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of thin films in the nature, equally divergent are the prop-
erties of the constituent fluids and their physicochemi-
cal interactions with their environments. One of the major 
challenges in the film dynamics is to understand and model 
their interfacial evolution and stability thresholds under 
the influence of a wide range of liquid properties like sur-
face tension, viscosity, van der Waals forces and imposed 
static and time-dependent phenomena such as gravity, tem-
perature gradients, or electric fields. Owing to the complex 
interaction of the mentioned phenomena, a detailed and 
all-inclusive analysis is required, which is not easy and still 
unheard of. However, reviews by Oron and Bankoff (1997), 
Craster and Matar (2009) and Chang et al. (2012) provide 
comprehensive details on the contribution of various physi-
cal phenomena toward film dynamics with the help of a 
single evolution equation of the film thickness. Further, 
one of the mechanisms to create smooth pulsatile motion 
of fluid in thin geometries is time-periodic electro-osmotic 
flow (EOF), which is ascribed to the interactions between a 
wall or interface adhering charged layer [also known as the 
electrical double layer (EDL) (Kirby 2010)] and an exter-
nally applied pulsating electrical field in electrolytic solu-
tions. Although the use of electric fields to actuate liquid 
flows or modification of liquid–substrate interactions have 
been widely studied, the ever-growing literature in the field 
highlights its complexity of contributions from wide range 
of small-scale physical phenomena. Moreover, as soon as a 
physical discontinuity such as a solid–liquid or liquid–gas 
interface is introduced in such systems, the major concerns 
are limited to sustaining either such interfaces or their con-
trolled deformation. The previous studies of the fluid inter-
face instability under electric fields have been discussed in 
a review by Lin et al. (2004). Many of the previously men-
tioned studies have focused on EOF where the EDL is very 
thin and consequently contributes to the bulk dynamics 

Abstract  In this study the dynamics and stability of thin 
and electrically conductive aqueous films under the influ-
ence of a time-periodic electric field are explored. With the 
help of analytical linear stability analysis for long wave-
length disturbances, the stability threshold of the system as 
a function of various electrochemical parameters and trans-
port coefficients is presented. The contributions of param-
eters like surface tension, disjoining pressure, electric dou-
ble layer (Debye length and interfacial zeta potential), and 
unsteady Maxwell and viscous stresses are highlighted with 
the help of appropriate dimensionless groups. The physical 
mechanisms affecting the stability of thin films are detailed 
with the above-mentioned forces and parametric depend-
ence of stability trends is discussed.

1  Introduction

The ever-growing attention toward understanding the 
dynamics of thin liquid films can be attributed to their ubiq-
uitous presence all around us. From biological entities like 
tear film (Braun 2012) in the eyes or mucous lining in the 
organs, they are also found in manmade objects like bear-
ings, paints, adhesives. As widespread is the availability 
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through an electro-osmotic slip velocity. However, when 
the characteristic length scale of the liquid flow becomes 
comparable to the EDL thickness, a more detailed analysis 
of the influence of the space charge distribution on the bulk 
liquid dynamics is required (Kirby 2010). Such a system 
in the presence of a deformable interface as in a thin liquid 
film can lead to a complex interaction of various effects like 
surface tension, disjoining pressure and Coulombic forces. 
This can lead to an overlap of their individual contributions 
toward film stability thresholds, generating interesting sta-
bility trends, which are tunable over a wide range of exter-
nal field strengths and fluid properties. Ray et  al. (2011) 
have presented interesting insights into the combined effect 
of surface tension and Coulombic forces on the long wave 
instability of thin electrolytic films. They have also stud-
ied the nonlinear evolution of the film surface under such 
instabilities (Ray et  al. 2013). Conroy et  al. (2010) dem-
onstrated the stability and evolution of thin annular elec-
trolytic films with the help of full numerical solutions of 
the interfacial evolution and estimation of film breakdown 
time. Ketelaar and Ajaev (2014) studied the stability of thin 
electrolytic films under charge regulation that defines the 
electrostatic behavior of the film surface. They identified 
constant potential and constant charge density at the inter-
face as special cases of charge regulation and presented the 
corresponding stability bounds of thin electrolytic films. 
Savettaseranee et al. (2003) investigated the effect of Max-
well stress and van der Waals forces on the instability of 
leaking dielectric films, where the effect of Maxwell stress 
on film stability is restricted to the interfacial stress bal-
ance conditions. However, all the mentioned studies have 
limited their scope to steady electric fields, overlooking the 
possible contribution of van der Waals and capillary forces 
in thin film instability under a pulsating actuation. In this 
paper, the interfacial instability of an electrically conduct-
ing aqueous film is explored under the combined influence 
of oscillating electric field, capillary, and intermolecular 
forces. An asymptotic long wave stability analysis is per-
formed to obtain the stability boundaries of the system as a 
function of relevant dimensionless groups, each represent-
ing the relative strengths of the above-mentioned forces.

2 � The physical system

The system under study consists of a thin electrolyte film 
spread over a rigid solid substrate exposed to an inert 
gaseous atmosphere (see Fig.  1). The film thickness is 
denoted by h(x,  t). The dynamics of such a film is stud-
ied under the effect of a longitudinal oscillating electric 
field, Eapp = E0 sin (ωt), where E0 is the amplitude and ω 
is the frequency. The electrolyte concentration is consid-
ered to be small in magnitude (~0.1–10  mM) in order to 

neglect the liquid property changes due to Joules heating 
(Lin et al. 2004), even so in the case of an applied electric 
field of large amplitude. This low electrolyte concentra-
tion also avoids complexities in flow modeling by reduc-
ing the nonlinear dependence of electrophoretic mobility 
of ions on the sparse space–charge distribution (Wei and 
Patey 1991; Borukhov et  al. 1998; Yossifon et  al. 2009; 
Fedorov and Kornyshev 2008; Dufreche et al. 2005; Song 
and Kim 2011). When such aqueous electrolyte comes into 
contact with a substrate like silica, glass, polymers, and 
some other chemically active substrates, there is a possibil-
ity of a series of ionic exchanges such as protonation, de-
protonation, adsorption, and some chemical reactions at the 
solid–liquid interface. The ionic exchanges, after attaining 
equilibrium, leave the surface charged (Israelachvili 2011). 
Such a charged surface can be associated with a zeta poten-
tial. In this study, the solid substrate zeta potential is con-
sidered to be ζb, which is a function of the substrate–liq-
uid interaction, ionic concentration, and pH of the solution 
(Kirby and Hasselbrink 2004a). A liquid surface exposed 
to a gaseous environment (liquid–gas interface) develops a 
charge which is a function of various parameters like ionic 
concentration, pH of the solution and valence of the ions 
involved (Gray-Weale and Beattie 2009; Manciu and Ruck-
enstein 2012a; Li and Somasundaran 1991). The origin of 
interfacial potential (ζInterface) at the air–water interface is 
one of the least understood phenomenon in the world of 
surface science (Chaplin 2009). The plausible mechanisms 
for the origin of air–water interfacial charge include pref-
erential presence of hydroxyl, hydrogen, or various other 
dissolved ions and/or restructuring of water molecules near 
the air–water interface. Although the source of charges 
at the liquid–gas interface has been highly debated in the 
existing literature (Garrett 2004; Manciu and Ruckenstein 
2012b), one of the concluding evidences of a charged air–
water interface is the presence of an interfacial zeta poten-
tial at such interfaces, which is independent of the interfa-
cial extent and has been found to demonstrate both positive 

Fig. 1   Schematics of the thin film time-periodic EOF system
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and negative values (Manciu and Ruckenstein 2012a, b; 
Ciunel et al. 2005). The associated zeta potential (ζInterface ) 
has been measured experimentally and is found to vary 
over a wide range of magnitudes (Yang et al. 2001; Graciaa 
et al. 1995; Choi et al. 2011).

3 � Electric potential field

3.1 � Electric potential field due to ionic charge 
distribution

The electrostatic potential distribution in liquid due to the 
space charge distribution (φsc), can be expressed by Gauss 
law as,

where, ρe is the net charge density, e is the electronic 
charge, zi is the valence of the ions, Ci is the ionic concen-
tration of the ith ionic species and ε is the permittivity of 
liquid. The charge transport equation in the liquid solution 
can be modeled using the Poisson–Nernst–Planck equation 
(Israelachvili 2011) as,

where, u and Di are, respectively, the convective veloc-
ity field and the diffusivity in the liquid solution of the ith 
ionic species, kB is the Boltzmann constant and T is the liq-
uid temperature.

The dimensionless form of Eq. (2) leads to,

where Ci = Ci

Cref
, u = u

uref
, Θ = ωt, and Φsc = φsc/ζb (ω 

is the imposed frequency). The three non-dimensional 
parameters appearing in Eq.  (3) are the Péclet number, 
Pei = urefh0

Di
 (h0 is the height of the initial flat interface), the 

Womersley number expressing the relative strength of tem-

poral inertial force over the viscous force, Wo =
√

ωh20/ν , 
the Schmidt number, Sci = ν/Di, and the ionic energy 
parameter which measures the relative strength of the elec-
trostatic energy of ions with respect to the thermal energy 
of ions, χi = zieζb/(kBT). In this study, we will be focus-
ing on films of thickness, h0 ∼ O(10−7) m. In such a limit, 
the reference velocity can be considered as the electro-
osmotic slip velocity, uref = uHS = −εζbEapp/µ (Ghosal 
2006), where Eapp is the applied electric field. With the 
help of representative values considered in Sect.  7.1, and 
Di ∼ O(10−9) m2/s (Cussler 2009), one can estimate 
Pei ∼ O(0.1). Thus, in such cases, the advective terms of 

(1)−∇ · (ε∇φsc) = ρe =
∑

i

eziCi

(2)
∂Ci

∂t
+∇ · (uCi) = ∇ · (Di∇Ci)+

zie

kBT
∇ · (DiCi∇φsc)

(3)Wo2Sci
∂C̄i

∂Θ
+ Pei∇ ·

(
ūC̄i

)
= ∇ ·

(
∇C̄i

)
+ χi∇ ·

(
C̄iΦsc

)

ionic species can be neglected as compared to the diffusive 
transport. The resulting quasi-equilibrium system (steady 
assumption) gives a Boltzmann distribution of ionic species 
from Eq. (2),

where C0,i is the bulk concentration of ith ionic spe-
cies. Considering the electrolyte to be symmetric 
i.e. |z+| = |z−| = z, with isotropic permittivity, one can 
obtain the classical Poisson–Boltzmann equation (PBE) 
from Eqs. (1) and (4) as,

where C0 is the neutral bulk ionic concentration of the 
solution. In order to isolate the electric effects as the domi-
nating forcing mechanism, the system under study is con-
sidered to have large lateral extents, which results into 
negligible x-gradients as compared to y-gradients. Upon 
non-dimensionalizing the PBE (Israelachvili 2011) using 
Φsc = φsc/ζb, and Y = y/h0, Eq. (5) leads to,

where, β = h20/
(
�
2
Dχ

)
 and �D =

√
εkBT/

(
2z2e2C0

)
 is the 

Debye length. The associated boundary conditions are,

where ZR = ζInterface/ζb. However, for low-concentration 
aqueous electrolytes, the interfacial zeta potentials show 
low magnitudes that can lead to a low χ (Kirby and Has-
selbrink 2004b). For a monovalent symmetric electrolyte 
χ  <  1 corresponds to ζb < 25mV at 25  °C. In that case 
Eq.  (6) can be linearized as (also known as the Debye–
Hückel linearization),

where De = �D/h0 is the Debye number which represents 
the relative extent of the electric double layer with respect 
to the liquid film thickness. Under this formalism, which 
includes a diffusion dominant transport of ionic charges 
(Pe < 1) and a low-concentration aqueous electrolyte 
(χ < 1) assumption, Eq. (3) can be reduced to a simplified 
boundary value problem for Φsc which includes Eqs.  (7) 
and (8). They can be solved analytically to obtain the fol-
lowing closed-form solution,

(4)Ci = C0,i exp

(
−
zieφsc

kBT

)

(5)ε∇2φsc = 2zeC0 sinh

(
zeφsc

kBT

)

(6)
d2Φsc

dY2
= β sinh (χΦsc)

(7)Φsc(0) = 1, Φsc(1) = ZR

(8)
d2Φsc

dY2
=

Φsc

De2

(9)

Φsc(Y) =
1

sinh
(

1
De

)
{
ZR sinh

(
Y

De

)
+ sinh

(
1− Y

De

)}
.
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3.2 � Electric potential field due to the applied electric 
field

The applied electric field is assumed to be a time-periodic 
field which can be represented as,

The electric potential due to the externally oscillating 
applied electric field (Φapp) can be written in the dimen-
sionless form as,

where Φapp = φapp/ζb, X = x/h0, Θ = ωt are the dimen-
sionless variables and ER = ζb/E0h0 is the relative strength 
of electric field due to space charge distribution and the 
amplitude of the external field. The net electric potential in 
the system can be written as a sum of the potential field 
due to the space charge distribution (Φsc) and the externally 
applied electric field (Φapp). While, the space charge poten-
tial distribution (Φsc) for large wall zeta potential systems 
(χ ≥ 1) has to be obtained numerically, for low wall zeta 
potential systems (χ < 1), the net potential field is obtained 
analytically and can be written as,

where Φ = φ/ζb is the dimensionless total electric poten-
tial of the system.

4 � Hydrodynamic modeling

4.1 � Governing equations

The oscillating electric field along with the space charge 
distribution induces a time-dependent Maxwell stress (ΣM ) 
in the liquid, which in the absence of magnetic fields can be 
represented as,

where E = −∇φ is the electric field vector in the system. The 
total stress tensor (ΣT) (along with the hydrodynamic stress 
tensor (ΣH) for a Newtonian fluid) can then be expressed as,

(10)Eapp = −
dφapp

dx
= Im

(
E0e

iωt
)

(11)Φapp = −
∫

Eapph0

ζb
dX = −

X

ER

Im
(
eiΘ

)

(12)

Φ(X , Y ,Θ) = Φapp(X ,Θ)+Φsc(Y) = −
X

ER

Im
(
e
iΘ

)

+
1

sinh
(

1
De

)
{
ZR sinh

(
Y

De

)
+ sinh

(
1− Y

De

)}

(13)Σ
M = −

ε|E|2

2
I + εE⊗ E

(14)

Σ
T = Σ

H +Σ
M = −

(
p+

ε|E|2

2

)
I + µ

(
∇u+∇u

T

)
+ εE⊗ E

where u = ui + vj is the liquid velocity vector,p is the 
hydrostatic pressure in the liquid, µ is the dynamic viscos-
ity of the solvent, I is the unit tensor.

In situations involving thin films where the Debye length 
is of the order of the film thickness, the effect of intermo-
lecular interactions cannot be ignored. This intermolecu-
lar interaction for a plane-parallel film manifests itself in 
the momentum equations as an excess pressure term, also 
known as the disjoining pressure (Derjaguin and Churaev 
1978) given by,

where a is the Hamaker constant and h is the film thick-
ness. Considering an incompressible flow, the conservation 
of mass and momentum result into the following equations, 
respectively,

The substrate at the bottom (y = 0) is considered to be 
rigid and impermeable which allows us to have a no-slip 
and no-penetration boundary condition as,

The free surface is initially flat and stationary and 
is geometrically placed at y =  h0. After the interface is 
destabilized, it is represented by y =  h(x,  t). For a per-
turbation of small amplitude compared to its wavelength, 
one can express the boundary conditions at y =  h(x,  t) 
as a first-order Taylor series expansion of the base state 
boundary conditions at y = h0. The deformation of a flat 
fluid surface generates viscous stresses. The resulting cur-
vature due to a disturbance, introduces a jump in the nor-
mal component of the total stress, which is balanced by 
the surface tension,

where n is the normal vector at the free surface, γ is the 
surface tension coefficient, κ is the mean curvature of the 
interface, and R is the radius of curvature of the interface. 
The stress free condition of a free surface is realized by 
balancing off the total tangential stress, which has the 
contributions from the electrical and viscous stresses,

(15)pd = −
a

6πh3

(16)∇ · u = 0

(17)
ρ

(
∂u

∂t
+ (u ·∇)u

)
= ∇pd +∇ ·ΣT

= ∇pd −∇p+ µ∇2
u+∇ ·ΣM

(18)u(0, t) = 0, v(0, t) = 0.

(19)
[
n ·ΣT · n

]
y=h(x,t)

= 2κγ = γ

(
1

R
−

1

∞

)
=

γ

R

(20)
[
t ·ΣT · n

]
= 0
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where t is the tangential vector at the free surface. The 
fluid velocity at the free surface satisfies the kinematic 
constraint as,

The dimensionless conservation equations are writ-
ten using the scaling parameters as, Θ = ωt, U = u/uref, 
V = v/uref, P = ph0/(µuref), Π = pdh0/(µuref) as,

where Wo =
√

ωh20/ν is the Womersley number expressing 
the relative strength of temporal inertial force over the vis-
cous dissipation force, γR = εE0ζb/(µuref) = −uHS/uref is 
the relative strength of the electrical body forces over the 
viscous dissipation force and is henceforth referred to as 
electroviscous ratio, uHS = −εE0ζb/µ is the Helmholtz–
Smoluchowski slip velocity and Re = ρurefh0/µ is the 
Reynolds number. The term ∂Π

∂X
= A

H4
∂H
∂X

 is the contribution 
from the disjoining pressure where, A = a/

(
2πh20µuref

)
 is 

the dimensionless Hamaker constant and H = h/h0. The 
dimensionless boundary conditions are,

At the wall, Y = 0:

At the free surface, Y = H(X,Θ), the dimensionless 
continuity of tangential stress and normal stress, respec-
tively, are,

(21)
∂h

∂t
+ (u · ∇)h = v|y=h(x,t).

(22)Continuity:
∂U

∂X
+

∂V

∂Y
= 0

(23)

Momentum: Wo
2
∂U

∂Θ
+ Re

(
U
∂U

∂X
+ V

∂U

∂Y

)

=
∂Π

∂X
−

∂P

∂X
+

∂2U

∂X2
+

∂2U

∂Y2
+ γRER

∂Φ

∂X

∂2Φ

∂Y2

(24)

Wo
2
∂V

∂Θ
+ Re

(
U
∂V

∂X
+ V

∂V

∂Y

)

= −
∂P

∂Y
+

∂2V

∂X2
+

∂2V

∂Y2
+ γRER

∂Φ

∂Y

∂2Φ

∂Y2

(25)U(0,Θ) = 0, V(0,Θ) = 0

(26)

(
∂U

∂Y
+

∂V

∂X

)(
1−

(
∂H

∂X

)2
)

− 4
∂H

∂X

∂U

∂X

+ γRER

(
∂Φ

∂X

∂Φ

∂Y

(
1−

(
∂H

∂X

)2
)

−
∂H

∂X

((
∂Φ

∂X

)2

−
(
∂Φ

∂Y

)2
))

= 0

where Ca = µuref/γ is the capillary number. The dimen-
sionless kinematic constraint at the free surface is,

5 � Base state solution

The base state flow is considered to be a laminar flow 
(V = 0) with a planar free surface (H = 1). Hence, in the 
absence of an external pressure gradient, the dimensionless 
conservation Eqs. (22)–(24) reduce to,

The boundary conditions by non-dimensionalizing 
Eqs. (25) and (26) can be written as,

The solution of the system of Eqs.  (29)–(32) can be 
obtained by decomposing the velocity into time and space-
dependent functions as,

(27)

−

(
P +

γRER

2

((
∂Φ

∂X

)2

+
(
∂Φ

∂Y

)2
))

+
2(

1+
(
∂H

/
∂X

)2)
(
∂U

∂X

((
∂H

∂X

)2

− 1

)

−
∂H

∂X

(
∂U

∂Y
+

∂V

∂X

))

+
γRER(

1+
(
∂H

/
∂X

)2)
((

∂H

∂X

)2(
∂Φ

∂X

)2

+
(
∂Φ

∂Y

)2

− 2
∂H

∂X

∂Φ

∂X

∂Φ

∂Y

)

=
1

(
1+

(
∂H

/
∂X

)2)3/2
Ca

∂2H

∂X2

(28)
Wo2

Re

∂H

∂Θ
+ U

∂H

∂X
= V .

(29)
∂Ub

∂X
= 0

(30)Wo2
∂Ub

∂Θ
=

∂2Ub

∂Y2
+ γRER

dΦapp

dX

d2Φsc

dY2

(31)0 = −
∂Pb

∂Y
+ γRER

∂Φsc

∂Y

d2Φsc

dY2

(32)

Ub(0,Θ) = 0,
∂Ub

∂Y

∣∣∣∣
Y=1

+ γRER

∂Φapp

∂X

∂Φsc

∂Y

∣∣∣∣
Y=1

= 0.

(33)
Ub(Y ,Θ) = Im

(
Ub1(Y)e

iΘ
)
.
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Upon substituting Eq.  (33) in Eqs.  (30) and (32), an 
ordinary differential equation in Ub1(Y) is obtained as,

The corresponding boundary conditions are,

Hence, upon solving Eqs. (34, 35), the resulting velocity 
profile can be obtained (see Appendix A for the complete 
expression of the base state velocity profile).

The base state pressure (Pb), henceforth called as the 
electro-osmotic pressure (PEO), is obtained from Eq. (31) as,

From the above expression for electro-osmotic pressure 
(PEO = Pb(Y, Θ)) one can see the distinct contributions of 
EDL potential (Φsc) and the applied potential bias (Φapp). 
In other words, the electro-osmotic pressure, PEO, can be 
written as a sum of the two mentioned contributions as, 

PEO = PEDL + PEF where PEDL = γRER
2

(
dΦsc

dY

)2
 is the EDL 

pressure and PEF = − γR
2ER

Im
(
ei2Θ

)
 is the pressure induced 

due to the applied electric field. It is interesting to note that 
PEDL is always positive (repulsive) and hence can have a 
significant contribution toward stability of thin films with 
significant EDL size. The detailed contribution of EDL 
pressure toward film stability is discussed later.

6 � Linear stability analysis

The perturbations in the flow variables are introduced as, 
U = Ub + Ũ, V = Ṽ , P = Pb + P̃, and H = 1+ H̃. At this 
point, we would like to discuss the non-inclusion of per-
turbation in the electrostatic potential field in the transport 
equations. Since in the present work we are proposing a 
fully analytical approach toward stability prediction of a 
rather complex system, we are not exploring the temporal 
evolution of the interface under perturbation. To that end, 
we have assumed a “perpetual” equipotential gas–liquid 
interface, where infinitesimal stretching or contraction of 
the interface will not affect the interfacial charge distribu-
tion. Since, we are also considering here that the origin 
of interfacial charge is due to internal redistribution of 
charges rather than some chemical reaction as a source or 
sink of the charges, the former is independent of the super-
ficial extent of the interface (see Sect. 3.1). Further, in the 

(34)iWo2Ub1 =
d2Ub1

dY2
− γR

d2Φsc

dY2
.

(35)
dUb1

dY

∣∣∣∣
Y=1

− γR
dΦsc

dY

∣∣∣∣
Y=1

= 0, Ub1(0) = 0.

(36)

Pb(Y ,Θ) =
γRER

2

(
dΦsc

dY

)2

−
γRER

2

(
dΦapp

dX

)2

=
γRER

2

(
dΦsc

dY

)2

−
γR

2ER

Im
(
ei2Θ

)
.

electrolyte bulk, the electrostatic potential distribution is 
nonexistent due to the electroneutrality condition. The 
velocity components are converted into stream function 
using Ũ = ∂Ψ̃ /∂Y  and Ṽ = −∂Ψ̃ /∂X. The normal mode 
perturbations are considered with small amplitude and with 
long wavelength (�L ≫ h0 ≫ H̃) as,

where α = 2πh0/�L is the dimensionless wavenumber and 
λL is the wavelength of the perturbation. Upon substituting 
the flow variables with the perturbations mentioned above 
in the Eqs. (22)–(28), linearizing and eliminating the pres-
sure, the following Orr–Sommerfeld equation is obtained 
as,

The boundary conditions using the normal mode repre-
sentation of the perturbation parameters can be written as,

where Ca = Ca/α2. For thin film flows with long wave-
length perturbations h0/�L ≪ 1 which leads to α  ≪  1 
(Oron and Bankoff 1997). Using Floquet theory, 
Ψ (Y ,Θ) = Ψ̂ (Y ,Θ)eσΘ and H(Θ) = Ĥ(Θ)eσΘ where σ 
is the dimensionless Floquet exponent and using asymp-
totic expansions in small parameter (α ≪  1), the ampli-
tudes (Ψ̂ (Y ,Θ), Ĥ(Θ)) can be expanded as,

(37)

Ψ̃ (X, Y ,Θ) = Ψ (Y ,Θ)eiαX

P̃(X, Y ,Θ) = P(Y ,Θ)eiαX

H̃(X,Θ) = H(Θ)eiαX

(38)

(
∂2

∂Y2
− α2

)2

Ψ −
(
Wo

2
∂

∂Θ
+ iαReUb

)(
∂2

∂Y2
− α2

)
Ψ

+ iαRe
∂2Ub

∂Y2
Ψ = 0.

(39)Ψ (0,Θ) = 0,
∂Ψ

∂Y
(0,Θ) = 0

(40)

(
∂2

∂Y2
+ α2

)
Ψ (1,Θ)+ H(Θ)

∂2Ub(1,Θ)

∂Y2

− iαγRERH(Θ)

((
∂Φ

∂X

)2

−
(
∂Φ

∂Y

)2
)∣∣∣∣∣

Y=1

= 0

(41)

(
∂

∂Y2
− 3α2

)
∂Ψ (1,Θ)

∂Y
−Wo

2
∂2Ψ (1,Θ)

∂Θ∂Y

− iαRe

(
Ub(1,Θ)

∂

∂Y
−

∂Ub(1,Θ)

∂Y

)
Ψ (1,Θ)

= iαH(Θ)

(
1

Ca
− A

)

(42)
Wo2

Re

dH

dΘ
+ iαUb(1,Θ)H(Θ) = −iαΨ (1,Θ)
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Upon solving the resulting set of equations for different 
orders of α (the details of which can be found in Appendix 
B), the characteristic equation of the system in its simpli-
fied form is obtained as,

The observed form is consistent with the form of growth 
rate for thin electrolytic films as obtained by some recent 
works on thin electrolytic film stability (Conroy et al. 2010; 
Ketelaar and Ajaev 2014). For sake of brevity, the lengthy 
expression of g(Re,De,Wo,ER, γR, ZR) is not shown here. 
The following results are focused on the marginal stabil-
ity curves showing the critical wave number obtained from 
Eq. (44) by setting σ = 0 as,

7 � Results

7.1 � System parameters

To estimate the values of the dimensionless parameters 
used in present study, an aqueous solution is considered as 
the working fluid where the transport coefficients are taken 
to be of water at the normal temperature and pressure, viz. 
ρ ∼ 103 kg/m3, µ ∼ 10−3 Pa s, ε ∼ 80ε0, where, ε0 is the 
permittivity of vacuum, the surface tension between water 
and air,γ is taken as 0.072 N/m, the Hamaker constant, a as 
10−20 J, the substrate zeta potential, ζb as 10 mV (Kirby and 
Hasselbrink 2004b; Manciu and Ruckenstein 2012a), the 
applied electric field E0 as 1 kV/cm, and ω ~ 1 MHz is the 
applied frequency. The ionic concentration in the system 
is considered to be low (C0 ∼ O

(
10−4

)
M) which gives a 

Debye length �D ∼ O
(
10−9

)
m. Such a small ionic con-

centration helps to consider linearized PBE for estimating 
the dynamics of ions in the electrolyte film. In this study, 
upon considering the film thickness of the order of 100 nm, 
the Debye number can be estimated as De ∼ O(0.1). The 
corresponding characteristic electro-osmotic slip velocity, 
uHS = −εζbE0/µ, is thus of the order of 1 mm/s. For a film 
thickness h0 of 100 nm, the dimensionless parameters can 
be estimated as, Hamaker constant, A ∼ O(0.1), the elec-
troviscous ratio, γR ∼ O(1), the relative strength of electric 
field ER ∼ O(1), Capillary number, Ca ∼ O

(
10−5

)
 and 

Reynolds number, Re ∼ O
(
10−4

)
. Moreover, the above 

Ψ̂ (Y ,Θ) = Ψ̂0(Y ,Θ)+ αΨ̂1(Y ,Θ)+ α2Ψ̂2(Y ,Θ)+ · · ·

Ĥ(Θ) = Ĥ0(Θ)+ αĤ1(Θ)+ α2Ĥ2(Θ)+ · · ·

(43)σ = σ0 + ασ1 + α2σ2 + · · ·

(44)σ =
α2Re

3Wo2

(
g(Re,De,Wo,ER, γR, ZR)+ A−

α2

Ca

)
.

(45)αc =
√
Ca

[
g(Re,De,Wo,ER, γR, ZR)+ A

]
.

flow control parameters are varied further in order to illus-
trate the parametric dependence of the free surface stability 
of the system.

7.2 � Instability mechanism

7.2.1 � Contribution of capillary and disjoining pressure

The stability of a thin film under electro-osmotic flow can be 
attributed to the competing dynamics between the capillary 
forces through Laplace pressure (PL), van der Waals forces 
through disjoining pressure (Π) and electrostatic forces 
through the electro-osmotic pressure (PEO). The Laplace 
pressure contribution (via Capillary number, Ca ) and dis-
joining pressure contribution (via dimensionless Hamaker 
constant, A) appear together at the free surface boundary 
condition in a contrasting sense (see Eq. 41), showing the 
existence of conflicting forces even when the film is static.

When the film surface is perturbed by a small amplitude 
disturbance, the induced curvature forces the local Laplace 
pressure (PL ∼ γ κ) to become greater (or smaller) than 
the bulk pressure creating an outflow (or inflow) of liquid 
restoring the equilibrium configuration of the film (see 
Fig. 2a). However, the long-range nature of the disjoining 
pressure has a permanent effect on the film dynamics. A 
negative disjoining pressure (Π  <  0, Π ∼ − A

H3) between 
the interfaces leads to an attraction between them forcing 
a film breakup, while a positive disjoining pressure (Π > 0) 
leads to a repulsion between the interfaces, causing a film 
build-up (see Fig.  2a). Moreover, upon application of an 
oscillating electric field, the stability characteristics of the 
film can be modified as compared to the static case (see 
Fig. 2b, c). The details of the effect of oscillating electric 
field and EDL parameters are discussed in the following 
sections.

7.2.2 � Contribution of EDL

Within an EDL, two important interactions between ions 
can be identified, firstly, the repulsive Coulombic interac-
tion between the counter ions, and secondly, the configura-
tional entropy of the counter ion distribution, which resists 
the configurational change due to the Coulombic repulsion 
(Israelachvili 2011). Such a competition between the two 
phenomena manifests itself in terms of a pressure, which 
has been termed as the EDL pressure (PEDL). The EDL 
pressure distribution in a thin film has been obtained from 
the basic state solution of the system (see Eq. 36).

The positive nature of PEDL can be attributed to the 
entropic origin of the pressure (Israelachvili 2011). The dif-
fused cloud of counter ions in an EDL is maintained in an 
equilibrium through mutual repulsions which forces them 
away from the oppositely charged substrate (or interface) 
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and hence leads to a configurational entropy. When two 
such ordered charged clouds (diffused charges in the EDL) 
are brought closer through a perturbation, a repulsive force 
initiates between the two charged clouds, restoring the 
equilibrium and stabilizing the film. From Fig. 3, one can 
observe that a charged free surface (ZR �= 0) over a charged 
substrate (γRER �= 0) is relatively more stable than an 
uncharged free surface (ZR = 0). The case of a charged free 
surface over a charged substrate creates two interfaces with 
diffused charge distribution following the stability dynam-
ics mentioned above. Moreover, the symmetry observed in 

the marginal stability curves (see Fig. 3) about ZR = 0 jus-
tifies the entropic rather than Coulombic origin of the EDL 
pressure where the polarity of the free surface charge cloud 
does not affect the stability of the film.

Another parameter associated with the EDL is the extent 
of the diffused charge penetration in the bulk. This extent 
of the diffused charge distribution is characterized by the 
Debye length (λD). The relative extent of the EDL thick-
ness as compared to the film thickness is represented in 
this work through Debye number, De. For thin EDLs (i.e., 
small De) one can imagine a closer packing of diffused 

(a)

(b) (c)

Fig. 2   a Schematics which demonstrates qualitatively the influence 
of disjoining pressure (Π) and Laplace pressure (PL) under a posi-
tive (crest) and negative (trough) perturbation in the interface (black 
line), direction of fluid movement (arrows), and evolved shape of the 
interface after stability/instability has set in (blue lines). b Marginal 
stability curves showing the critical wave number as a function of the 

dimensionless Hamaker constant, A in the absence of time-periodic 
electric field with De = 0.1. c Marginal stability curves showing 
the critical wave number as a function of the dimensionless Ham-
aker constant, A in the presence of time-periodic electric field with 
De = 0.1, ZR = 0.01, Re = 10

−4, γR = 1, Wo = 1 (color figure online)

Fig. 3   Marginal stability curves 
showing the critical wave 
number as a function of the zeta 
potential ratio (ZR) with stabil-
ity trends for different values of 
substrate zeta potential (γRER)  
in the absence of external 
electric field at a De = 0.01, b 
De = 0.1 with Ca = 10

−5 and 
A = 0.1
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ions leading to a higher configurational entropy and hence 
greater repulsion between the interfaces, leading to a more 
stable film. This idea is also observed in Fig. 3 where thin-
ner EDL (De = 0.01) (see Fig.  3a) is more stable than a 
thicker EDL (De = 0.1) (see Fig. 3b).

7.2.3 � Contribution of the oscillating electric field

An oscillating electric field acting on a charged inter-
face introduces a time-dependent dispersive field near the 
interfaces (see Fig.  4a). It can be seen that the maximum 
magnitude of the vorticity (|ω| = |∇ × Ub| = |∂Ub/∂Y | ) 
occurs at the interface. The deformation of the free surface 
is dependent upon the strength of this vortex which is a 
function of various parameters like Debye number, which 
accounts for the diffusive extent of the electrical effects in 
the bulk, the strength of the applied electric field (γR/ER ) 
and the strength of the interfacial polarity (γRER, ZR). 
However, it is also known that any deformation in such an 
interface is countered by a dissipating viscous stress. The 
strength of this viscous damping mainly depends upon 
parameters like the Reynolds and Womersley numbers, 
which account for the diffusive extent of the viscous effects 
in the bulk. The two competing mechanisms mentioned 

above contribute to the neutral stability characteristics of 
the system. Upon changing the Reynolds number by keep-
ing all the other parameters fixed, which is equivalent to 
changing the dynamic viscosity, one observes from the 
marginal stability curves (αc, Wo) that more viscous fluids 
(smaller Re) are more stable as compared to less viscous 
fluids (larger Re) (see Fig.  4c). Thin EDLs (smaller De) 
owing to their smaller spatial extent of charge have high-
velocity gradients as compared to thicker EDLs (larger 
De ). This is also observed in Fig. 4a. Hence, for thin EDLs 
(smaller De) the film is expected to be more unstable as 
compared to films with thicker EDLs (see Fig.  4b). The 
electro-osmotic velocity distribution in the film is directly 
proportional to the strength of the applied electric field. 
Hence, upon increasing the strength of the applied electric 
field, the strength of the free surface vortex is enhanced 
thus leading to a more unstable system (see Fig. 4d).

7.3 � Maximum instability growth rate

From Eq. (44), we can estimate the maximum growth rate 
(σmax) as,

(46)
σmax =

Re

12Wo2
Ca

[
g(Re,De,Wo,ER, γR, ZR)+ A

]2

Fig. 4   a Base state vorticity 
(|ω| = |∇ × Ub|) distribution 
over the film thickness at γR = 1, 
ZR = 1. b Marginal stability curves 
showing the critical wave number 
as a function of the Debye number 
(De) with stability trends for differ-
ent values of Womersley number 
(Wo). c Marginal stability curves 
showing the critical wave number 
as a function of Wo with stabil-
ity trends for different values of 
Reynolds number (Re). d Marginal 
stability curves showing the critical 
wave number as a function of Wo 
with stability trends for different 
values of Electric field strength 
(γR/ER)
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which corresponds to the wavenumber, αmax defined by 
Eq. (47) under the condition, g(Re,De,Wo,ER, γR, ZR) ≥ −A.  
The expression for αmax can be written as,

where we can see that αc > αmax. This suggests that the 
critical wavelength ( 1

αc
) for instability is smaller than 

the fastest growing wavelength ( 1
αmax

). Moreover, we see 
that σmax scales linearly with the capillary number. That 
is upon decreasing surface tension, the instability grows 
at a faster rate. Similarly, σmax increases with A > 0 and 
decreases for A < 0, which is again consistent with our 
previous observations. Figure  5 shows the variation in 
σmax in the phase space of Wo and De. We have chosen 

(47)αmax =

√
Ca

[
g(Re,De,Wo,ER, γR, ZR)+ A

]

2
=

αc√
2

the representative set of Wo and De phase space as they 
correspond to, respectively, the dynamic and static parts 
of electric potential field. One of the most remarkable 
observations from the plots of σmax is that the high-fre-
quency electrokinetic actuation of the electrolytic film 
strongly suppresses the growth rate of the instability as 
compared to the low-frequency actuation regime. Fur-
ther, for large range of Wo, especially at high frequencies, 
the greater the penetration depth of the diffused charge 
distribution (De ↑), the slower is the instability propaga-
tion (σmax↓). Moreover, in the absence or a low strength 
of net charge or zeta potential (ZR = 0) on the surface 
of the electrolytic film, the effect of penetration depth of 
diffuse charge distribution (De) due to the charged solid 
substrate, is insignificant on the growth rate of the film 
instability.

Fig. 5   Variation in σmax in the phase space of Wo and De. Upon 
using a fixed set of parameters as, γR = 1, Ca = 10

−4, Re = 10
−2,  

ER = 10
−2, the distribution in σmax is plotted for a A = 0.5, 

ZR = 0.5, b A = −0.5, ZR = 0.5, c A = 0.5, ZR = 0, d A = −0.5, 
ZR = 0. The values of σmax are rounded off to the fifth decimal place
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8 � Conclusions

With the help of linear stability analysis for long wavelength 
disturbances, stability thresholds of a thin aqueous film 
under time-periodic electro-osmotic flow are explored with 
the help of an analytical formulation. It is observed that the 
stability of a thin electrically conducting aqueous film can be 
precisely controlled by varying the electrochemistry of the 
film (Debye length and interfacial zeta potential) and also the 
frequency and amplitude of the applied electric field. Phe-
nomena that are observed to have a stabilizing effect on the 
film dynamics are surface tension, repulsive disjoining pres-
sure (A < 0), osmotic pressure due to the EDL at the inter-
faces and viscous dissipation. The phenomena contributing 
toward the instability of the film are attractive disjoining 
pressure (A > 0), thin EDLs (De ≪ 1), external electric field 
driving the electro-osmotic flow, and low frequencies. How-
ever, due to a complex interaction of all the above phenom-
ena together, the individual stability thresholds overlap, gen-
erating interesting stability trends, which are tunable over a 
wide range of the above, mentioned parameters. Such a gen-
eralized analysis helps identifying parametric boundaries for 
sustaining thin films over a wide range of fluid properties and 
operating conditions. However, a more detailed understand-
ing of such a complex thin film stability requires an analysis 
of nonlinear film evolution under various parameter sets of 
the coupled physical effects and is under investigation.
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Appendix 1: Base state velocity

 The base state velocity profile can be written as,

where,

(48)Ub(Y ,Θ) = Im

(
Ub1(Y)e

iΘ
)
= U1(Y)cos(Θ)+ U2(Y)sin(Θ)

U1(Y) = De
2
Wo

2
N1

(
ZR sinh

(
Y

De

)
+ sinh

(
1− Y

De

))

− M1 cos

(
Wo
√
2
(1− Y)

)
cosh

(
Wo
√
2
(1− Y)

)

+ M2 cosh

(
Wo
√
2
Y

)
sin

(
Wo
√
2
Y

)

− M3 cos

(
Wo
√
2
Y

)
sinh

(
Wo
√
2
Y

)

+ M4 sin

(
Wo
√
2
(1− Y)

)
sinh

(
Wo
√
2
(1− Y)

)

Appendix 2: Calculation of the growth rate

Upon substituting the asymptotic expressions from Eq. (43) 
into the governing Eqs. (38–42), the set of equations of the 
order α0 can be written as,

U2(Y) = N1

(
ZR sinh

(
Y

De

)
+ sinh

(
1− Y

De

))

+M4 cos

(
Wo
√
2
(1− Y)

)
cosh

(
Wo
√
2
(1− Y)

)

+M3 cosh

(
Wo
√
2
Y

)
sin

(
Wo
√
2
Y

)

+M2 cos

(
Wo
√
2
Y

)
sinh

(
Wo
√
2
Y

)

+M1 sin

(
Wo
√
2
(1− Y)

)
sinh

(
Wo
√
2
(1− Y)

)

N1 =
γR

(
1+Wo

4
De4

)
sinh

(
1

De

) ;

N2 =
γR

2
(
1+Wo

4
De4

)(
P
2

1
+ Q

2

1

) ;

N3 =
√
2

ZR cosh

(
1

De

)
− 1

sinh

(
1

De

) WoDe

P1 = cosh

(
Wo
√
2

)
cos

(
Wo
√
2

)
;

Q1 = sinh

(
Wo
√
2

)
sin

(
Wo
√
2

)

(49)

M1 = 2N2

(
De

2
Wo

2
P1 − Q1

)
;

M2 = −N2N3

((
1− De

2
Wo

2

)
P1 +

(
1+ De

2
Wo

2

)
Q1

)
;

M3 = N2N3

((
1+ De

2
Wo

2

)
P1 −

(
1− De

2
Wo

2

)
Q1

)
;

M4 = −2N2

(
P1 + De

2
Wo

2
Q1

)

(50)
∂4Ψ̂0

∂Y4
−Wo

2
∂3Ψ̂0

∂θ∂Y2
= Wo

2σ0
∂2Ψ̂0

∂Y2

(51)Ψ̂0(0,Θ) =
∂Ψ̂0

∂Y
(0,Θ) = 0

(52)
∂4Ψ̂0

∂Y4
(1,Θ)− Ĥ0(Θ)

∂2Ub

∂Y2
(1,Θ) = 0

(53)

∂3Ψ̂0

∂Y3
(1,Θ)−Wo

2
∂2Ψ̂0

∂Θ∂Y
(1,Θ)−Wo

2σ0
∂Ψ̂0

∂Y
(1,Θ) = 0
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From the Eq.  (54), since Ĥ0 is periodic, either, σ0 =  0 
or Ĥ0 = 0. Since, Ĥ0 can not be 0, hence, σ0 = 0. Conse-
quently, without any loss of generality, Ĥ0 = 1. Upon sim-
plifying Eq. (52),

Since, the solution of Ub can be written in the form, 
Ub(Y ,Θ) = Im

(
F(Y)eiΘ

)
 (see Eq.  33), from the above 

equation, the solution of Ψ̂0(Y ,Θ) can be also expressed as, 

Ψ̂0(Y ,Θ) = Im
(
Ψ̂0Y (Y)e

iΘ
)
. Upon simplifying and solv-

ing the set of Eqs. (50–55), Ψ̂0Y (Y) can be obtained as,

where,

Here, Re(F) is the real part of F and Im(F) is the imaginary 
part of F.

Equations for α1

(54)dĤ0

dΘ
(Θ)+ σ0Ĥ0(Θ) = 0

(55)
∂4Ψ̂0

∂Y4
(1,Θ)− Ĥ0(Θ)

∂2Ub

∂Y2
(1,Θ) = 0.

(56)

Ψ̂0y(Y) = (A1(Y)B2(Y)− A2(Y)B1(Y)

−A1(Y))+ i(A2(Y)B2(Y)+ A1(Y)B1(Y)− A2(Y))

(57)

A1(Y) =
d
2
Re(F)

dY2
(Y)B1(1)−

d
2
Im(F)

dY2
(Y)B2(1)

A2(Y) =
d
2
Re(F)

dY2
(Y)B2(1)+

d
2
Im(F)

dY2
(Y)B1(1)

B2(Y) = cosh

(
WoY
√
2

)
cos

(
WoY
√
2

)
(Y)B1(1)

B1(Y) = sinh

(
WoY
√
2

)
sin

(
WoY
√
2

)

(58)

∂4Ψ̂1

∂Y4
= Wo

2

(
∂3Ψ̂1

∂Θ∂Y2
+ σ1

∂2Ψ̂1

∂Y2

)

+ iRe

(
Ub

∂2Ψ̂1

∂Y2
−

∂2Ub

∂Y2
Ψ̂1

)

(59)Ψ̂1(0,Θ) =
∂Ψ̂1

∂Y
(0,Θ) = 0

(60)

∂2Ψ̂1

∂Y2
(1,Θ) = iγRER

((
∂Φ

∂X

)2

−
(
∂Φ

∂Y

)2
)

− Ĥ0

∂2Ub

∂Θ∂Y
(1,Θ)

Solution for α1

As, Ub, Ψ̂0, and Ĥ1(Θ) are periodic, from Eq. (62), one can 
see that σ1 = 0. Hence, upon integrating Eq. (62), one can 
obtain the solution of Ĥ1(Θ) as,

Next, using the solution of Ĥ1(Θ) and σ1 = 0 in the 
Eqs. (58–62), one can obtain the solution for Ψ̂1(1,Θ). One 
important thing to note here is that Ψ̂1(Y ,Θ) is aperiodic as 
its governing equations have terms containing products of 
Ub(1,Θ), Ψ̂0(1,Θ), and Ĥ1(Θ). This observation will help 
us to obtain the growth rate term, σ2.

The solution for σ 2

In order to obtain the σ2, the only important equation from 
α2 is the kinematic condition (see Eq. 28), which upon col-
lecting all the α2 terms can be written as,

Since, all the steady (aperiodic terms) should balance 
out each other in the above equation, the solution of σ2 can 
be obtained as,

The solution of σ2 can be represented analytically, but 
the final expression for it is very long and is not presented 
here for the sake of brevity. Hence, from Eq.  (43), the 
growth rate can be written as,
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