s. Thus, we may conclude that the mag-
nitude of the EO flow rate decreases with increase in the 
external frequency s. The phase lag β = tan−1(G2/G1) 
with G1, G2 given in (34) is complicated by all the shape 
and non-shape parameters. But as s is a common factor to 
all summands in G2 (not in G1), we expect that the phase 
lag increases with increase in s.

3 � Validation of Helmholtz eigenfunction method

The present method is validated by computing the EO flow 
rates for the circular duct. For this cross section, the solu-
tions were found previously by the method of separation of 
variables.

3.1 � Steady flow

The steady EO flow was found by Rice and Whitehead 
(1965). The velocity and the flow rate are

Here the I’s denote the modified Bessel functions.
For the circle, our Helmholtz equation gives

where kj is the jth root of

i.e., {kj} = 2.40483, 5.52008, 8.65373, 11.7915. The third 
and higher eigenvalues are well represented by (Abramow-
itz and Stegun 1970)

The eigenfunctions are

Q =
�

wdA = Re
∑ K2C2

j �j

Dj(�j + K2)(�j + is)
eist

= G1 cos(st)+ G2 sin(st)

(37)w̄ = 1−
I0(Kr)

I0(K)

(38)Q̄ = 2π

[

1

2
−

I1(K)

KI0(K)

]

(39)�j = k2j

(40)J0(kj) = 0

(41)kj = αj +
1

8αj
−

124

3(8αj)3
+ · · · , αj = (j − 1/4)π

(42)ϕj = J0(kjr)
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Equation (13) gives

From Eq. (16), the steady flow rate is

Now the question is: Does Eq. (44) give the same results as 
Eq. (38)?

Let us first consider some limiting cases. When K → 0, 
a series expansion for Eq. (38) gives the leading term

On the other hand, Eq. (44) yields

But Sneddon (1960), on the zeros of Bessel functions, 
showed

Thus, the results given by Eqs. (38) and (44) are identi-
cal when K → 0.When K → ∞, Eq. (38) gives

which is the same as Eq.  (44) for large K when we use 
another Sneddon (1960) identity

For general values of K, we show numerically the two 
solutions are equivalent in Table 1. 

3.2 � Starting flow

The starting flow was solved by Keh and Tseng (2001) 
using the method of separation of variables. In brief, 
Eqs. (22–24) are used to obtain

(43)Cj =
2πJ1(kj)

kj
, Dj = πJ21 (kj)

(44)Q̄ = 4πK2

∞
∑

1

1

k2j (K
2 + k2j )

(45)Q̄ =
πK2

8

(46)Q̄ = 4πK2

∞
∑

1

1

k4j

(47)

∞
∑

1

1

k4j
=

1

32

(48)Q̄ = π

(49)

∞
∑

1

1

k2j
=

1

4

Inversion gives

The transient flow rate is integrated

This is exactly the transient part of our Eq. (27), i.e.,

Thus, the two methods are completely equivalent.

3.3 � Oscillatory flow

The oscillatory EO flow was previously studied by Bhattacha-
ryya et al. (2003), but we shall derive a simpler form. Let

Equation (29) yields

where

Since u(1) = 0, the solution to Eq. (56) is

It follows

(50)w̃ =
∞
∑

1

AjJ0(kjr)e
−k2j t

(51)w̃|t=0 = 1−
I0(Kr)

I0(K)

(52)Aj =
2K2

J1(kj)(K2 + k2j )

(53)Q̃ = 4πK2

∞
∑

1

1

k2j (K
2 + k2j )

e
−k2j t

(54)Q = 4πK2

∞
∑

1

1

k2j (K
2 + k2j )

(

1− e
−k2j t

)

(55)w = u(r)eist

(56)u′′(r)+ u′/r − isu = −K2ψ

(57)ψ = 1− w̄ =
I0(Kr)

I0(K)

(58)u =
K2

(K2 − is)

[

I0(
√
isr)

I0(
√
is)

−
I0(Kr)

I0(K)

]

(59)

Q = 2π

1
∫

0

wrdr = 2π

1
∫

0

Re[ueist]rdr

= G1 cos(st)+ G2 sin(st)

Table 1   Steady EO flow rate for the circular duct

Values from Eq. (44) are on top and values from Eq. (38) have asterisks

K 1 5 10 50 ∞

Q̄ 0.33684
0.33684*

2.0189
2.0189*

2.5456
2.5456*

3.0172
3.0172*

3.1416
3.1416*
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where we have

It is quite tedious to handle the integrals in (60) analyti-
cally. Instead, we use numerical integration to evaluate the 
amplitude and phase

On the other hand, Eq. (34) gives

The amplitude and phase are then evaluated by Eq. (25). 
Table 2 shows a comparison of Eq. (60) form separation of 
variables and Eq. (62) from the Helmholtz eigenfunctions. 
We see that except for small numerical errors in the fifth 
digit, the values are identical. 

In conclusion, the two methods show identical results. 
For the steady EO flow, the separation of variables method 
is more convenient than the Helmholtz eigenfunction 
method. For oscillatory EO flow, the Helmholtz eigenfunc-
tion method is more convenient. For starting EO flow, both 
methods are equivalent.

However, we emphasize that for the three triangular ducts 
studied in this paper, the separation of variables method fails, 
and only the Helmholtz eigenvalue method is successful.

(60)

G1 = 2π

1
∫

0

Re[u]rdr

G2 = −2π

1
∫

0

Im[u]rdr

(61)M =
√

G2
1 + G2

2, β = tan
−1(G2/G1)

(62)

G1 = 4πK2

∞
∑

1

k2j

(K2 + k2j )(s
2 + k2j )

G2 = 4πK2

∞
∑

1

s

(K2 + k2j )(s
2 + k2j )

4 � Examples: three triangular ducts

4.1 � The isosceles right triangular duct

Figure 1a shows the cross section of the isosceles right tri-
angular duct which has a short side as the length scale. The 
eigenvalues and eigenfunctions are

where m, n are non-equal, positive integers. Since �mn are 
distinct, m > n > 0. Notice the solution Eq. (63) is equivalent, 
but somewhat simpler, than the form given by Tsangaris and 
Vlachakis (2003). Equation (13) gives

(63)
�mn = π2(m2 + n2)

ϕmn = sin(nπx) sin(mπy)− sin(mπx) sin(nπy)

(64)Cmn =
4

(m2 − n2)π2







m/n, m even, n odd

n/m, modd, n even

0, m+ n = even

(65)Dmn =
1

4

Fig. 1   Three triangular cross sections: a Isosceles right triangular 
duct, b equilateral triangular duct, c 30°–60°–90° duct. Locations of 
Cartesian axes are shown

Table 2   Amplitude M and 
phase β

Values from Eq. (62) are on top, and values from Eq. (60) have asterisks

s 0 5 10 50 100

K = 1 M 0.3368
0.3368*

0.2562
0.2562*

0.1720
0.1720*

0.04492
0.04492*

0.02395
0.02395*

β 0
0*

0.6784
0.6784*

0.9823
0.9823*

1.3370
1.3370*

1.4078
1.4078*

K = 10 M 2.3457
2.5456*

1.9762
1.9762*

1.3960
1.3960*

0.5054
0.5054*

0.3105
0.3105*

β 0
0*

0.5752
0.5752*

0.7990
0.7990*

1.0464
1.0464*

1.1366
1.1366*

K = 100 M 3.0790
3.0790*

2.4314
2.4314*

1.7846
1.7847*

0.8002
0.8002*

0.5623
0.5623*

β 0
0*

0.4959
0.4959*

0.6616
0.6615*

0.7770
0.7770*

0.8131
0.8130*
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The steady-state velocity distribution solution is given 
by Eq.  (14). Figure  2 shows that the velocity profile is 
rounded for low K (thick EDL) but turns into a plateau 
for large K (thin EDL). The flow rate is shown in Fig. 3. 
Since the steady EO flow for this triangular duct is derived 
for the first time, numerical values are given in Table  3 
as benchmarks. Here, we use 16 terms to achieve excel-
lent convergence in the series expansion (16). We see the 
boundary layer approximation Eq. (20), which is valid for 
large K, compares very well with our exact solution for 
high K. For less than 1 % error, K should be larger than 40.

The solution to starting flow is given by Eqs.  (26, 27). 
The velocity distribution for low K is quasi-steady, rounded 
as shown in Fig. 2a. Figure 4 shows typical instantaneous 
velocity distributions for a high K, where we see, at small 
times, the EDL near the boundary first induces the flow 
forward, and the interior velocity catches up only later. 
Figure 5 shows the unsteady flow rate for starting EO flow. 
From Eq.  (63), the first (lowest) eigenvalue is 5π2, and 
Eq. (28) shows the time to reach steady state is about 0.1, 
which is indeed the case.

The velocity profiles for low frequency are almost in 
phase with the external applied potential. Figure 6 shows 

the velocity profiles for large frequency, while Fig. 7 shows 
the magnitudes and phase lags for various frequencies. Not 
only there is a phase lag, but also the maximum velocity is 
in the boundary layer near the walls (Fig. 6 at st = 0 and 
3π/4), which is equivalent to the “annular effect” for vis-
cous flow in circular ducts (Schlichting 1979).

Fig. 4   Velocity distribution for starting flow in an isosceles triangular 
duct, K = 20. a t = 0.01, velocity from outside = 0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, max near sharp corner 0.610, depression near center 0.263, 
b t = 0.1, max velocity near center 0.979, c t = 1, max velocity near 
center 0.992

Fig. 5   Unsteady flow rate Q versus time t for the isosceles triangular 
duct. From top, K = 40, 20, 10, 5, 1

Fig. 2   Steady velocity distribution for the isosceles triangular duct: 
a K = 1 velocity from outside: 0, 0.005, 0.01, 0.015, 0.02, 0.025 max 
0.026, b K = 30 velocity from outside: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 max 0.999

Fig. 3   Steady flow rate Q̄ versus K for the isosceles triangular duct

Table 3   Steady-state EO flow rate for the isosceles right triangular 
duct

K Q̄ exact Eq. (16) Q̄ approx Eq. (20)

1 0.006401

10 0.2366 0.1586

20 0.3486 0.3293

40 0.4187 0.4146

60 0.4435 0.4431

80 0.4557 0.4573

100 0.4628 0.4659

∞ 0.5000 0.5000
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4.2 � The equilateral triangular duct

Figure 1b shows the cross section of the equilateral trian-
gular duct where the length scale is one third of the triangle 

height. Let us place the origin of the Cartesian coordinates 
at the centroid. The boundaries are at

Schelkunoff (1943) gave the eigenfunctions for the Helm-
holtz equation inside the equilateral triangular region, 
which in our variables is

with the eigenvalues

Here m and n are integers which are nonzero, and do not 
add up to zero. Schelkunoff’s solution is symmetric about 
the x-axis. The solution for fluid flow is more restricted, 
that it must also have threefold rotational symmetry. A 
rotation of 120° about the origin is given by the transform

We require

This yields the restriction

We also found, for m �= n,

Thus, the only admissible integers are m = n = 1, 2, 3,…, 
from which we find

Let ϕj = ϕjj, the eigenfunctions and eigenvalues are sim-
plified to

(66)x = 1, y = ±(x + 2)/
√
3

(67)

ϕmn = cos

[

(m + 2n)πy

3
√
3

]

sin

[

mπ(2+ x)

3

]

− cos

[

(m − n)πy

3
√
3

]

sin

[

(m + n)π(2+ x)

3

]

+ cos

[

(2m+ n)πy

3
√
3

]

sin

[

nπ(2+ x)

3

]

(68)�mn =
4π2

27

(

m2 + mn+ n2
)

(69)x̄ = −x/2−
√
3y/2, ȳ =

√
3x/2− y/2

(70)ϕmn(x, y) = ϕmn(x̄, ȳ)

(71)

m cos

(

2mπ

3

)

− (m + n) cos

(

2(m+ n)π

3

)

+ n cos

(

2nπ

3

)

= 0

(72)
�

ϕmndA = 0

(73)Cnn =
9
√
3

nπ
, Dnn =

9
√
3

2

(74)φj = 2 cos

(

jπy√
3

)

sin

(

jπ(2+ x)

3

)

− sin

(

2jπ(2+ x)

3

)

(75)�j =
4j2π2

9

Fig. 6   Instantaneous velocity profiles for the isosceles right triangu-
lar duct. K = 20, s = 20. a st = 0, instantaneous velocity from out-
side = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.81, max near corner 0.83, 
b st = 0.5π, instantaneous velocity from outside =  0, 0.1, 0.2, 0.3, 
0.4, max near center 0.457, c st = π, instantaneous velocity from out-
side = 0, −0.1,−0.2, −0.3, −0.4, −0.5, −0.6, −0.7, −0.81, min near 
corner—0.83, local max near center—0.791

Fig. 7   Oscillatory flow rate for EO flow in an isosceles right triangu-
lar duct. a Magnitude versus frequency s. From top K = 50, 20, 10, 5, 
1. b Phase lag versus frequency. From top K = 1, 5, 10, 20, 50
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The steady-state velocity is simplified to

Typical profiles are similar to those shown in Fig. 2. The 
steady flow rate, from Eq. (16), is

We are fortunate that Eq. (77) can be summed into closed 
form (e.g., Jolly 1961)

Equation (78) is shown in Fig. 8. Table 4 shows a com-
parison of this exact result with those of Wang and Chang 
(2011) who used a semi-numerical point match method. 
Here, again we use 16 terms to achieve excellent conver-
gence in the series expansion (78).

(76)w̄ =
∞
∑

j=1

2K2

jπ(�j + K2)
ϕj

(77)Q̄ =
162

√
3K2

π2

∞
∑

j=1

1

j2(4π2j2 + 9K2)

(78)Q̄ =
√
3

K2

[

4+ 3K2 − 6K coth

(

3K

2

)]

The steady flow rate for K = ∞ is the cross-sectional 
area 3

√
3.

The solution to starting flow is given by Eqs. (26, 27). 
Typical velocity profiles are similar to those of the isosce-
les right triangular duct and are not presented in this paper. 
Figure  9 shows the flow rate for starting EO flow. Since 
the lowest eigenvalue is λ1 = 4π2/9, the time to approach 
steady state is approximately 1.1 which is indeed reflected 
in the figure. For oscillatory flow, the amplitude and phase 
lag, as given by Eqs. (35, 36) are shown in Fig. 10.

4.3 � The 30°–60°–90° triangular duct

Figure 1c shows the cross section. The length scale used is 
the short side. The solution to the corresponding Helmholtz 
equation was found by Seth (1947), which in our formula-
tion the eigenfunctions are

The eigenvalues are

Here m  >  0, m �= n, and m ≥ |n|. In terms of increasing 
eigenvalues (increasing j), the (m, n) pairs are (1, −1), (1, 
0), (2, −2), (2, −1), (2, 0), (3, −2), (3, −3), (3, −1), (2, 1), 
(3, 0), (4, −3), (4, −2), (4, −4), (4, −1), (3, 1), (4, 0), etc.

We find

(79)

ϕmn = cos

[

(3+ 2m+ 4n)π

6
(3+ 2x)

]

cos

[

(1+ 2m)π

2

(

1+
2y√
3

)]

− cos

[

(3+ 2n+ 4m)π

6
(3+ 2x)

]

cos

[

(1+ 2n)π

2

(

1+
2y√
3

)]

+ sin

[

(m− n)π

3
(3+ 2x)

]

sin

[

(1+ m + n)π

(

1+
2y√
3

)]

(80)�mn =
4π2

9
[4(m2 + mn+ n2)+ 6(m + n)+ 3]

Fig. 9   Flow rate for starting EO flow in an equilateral triangular 
duct. From top K = 40, 20, 10, 5, 2, 1

Fig. 8   Steady flow rate versus K for the equilateral triangular duct

Table 4   Steady-state EO flow rate for the equilateral triangular duct

K Q̄ exact Eq. (78) Q̄ Point match 
Wang and Chang 
(2011)

Q̄ approx Eq. (20)

1 0.64303 0.643

2 1.7062 1.706

5 3.3948 3.395 3.118

10 4.2262 4.226 4.157

20 4.6939 4.694 4.677

50 4.9911 4.991 4.988

∞ 5.1962 5.196 5.196
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The steady-state solution flow rate, given by Eq. (16), is 
shown in Fig. 11. Table 5 gives the numerical values. Here 
we also use 16 terms to achieve excellent convergence in the 
series expansion (16). The K = ∞ limit is the area 

√
3/2.

Figure 12 shows the starting EO flow rate versus time. 
Since the lowest eigenvalue is λ1  =  28π2/9, the time to 
approach steady state is approximately 5/λ1 ≈ 0.16, which 
is reflected in Fig. 12. For oscillatory EO flow, the magni-
tude and the phase lag are shown in Fig. 13.

5 � Concluding remarks

In this study, we have presented a general procedure of 
using eigenpairs of the Helmholtz equation for solving 

Fig. 10   Oscillatory flow rate for EO flow in an equilateral triangular 
duct. a Magnitude versus frequency s. From top K = 50, 10, 5, 2, 1. b 
Phase lag versus frequency. From top K = 1, 2, 5, 10, 50

(81)Cmn =
3
√
3

π2































1+(−1)n cos[(2m+n)π/3]
(1+2n)(3+4m+2n)

− 1−(−1)m+n cos[(m−n)π/3]
4(m−n)(1+m+n)

− 1+(−1)m cos[(m+2n)π/3]
(1+2m)(3+2m+4n)

+ (3+2m+4n)�1−cos[2(m+2n)π/3]�
8(1+2m)(m−n)(3+4m+2n)

+ (3+4m+2n)�1+cos[(3+4m+2n)π/3]�
8(1+2n)(m−n)(3+2m+4n)

− 1−cos[2(n−m)π/3]
8(1+m+n)(3+2m+4n)

+ 1+sin[(9−4m+4n)π/6]
8(1+m+n)(3+4m+2n)































(82)Dj =
�

Ω

ϕ2
j dΩ =

3
√
3

8

Fig. 11   Steady-state flow rate versus K for the 30°–60°–90° duct
Fig. 12   Transient flow rate versus time t for the 30°–60°–90° duct. 
From top K = 50, 20, 10, 5, 3, 1

Table 5   Steady-state EO flow rate for the 30°–60°–90° triangular 
duct

K Q̄ exact Eq. (16) Q̄ approx. Equation (20)

1 0.01729

5 0.2586

10 0.4798 0.3928

20 0.6511 0.6294

50 0.7742 0.7714

100 0.8174 0.8187

∞ 0.8660 0.8660
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EO flow in micro-ducts. The solutions are exact series 
solutions (some of which are in closed form) under the 
Debye–Hückel approximation. The method has only the 
requirement that the eigenvalues and eigenfunctions of the 
Helmholtz equation can be found for the duct.

The ducts to which the present method of solution is 
applicable include a variety of shapes whose boundaries 
are given in separable coordinates. However, the EO flows 
for these shapes (rectangle, sector, annulus, etc.) are more 
easily obtained by the method of separation of variables. 
Thus, the method of using the Helmholtz eigenfunctions is 
most suitable for cross sections which are not describable 
in separable coordinates. The three examples of triangular 
shapes discussed in this paper have these properties. None-
theless, the method of using Helmholtz eigenfunctions is 
first validated for the EO flow in a circular duct.

The solution in the general formulation enables us to 
identify general behaviors of the flow rates before proceed-
ing with detailed examples. It is the definite signature of 
the differential operator of EO flow that explains the suc-
cess of the Helmholtz eigenfunction method in obtaining 
convergent series solutions. The EO flow is characterized 

by the eigenfunctions of the Helmholtz equations, the 
electrokinetic width K as well as the external forcing fre-
quency s (only for the oscillatory flow). For obvious rea-
sons, the eigenfunctions are shape factors, while K and s 
are non-shape physical factors. Given the geometry of the 
duct, the trend of the steady flow rate is determined by the 
relative importance of λj and K2. For the transient flow, the 
rate with which the EO flow approaches the steady state 
is governed by the first eigenvalue of the Helmholtz equa-
tion. For the oscillatory flow, the magnitude of the EO flow 
rate decreases with increasing the external frequency s, 
while the phase lag β is complicated by all the geometric 
and physical factors. In general, β increases with increasing 
s. At large external frequency s, not only there is a phase 
lag, but also the maximum velocity in the boundary layer is 
closer to the walls.

The three examples of triangular shapes, besides their 
technical contents, not only concretely add to new analyti-
cal solutions for EO flow in ducts, but also testify all the 
salient features revealed from the analytical solutions in 
the general formulation. The general formulation applies 
to cases whether the eigenfunctions can be obtained ana-
lytically (say, by numeric methods) or not. Nevertheless, 
the geometries of triangular ducts considered here are not 
readily amenable to the current fabrication techniques. The 
present work stands from a completely theoretical point of 
view that the choice of test cases (for other numerical or 
experimental methods) can be justified.

As a final remark, in a wider range of applications with 
the ratio � = zeψ0/kbT  being not small but close to 1, the 
DHA is no longer valid and one may resort to the analy-
sis of the Poisson–Boltzmann equation. Nevertheless, in 
the line of our previous approach (Chang et al. 2011), the 
present DHA solution provides the base for extension of 
analysis to the Poisson–Boltzmann equation, or the more 
general Poisson–Nernst–Planck equations. In other realistic 
applications, one may need more accurate model to account 
for the physics and chemistry.
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