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1 Introduction

The outstanding paper of Iijima in Nature (Iijima 1991) has 
put carbon nanotubes in center of attention for almost two 
decades. This has motivated the nanoscientists to propagate 
further patterns of noncarbon tubular syntheses (Cumings 
and Zettl 2000; Wu et al. 2003; Goldberger et al. 2003). Of 
all the fulfilling features of tubular nanomaterials, one can 
mention their application in nanofluidic systems like the 
fluid storage, fluid transport and drug delivery (Hummer 
et al. 2001; Gao and Bando 2002; Adali 1737; Foldvari and 
Bagonluri 2008).

A major primacy must be given to investigate concern-
ing mechanical phenomena to achieve the apex of the 
potential of fluid-conveying hollow cylinders. Generally, 
the mechanical behavior of nanostructures is investigated 
in two categories: the classical and nonclassical theories. 
Incapability of the classical theory in capturing the size 
effect has made the reliability of this analysis doubtful. To 
overcome this difficulty, different size-dependent nonclas-
sical continuum theories such as the strain gradient elastic-
ity, couple stress elasticity, nonlocal elasticity and the sur-
face elasticity theories have been proposed (Mindlin and 
Tiersten 1962; Eringen 1972; Lam et al. 2003; Wang 2010); 
these modified theories have been effectively employed 
in several papers (Ansari et al. 2012a, b, 2011, 2013a, b, 
2015a; b; Wang 2009; Tang et al. 2014; Ghayesh et al. 
2013; Zhen and Fang 2015).

The significant effect of the surface stress on the elas-
tic behavior of nanostructures has been demonstrably con-
firmed by scientists (Wang and Feng 2007; He and Lilley 
2008). Based on the continuum mechanics, Gurtin and 
Murdoch (1975, 1978) introduced a theoretical method 
capable of including the surface stress effect in the mechan-
ical analysis of nanostructures. They treated the surface as 
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a mathematical layer of tiny thickness with different mate-
rial properties from the underlying bulk which is totally 
bonded by the membrane. Wang (2010) studied the vibra-
tion behavior of fluid-conveying nanotubes with considera-
tion of surface effects. He showed that for small tubes with 
large aspect ratios, the surface stress can affect the stability 
of the nanotubes to a great measure.

Despite the large investigations on the nonlinear vibra-
tion behavior of macro- and even microbeams (Ghayesh 
2012; Ghayesh et al. 2011; Asghari et al. 2012; Moeenfard 
et al. 2011; Ramezani 2012; Setoodeh and Afrahim 2014; 
Xia and Wang 2010; Kural and Özkaya 2015), only a small 
percentage of literature is concerned with the nonlinear 
vibration of nanobeams. This phenomenon is due to the 
induced mid-plane stretching during the transverse deflec-
tions and is very often in the large amplitude deflections. 
Neglecting this nonlinearity completely affects the static 
and vibration responses, and the model is unable to predict 
the details of the static or dynamic responses (Khadem and 
Rezaee 2002; Hassanpour et al. 2010; Zhang et al. 2014; 
Lü et al. 2015).

Rasekh and Khadem (2009), in the context of the Euler–
Bernoulli beam theory, studied the influence of internal 
moving fluid and compressive axial load on the nonlinear 
vibration and stability of embedded carbon nanotubes. 
Ali-Asgari et al. (2013) investigated the nonlinear vibra-
tion of carbon nanotube conveying fluid according to the 
nonlocal theory and von-Karman’s stretching. They exam-
ined the effects of mid-plane stretching, nonlocal parameter 
and their coupling model. Ke and Wang (2011) studied the 
vibration and instability of fluid-conveying double-walled 
carbon nanotubes based on the modified couple stress the-
ory and the Timoshenko beam theory. Based on the thermal 
elasticity theory, the nonlocal Euler–Bernoulli beam model, 
Zhen et al. (2011) examined the transverse vibration and 
instability of fluid-conveying double-walled carbon nano-
tubes embedded in biological soft tissue. According to the 
Hamilton principle and thermal elasticity theory, Chang 
(2013) studied the dynamic response variability of nonlin-
ear thermal–mechanical vibration of the fluid-conveying 
double-walled carbon nanotubes by considering the effects 
of the temperature change, geometric nonlinearity and non-
linearity of van der Waals force. Arani et al. (2013) studied 
the nonlinear free vibration and instability of fluid-con-
veying double-walled boron nitride nanotubes embedded 
in viscoelastic medium. They also considered the surface 
stress effects in two earlier works (Arani et al. 2014; Arani 
and Roudbari 2014). In these papers, linear analyses of sur-
face stress effects on the free vibration of a CNT and the 
wave propagation of a SWBNNT were presented, respec-
tively. In both cases, the fluid-conveying nanotube was 
modeled as the Euler–Bernoulli beam, different fields were 
considered, and the nonlocal elasticity theory was applied. 

Wang (2012) investigated the nonlinear post-buckling 
behavior of conveying fluid nanobeams with the considera-
tion of surface effects. The Euler–Bernoulli beam theory 
was employed, and an analytical method was used to solve 
the governing equation for both end clamped and both end 
pinned boundary conditions.

Recently, Ansari et al. (2015c) developed a linear 
Timoshenko beam model including the surface effect to 
investigate the linear free vibration and instability of fluid-
conveying nanoscale pipes. In this regard and to achieve 
the nonlinearity effects, the main goal of the authors is to 
extend their previous study on the linear dynamics of con-
veying fluid nanoscale pipes with considering surface stress 
in present work. The present study deals with the geomet-
rically nonlinear vibration and stability of nanoscale pipe 
conveying fluid incorporating surface stress effect. Hamil-
ton’s principle and the Gurtin–Murdoch continuum elastic-
ity are used in the skeleton of Timoshenko beam theory to 
derive the governing equations of motion and associated 
boundary conditions incorporating the surface stress effect. 
By employing the GDQ and the harmonic balance meth-
ods, the nonlinear differential equations are discretized. 
Then, the Newton–Raphson method is used to numerically 
solve the discretized equations.

2  Formulation of motion and corresponding 
boundary conditions

Regarding Fig. 1, a schematic of a flow-induced nanoscale 
pipe with length L and thickness h is considered with con-
veying incompressible fluid of the mass density ρ and 
constant velocity V. To model the internal flow, a contin-
uum-based plug-like flow is employed in which fluid is 
considered as an infinitely flexible rod-like structure flow-
ing through the nanoscale pipe (Khosravian and Rafii-Tabar 
2008). It should be noted that the fluid–structure interaction 
based on the plug-like flow is according to the assumption 
of no-slip boundary conditions. Based on the investiga-
tions done by Wang and Ni (2009) and Mirramezani and 
Mirdamadi (2011, 2013), it was observed that the effect 
of slip boundary condition on the liquid nanobehavior is 
negligible as compared to that in the case of a continuum 
flow regime. Considering the slip boundary condition could 
not change the critical liquid nanoflow velocity notice-
ably. Therefore, the simple plug-like flow is an acceptable 
model for the interaction between the fluid and the nano-
pipes. It is worth to remark that when the diameter of the 
nanopipe is sufficiently small, the internal fluid flow could 
not be treated as a continuum. A bulk part and two addi-
tional inner and outer surface layers constitute the outside 
nanoscale pipe. The properties of the bulk part are Young’s 
modulus E, Poisson’s ratio ν and mass density ρ. Two inner 
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and outer surface layers are considered to have Lam’s sur-
face constants �s and µs, mass density ρs and the surface 
residual tension τs. Symbols di and do are used to denote the 
inner and outer diameters of the bulk part, respectively.

The Cartesian coordinate system (x, y, z) is considered 
with the x-, y- and z-axes along the length of the deflected 
nanopipe, the neutral axis and the transverse direction, 
respectively.

Considering the first-order shear deformation and the 
Timoshenko beam theories, the displacements of an arbi-
trary point in the nanoscale pipe along the x-, y- and z-axes 
can be written in a general form as

where u(x, t), w(x, t) and ψ(x, t) are the axial displacement 
of the center of sections, the lateral deflection of the pipe 
and the rotation angle of the cross section with respect to 
the vertical direction, respectively. Employing the von-Kar-
man relation, one can represent the nonlinear strain–dis-
placement relations of a nanopipe subjected to large ampli-
tude vibrations as

Additionally, using the linear elasticity, the stress com-
ponents can be written as

(1)ux = u(x, t)+ zψ(x, t), uy = 0, uz = w(x, t)

(2)εxx =
∂u

∂x
+ z

∂ψ

∂x
+

1

2

(

∂w

∂x

)2

, εxz =
1

2

(

∂w

∂x
+ ψ

)

(3)

σxx = (�+ 2µ)

[

∂u

∂x
+ z

∂ψ

∂x
+

1

2

(

∂w

∂x

)2
]

, σxz = µ

(

∂w

∂x
+ ψ

)

in which � = Eν/
(

1− ν2
)

, µ = E/(2(1+ ν)) stand for 
Lam’s constants.

 One can incorporate the size effect into the conventional 
continuum model through the Gurtin–Murdoch theory. 
Given the atomic essence of nanostructures, interactions 
between the elastic surface and bulk material are unavoid-
able. Accordingly, nanostructures undergo in-plane loads in 
various directions which lead to the stresses on the surfaces 
of the bulk of nanopipes. Referring to the Gurtin–Murdoch 
theory, these surface stresses can be calculated by using 
surface constitutive equations as

Now, the surface stress components with respect to the 
displacement constituents can be achieved as follows

In the classical beam theories, the stress component 
σzz is small in comparison with the σxx and σxz and can be 
neglected. But when it comes to Gurtin–Murdoch theory, 
this assumption is not effective to satisfy the surface condi-
tions. To tackle this issue, it is assumed that the stress com-
ponent σzz varies linearly through the beam thickness (Lu 
et al. 2006). Considering this assumption, the stress com-
ponent σzz can be achieved as

(4)

σ s

αβ = τsδαβ + (τs + �s)εγ γ δαβ

+2(µs − τs)εαβ + τsu
s

α,β

σ s

αz = τsu
s

z,α

; (α,β = x, y)

(5)

σ s

xx
= (�s + 2µs)

[

∂u

∂x
+

1

2

(

∂w

∂x

)2

+ z

∂ψ

∂x

]

−
τs

2

(

∂w

∂x

)2

+ τs, σ s

xz
= τs

∂w

∂x

Fig. 1  A schematic of a flow-
induced nanoscale pipe
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By employing Eq. (5), σzz can be rewritten as

Introducing Eq. (7) into the components of stress for the 
bulk of the nanopipe leads to

Based on the continuum surface elasticity theory, the 
strain energy of a nanopipe incorporating the surface stress 
effect would be

in which

in which ks denotes shear correction factor.

(6)

σzz =

(

∂σ s+
xz

∂x
− ρ+

s

∂2w

∂t2

)

−
(

∂σ s−
xz

∂x
− ρ−

s

∂2w

∂t2

)

2

+

(

∂σ s+
xz

∂x
− ρ+

s

∂2w

∂t2

)

+
(

∂σ s−
xz

∂x
− ρ−

s

∂2w

∂t2

)

h

z

(7)σzz =
2z

h

(

τs
∂2w

∂x2
− ρs

∂2w

∂t2

)

(8)

σxx = (�+ 2µ)

[

∂u

∂x
+ z

∂ψ

∂x
+ 1

2

(

∂w

∂x

)2
]

+
2νz

(1− ν)h

(

τs
∂2w

∂x2
− ρs

∂2w

∂t2

)

, σxz = µ

(

∂w

∂x
+ ψ

)

.

(9)

Πs =
1

2

�

x

�

A

σijεijdAdx +
1

2







�

S
+

σ s

ij
εijdS

+ +
�

S
−

σ s

ij
εijdS

−







=
1

2

�

x

�

�

Nxx + N̄xx

�

�

∂u

∂x
+

1

2

�

∂w

∂x

�2
�

+
�

Mxx + M̄xx

�∂ψ

∂x
+ Qx

�

∂w

∂x
+ ψ

�

+ Q̄x

∂w

∂x

�

dx

(10a)

Nxx = (�+ 2µ)A

[

∂u

∂x
+

1

2

(

∂w

∂x

)2
]

, Qx = µksA

(

∂w

∂x
+ ψ

)

,

Mxx = (�+ 2µ)I
∂ψ

∂x
+

2νI

(1− ν)h

(

τs
∂2w

∂x2
− ρs

∂2w

∂t2

)

.

(10b)

N̄xx =
∫

S

σ s
xxds = π(di + do)(�s + 2µs)

[

∂u

∂x
+

1

2

(

∂w

∂x

)2
]

−
τsπ(di + do)

2

(

∂w

∂x

)2

+ τsπ(di + do).

M̄xx =
∫

s

σ s
xxzds =

(�s + 2µs)π
(

d3i + d3o
)

8

∂ψ

∂x
,

Q̄x =
∫

s

σ s
xzds = τsπ(di + do)

∂w

∂x
.

The kinetic energy of nanopipe ΠT and the kinetic 
energy of induced fluid ΠTf  can be written as

In addition, the work ΠP done by the transverse force 
F(x, t) can be written as

According to the Hamilton principle:

By taking the variation of u, w and ψ, integrating by 
parts and finally setting the coefficients of δu, δw and δψ 
equal to zero, the governing equations of motion (14a–14c) 
and the associated boundary conditions (14d–14f) will be 
attained as

(11a)

ΠT =
1

2

∫

x

{

[ρA+ π(di + do)ρs]

[

(

∂u

∂t

)2

+

(

∂w

∂t

)2
]

+

[

ρI +
πρs

(

d
3

i
+ d

3
o

)

8

]

(

∂ψ

∂t

)2
}

dx

(11b)

ΠT
f
=

1

2

L
∫

0

∫

A
f

ρf

{

(

∂w

∂t
+ V

∂w

∂x

)2

+

(

∂u

∂t
+ z

∂ψ

∂t
+ V

)2
}

dAf dx

=
1

2

L
∫

0

{

ρf Af

(

∂w

∂t
+ V

∂w

∂x

)2

+ ρf Af

(

∂u

∂t

)2

+ ρf Af V
2

+2ρf Af
∂u

∂t
+ ρf If

(

∂ψ

∂t

)2
}

dx

(12)ΠP =
L
∫

0

F(x, t)wdx

(13)δ

t2
∫

t1

(ΠT −Πs +ΠP)dt = 0

(14a)
∂(Nxx + Ñxx)

∂x
=

(

ρA+ ρf Af + π(di + do)ρs
)∂2u

∂t2

(14b)

∂(Q+ Q̃)

∂x
+ ∂

∂x

(

(

Nxx + Ñxx

) ∂w

∂x

)

− ρf Af

(

2V
∂2w

∂t∂x
+ V

2 ∂
2
w

∂x2

)

− F(x, t) =
(

ρA+ ρf Af + π(di + do)ρs
) ∂2w

∂t2
;

(14c)
∂

(

Mxx + M̃xx

)

∂x
− Q =

(

ρI + ρf If +
πρs

(

d
3
i
+ d

3
o

)

8

)

∂2ψ

∂t2

(14d)δu = 0 or δ

(

Nxx + Ñxx

)

= 0

(14e)
δw = 0 or δ

(

(

Nxx + Ñxx

)∂w

∂x
+ Q+ Q̃

)

= 0
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For the simply supported boundary condition (SS) and 
clamped boundary condition (C), one can write

Let us define stiffness components and inertia-related 
terms as

Substituting above parameters in the governing differen-
tial equations of motion leads to

Once the following dimensionless quantities are defined

the governing equations of motion and the associated 
boundary conditions of the nanopipe can be stated in nor-
malized forms as

(14f)δψ = 0 or δ

(

Mxx + M̃xx

)

= 0

(15a)u = w = Mxx + M̃xx = 0

(15b)u = w = ψ = 0

A11 = (�+ 2µ)A+ π(di + do)(�s + 2µs),

A33 = π(di + do)τs, A55 = µksA,

D11 = (�+ 2µ)I +
(�s + 2µs)π

(

d
3
i
+ d

3
o

)

8
, E11 =

2νIτs

(1− ν)h

(16)

I0 = ρA+ ρf Af + πρs(di + do),

I2 = ρI + ρf If +
πρs

(

d
3
i
+ d

3
o

)

8
, G =

2νIρs

(1− ν)h

(17a)A11
∂2u

∂x2
+ (A11 − A33)

∂w

∂x

∂2w

∂x2
= I0

∂2u

∂t2
,

(17b)

A55

(

∂2w

∂x2
+

∂ψ

∂x

)

+ 2A33

∂2w

∂x2
− ρf Af

(

2V
∂2w

∂x∂t
+ V

2 ∂
2
w

∂x2

)

+ A11

(

∂2u

∂x2
+

∂w

∂x

∂2w

∂x2

)

∂w

∂x
+ A11

(

∂u

∂x
+

1

2

(

∂w

∂x

)2
)

∂2w

∂x2

− A33

(

∂w

∂x

)2
∂2w

∂x2
−

A33

2

(

∂w

∂x

)2
∂2w

∂x2
= I0

∂2w

∂t2
,

(17c)

D11

∂2ψ

∂x2
+ E11

∂3w

∂x3
− A55

(

∂w

∂x
+ ψ

)

= I2

∂2ψ

∂t2
+ G

∂3w

∂x∂t2
.

(18)

lu →
u

h
,w →

w

h
, x →

x

L
, η =

L

h
, τ =

t

L

√

A110

I00
, I∗0 =

I0

I00
,

I∗2 =
I2

I00h2
, g =

G

I00h2
,

{a11, a13, a33} =
{

A11

A110

,
A13

A110

,
A33

A110

}

, d11 =
D11

A110h2
, e11 =

E11

A110h2
,

Kb =
2ρf Af V√
A110I00

, v =

√

ρf Af

A110

V ,

Simply supported boundary condition (SS)

Clamped boundary condition (C)

in which A110 = A(�+ 2µ) and I00 = ρA.

3  Numerical solution

In solution procedure, the GDQ method (Shu 2000) is used 
to discretize the set of the nonlinear equations of motion 
and boundary conditions. In first step, the grid points are 
located at the Chebyshev–Gauss–Lobatto points as

Then, vectors u, w and � are defined as

Following are the discretized form of governing 
equations

(19a)a11
∂2u

∂x2
+ (a11 − a33)

η

∂w

∂x

∂2w

∂x2
= I∗0

∂2u

∂τ 2
,

(19b)

a55

(

∂2w

∂x2
+ η

∂ψ

∂x

)

+ a33

∂2w

∂x2
− Kb

∂2w

∂x∂τ
− v

2 ∂
2
w

∂x2

+
a11

η

(

∂2u

∂x2
+

1

η

∂w

∂x

∂2w

∂x2

)

∂w

∂x
+

a11

η

(

∂u

∂x
+

1

2η

(

∂w

∂x

)2
)

∂2w

∂x2

−
3a33

2η2

(

∂w

∂x

)2
∂2w

∂x2
= I

∗
0

∂2w

∂τ 2
,

(19c)

d11
∂2ψ

∂x2
+

e11

η

∂3w

∂x3
− a55η

(

∂w

∂x
+ ηψ

)

= I∗2
∂2ψ

∂τ 2
+

g

η

∂3w

∂x∂τ 2
.

(20a)u = w =
e11

η

∂2w

∂x2
+ d11

∂ψ

∂x
= 0

(20b)u = w = ψ = 0

(21)xi =
1

2

(

1− cos
i − 1

n− 1
π

)

; i = 1, 2, . . . , n

(22)
un×1 = [u1u2 . . . un]T,
wn×1 = [w1w2 . . .wn]T, �n×1 = [ψ1ψ2 . . . ψn]T

(23a)a11D
(2)u+

a11 − a33

η

(

D(1)w

)(

D(2)w

)

= I∗0ü

(23b)

a55

(

D(2)w + ηD(1)
�

)

+ a33D
(2)w − KbD

(1)ẇ − v2D(2)w

+
a11

η

(

(

D(2)u

)

+
1

η

(

D(2)w

)(

D(2)w

)

)

(

D(1)w

)

+
a11

η

(

(

D(1)u

)

+
1

2η

(

D(1)w

)(

D(1)w

)

)

(

D(2)w

)

−
3a33

2η2

(

D(1)w

)(

D(1)w

)(

D(2)w

)

= I∗0 ẅ,

(23c)
d11D

(2)
� +

e11

η
D(3)w − a55η

(

D(1)w + η�

)

= I∗2 Ψ̈ +
g

η
D(1)ẅ
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where

Herein, the harmonic balance method (Keller 1977; 
Doedel et al. 1998) is used to solve the discretized equa-
tions. According to this technique, one can assume the 
solutions as following forms

By inserting these solutions in Eq. (23) and using the 
Fourier series, the governing equations will be obtained 
with terms of cos(iωt) and sin (iωt). By equating simi-
lar terms, 6(n) sets of algebraic equations will be attained 
which can be solved through the Newton–Raphson method 
with a given value (a) for the middle sample point of y11 as 
a dimensionless amplitude of vibration.

Moreover, the dynamic stability of nanopipe around the 
post-buckling configuration is analyzed here. For this pur-
pose, buckled configuration is obtained by dropping time-
dependent terms in governing equations and solving the 
generalized eigenvalue problem in which the flow velocity 
is the eigenvalue parameter. Then, the dynamic response 
under post-buckling is considered as below

where us, ws and ψs denote first buckled configuration 
and ud, wd and ψd are small disturbances around the cor-
responding static response. Now, by having buckled con-
figurations in hand, dynamic responses are achieved by 
inserting Eq. (26) in Eq. (19). Similarly, the GDQ method 
is applied; by vectorizing us,ws,ψs, ud ,wd ,ψd, new dis-
cretized equations are

(24a)
D
(1)
ij =

∏n
k=1,k �=i (xi − xk)

(

xi − xj
)
∏n

k=1,k �=j

(

xj − xk
) , i = j = 1, 2, . . . , n, i �= j

(24b)

D
(r)
ij

= r

(

D
(r−1)
ii

D
(1)
ij

−
D
(r−1)
ij

(

xi − xj

)

)

, i = j = 1, 2, . . . , n,

i �= j r = 2, 3, . . . , n− 1;

(25a)u =
n

∑

i=1

x1i cos(iωt)+
n

∑

i=1

x2i sin (iωt)

(25b)w =
n

∑

i=1

y1i cos(iωt)+
n

∑

i=1

y2i sin (iωt)

(25c)� =
n

∑

i=1

z1i cos(iωt)+
n

∑

i=1

z2i sin (iωt)

(26)

u(x, τ) = us(x)+ ud(x, τ)

w(x, τ) = ws(x)+ wd(x, τ)

ψ(x, τ) = ψs(x)+ ψd(x, τ)

(27a)
a11D

(2)ud +
a11 − a33

η
D12
ww = I∗0üd

in which

Again, the harmonic balance method is used to deter-
mine the dynamic response vectors and ψd and correspond-
ing natural frequencies under post-buckling.

4  Results and discussion

In this section, the numerical results concerned with the 
nonlinear vibration response of nanopipes conveying fluid 
with boundary conditions predicted by both classical and 
nonclassical models including surface stress effects are 
discussed. The results are plotted for nanopipes made of Si 
and Al with the following material properties (Arani et al. 
2014; Arani and Roudbari 2014; Wang 2012):

The bulk and surface elastic material properties of Al: 
E = 68.5 GPa, ρ = 2700 kg/m3, ν = 0.35, �s = 6.842 N/m,

µs = −0.376 N/m, τs = 0.910 N/m, ρs = 5.46e− 7 kg/m2

The bulk and surface elastic material properties of Si: 

E = 210 GPa, ρ = 2331 kg/m3, ν = 0.24,

�s = −4.488 N/m,µs = −2.774 N/m, τs = 0.605 N/m,

ρs = 3.17e− 7 kg/m2

Figures 2 and 3 show variations of the first two modes 
of frequency of nanoscale pipes made of Si and Al, respec-
tively, with and without considering surface parameters for 
different thicknesses in two types of boundary conditions 
with dimensionless amplitude of vibration a = 2. The curves 
with black color are results predicted by the classical model. 
The real term of ω is connected with the damping, and the 
imaginary part of ω is related to frequency. Once Re(ω) > 0,  

(27b)

a55

(

D(2)wd + ηD(1)
�d

)

+ a33D
(2)wd − KbD

(1)ẇd − v
2D(2)wd

+ a11

η

(

D21
uw + 1

η
D121
www

)

+ a11

η

(

D12
uw + 1

2η
D112
www

)

−
3a33

2η2
D112
www = I

∗
0 ẅd ,

(27c)

d11D
(2)

�d +
e11

η
D(3)wd − a55η

(

D(1)wd + η�d

)

= I∗2 Ψ̈d +
g

η
D(1)ẅd

(28a)

Dij
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)(
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+
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(28b)

Dijk
xyz =
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the system will be unstable, while Re(ω) < 0 signals the 
stable condition of the system (Amabili and Garziera 2000). 
It is observed that the frequencies obtained from the present 
model are higher than those of the classical Timoshenko 

beam model, especially for small values of thicknesses. 
For thick nanopipes, the surface effects are negligible and 
the results are close to classical ones. Also, pointing out the 
distance between curves in Figs. 2 and 3 indicates that the 

Fig. 2  Surface stress effect on 
the imaginary and real part of 
frequency in first and second 
mode of silicon nanopipe for 
different values of thickness 
corresponding to a SS–SS, 
b C–C boundary conditions, 
di/do = 0.8,L/do = 20, a = 2
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Fig. 3  Surface stress effect on 
the imaginary and real part of 
frequency in first and second 
mode of aluminum nanopipe 
for different values of thick-
ness corresponding to a SS–SS, 
b C–C boundary conditions, 
di/do = 0.8,L/do = 20, a = 2
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effects of surface stress on Al nanopipes are more than Si 
counterparts, especially for pipes with SS–SS end supports. 
The point where the imaginary part becomes zero is the unset 
of the static divergence of the system and where the system 
becomes stable again is known as restabilization point, signi-
fying coupled-mode flutter (Amabili and Garziera 2000). As 
it is seen in Figs. 2 and 3, in both modes, with considering 
the surface effects, the velocity that frequency becomes zero 
increases (static divergence occurs in higher velocities). So, 
the classical theory underestimates the static divergence.

Figure 4 displays the effects of surface stress on criti-
cal flow velocity of the first mode. Graphs are plotted for 
nanopipes made of Si and Al with different thicknesses. It 
can be seen that in thin nanopipes, the critical flow velocity 
is significantly higher than classical result, so the system 
diverges at larger velocities. This difference is bigger in 
nanopipes made of aluminum.

Here, surface stress effects on the instability beyond 
critical flow velocity are investigated by determining the 
characteristics of free vibration under post-buckling of nan-
opipes. In Figs. 5 and 6, the post-buckling paths and fun-
damental frequencies around post-buckling configuration 
are presented, respectively, for nanopipes made of Si and 
Al with different boundary conditions and thicknesses. In 
the post-buckling analysis, it is apparent that the nanopipe 
at the first mode buckles and loses stability at the critical 
flow velocity. In addition to what observed in Figs. 2, 3, 4, 
it is found that in the stability region of responses of vibra-
tion around post-buckling, the frequencies predicted by 

the classical theory are lower than those of surface stress 
model, and vice versa in the instability region.

The effects of the material and surface stress modulus 
on the imaginary and real parts of the frequency of free 
vibrations of nanopipes are plotted in Figs. 7 and 8, for 
those made of Si and Al, respectively. It is observed that 
the positive surface elastic constant (�s + 2µs) gives larger 
frequencies and the system diverges in higher velocities, 
while for the negative one, the behavior is vice versa. As 
it is expected from previous results, the influence of sur-
face elastic constant on Al nanopipes is more than that on 
Si counterparts.

Figures 9 and 10 imply the effect of the surface den-
sity on the frequency of the first two modes of nanopipes 
with different end supports versus the flow velocity. It is 
found that the surface density has a significant influence on 
the frequency of pipe. As the value of the surface density 
becomes larger, the frequency decreases profoundly. It can 
be seen that between the critical flow velocity of the first 
and second modes, the real part of the frequency decreases 
with the rise of the surface density which means that the 
instability of the system reduces. Also, it is observed that 
the surface density has no influence on the critical veloci-
ties of first and second modes.

Depicted in Figs. 11 and 12 are the effects of surface 
residual stress on the frequency in first and second modes 
for nanopipes made of Si and Al materials, respectively. It 
can be seen that the positive value of this parameter makes 
the frequency larger, while the negative one gives smaller 

Fig. 4  Surface stress effect 
on the critical flow velocity in 
first mode for different values 
of thickness corresponding 
to a SS–SS, b C–C boundary 
conditions
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frequency than classical beam model. Another important 
result from Figs. 11 and 12 is that the critical flow veloci-
ties are strongly affected by surface residual stress, as the 
positive value can make the critical velocities of first and 
second modes higher and negative value makes them lower.

Figure 13 reveals the effect of surface stress on nonlin-
ear frequency ratio in silicon and aluminum nanopipes for 

different amplitudes. It is observed that the large values of 
thicknesses gives higher frequency ratios. Also it shows that at 
given amplitude in SS–SS boundary conditions, the frequency 
ratio is higher than C–C end supports. Furthermore, it is seen 
that for large values of amplitude, the frequency ratio increases 
significantly. So it can be concluded that in vibrations with 
large deflection, the nonlinear analysis should be carried out.

Fig. 5  Surface stress effect on 
the post-buckling configuration 
in first mode for different values 
of thickness corresponding to a 
SS–SS, b C–C boundary condi-
tions, at x = 0.5
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Fig. 6  Surface stress effect 
on the natural frequency under 
post-buckling configuration in 
first mode for different values 
of thickness corresponding 
to a SS–SS, b C–C boundary 
conditions
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5  Conclusion

The geometrically nonlinear free vibration and stability 
of fluid-conveying nanoscale pipe incorporating surface 
stress effect were studied in this work. The von-Karman 

theory in conjunction with the Timoshenko beam the-
ory was employed to model the nanopipe. By means 
of Hamilton’s principle and the Gurtin–Murdoch con-
tinuum elasticity, the governing equations of motion 
and associated boundary conditions were achieved. In 

Fig. 7  Effects of the surface 
elastic constant on the imagi-
nary and real part of frequency 
in first and second mode of 
silicon nanopipe corresponding 
to a SS–SS, b C–C bound-
ary conditions, ρs = τs = 0, 
h = 2 nm, a = 2
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Fig. 8  Effects of the surface 
elastic constant on the imagi-
nary and real part of frequency 
in first and second mode of 
aluminum nanopipe correspond-
ing to a SS–SS, b C–C bound-
ary conditions, ρs = τs = 0, 
h = 2 nm, a = 2
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solution procedure, via the GDQ approach, the gov-
erning equations were discretized. Then, the harmonic 
balance method was used to simplify the governing 
differential equations to algebraic ones, before solv-
ing numerically by the Newton–Raphson method. The 

effects of effective parameters such as the thickness, 
material and surface stress modulus, residual surface 
stress, surface density and boundary conditions on the 
stability and the first two modes of frequency of nano-
pipes were discussed.

Fig. 9  Effects of the surface 
density on the imaginary and 
real part of frequency in first 
and second mode of silicon 
nanopipe corresponding to 
a SS–SS, b C–C boundary 
conditions, �s = µs = τs = 0, 
h = 2 nm, a = 2
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Fig. 10  Effects of the surface 
density on the imaginary and 
real part of frequency in first 
and second mode of aluminum 
nanopipe corresponding to 
a SS–SS, b C–C boundary 
conditions, �s = µs = τs = 0, 
h = 2 nm, a = 2
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It was observed that both frequencies and static divergence 
obtained from the present model including the surface stress 
are higher than those of the classical model, especially for 
small values of thicknesses; so, the classical theory underesti-
mates both the frequencies and static divergence. Also, it was 

observed that Al nanopipes are more sensitive to the effects of 
surface stress rather than Si counterparts, especially for nan-
opipes with SS–SS boundary conditions. With regard to the 
effects of surface elastic constant and surface residual stress, 
it was seen that positive values of either of them give larger 

Fig. 11  Effects of the residual 
stress on the imaginary and real 
part of frequency in first and 
second mode of silicon nano-
pipe corresponding to a SS–SS, 
b C–C boundary conditions, 
�s = µs = ρs = 0, h = 2 nm, 
a = 2
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frequencies and the system diverge in higher velocities, while 
for the negative one, a reverse trend occurs. As for the influ-
ence of the surface density, once observed that frequencies of 
nanopipe decrease strongly with the increase in this param-
eter; however, the surface density has no considerable effect 
on the critical velocities of first and second modes.
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