
1 3

Microfluid Nanofluid (2015) 19:1019–1033
DOI 10.1007/s10404-015-1661-6

RESEARCH PAPER

Advances and challenges in computational research  
of micro‑ and nanoflows

Dimitris Drikakis1 · Michael Frank2 

Received: 26 February 2015 / Accepted: 27 September 2015 / Published online: 22 October 2015 
© Springer-Verlag Berlin Heidelberg 2015

microelectromechanical systems (MEMS) (Lyshevski 
2005) and nanoelectronics (Yunus and Green 2010) to 
microchannel heat sinks (Tuckerman and Pease 1981). 
Additionally, many topics of academic and industrial inter-
est have established a need to understand and exploit the 
behaviour of structures and matter from a nanometre point 
of view. Examples include nanocrystalline materials, bio-
detectors, drug delivery systems, and carbon allotropes, 
e.g. carbon nanotubes and graphene.

At small scales, fluids (and all states of matter) experi-
ence interfacial phenomena that affect a significant percent-
age of the overall system. In turn, the continuity required 
by traditional continuum approaches is compromised by 
steep gradients, rendering such techniques inadequate for 
the description of micro- and nanofluidic environments 
(Koplik et al. 1989; Travis et al. 1997; Wang et al. 2008).

The requirement for computations at finer resolutions is 
satisfied through atomic-scale simulation techniques such 
as molecular dynamics (MD) and the Monte Carlo (MC) 
method. Such models effectively delineate the physical 
apparatus, which governs the dynamics of such systems, 
assisting in the resolution of discrepancies between experi-
mental results and macroscopic computational models. 
Examples include studies on the structure of the liquid 
particles close to the solid–liquid interface. These investi-
gations found that the interactions between the solid walls 
and liquid form structured liquid layers close and paral-
lel to the channel walls (see Fig. 1a) (Bitsanis et al. 1987; 
Asproulis and Drikakis 2010, 2011; Sofos et al. 2009). 
This reconciled experimental observations (Doerr et al. 
1998; Henderson and van Swol 1984) and provided a bet-
ter understanding of a phenomenon, which was correlated 
with properties of the system such as the stiffness of the 
wall and the strength of interaction between the wall and 
liquid atoms. The stratification of the liquid can ultimately 

Abstract This paper presents an overview of past and 
current research in computational modelling of micro- 
and nanofluidic systems with particular focus on recent 
advances in multiscale modelling. Different mesoscale and 
hybrid molecular–continuum methods are presented. The 
contributions of these methods to a broad range of applica-
tions, as well as the physical and computational modelling 
challenges associated with the development of these meth-
ods, are also discussed.

1 Introduction

Computational fluid dynamics modelling has long been 
performed using the Navier–Stokes equations, whose suc-
cess in the design and optimisation of macroscopic struc-
tures and devices (e.g. aircraft, automobiles, buildings) has 
established it as an effective method for studying fluid flow. 
This continuum approach is based on the assumption of a 
continuum fluid, which is in equilibrium at any point or 
infinitesimal volume, a premise reasonable on larger scales.

However, the rapid technological advancements 
of the last half-century have enabled the manufac-
ture and use of devices miniaturised within the micro- 
and nanoscale regime. Such applications range from 
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change the properties of the system. An important example 
is the identification of a nonzero liquid velocity at the solid 
surface (Asproulis and Drikakis 2010, 2011) which, along 
with experimental data (Choi et al. 2003), has prompted a 
reconsideration of the circumstances under which the no-
slip condition, often employed in macroscopic simulations, 
renders a physically meaningful constraint. The thermo-
dynamics of nanofluidic scenarios have also been found 
to deviate from the expectations of continuum models. 
Flow through nanochannels has indicated the existence of 
a heat flux, even in the absence of a temperature gradient 
across the two walls, due to variations in the temperature 
profile arising from viscous heating (Baranyai et al. 1992; 
Todd and Evans 1997). Investigations have also studied the 
thermal resistance at the solid–liquid interface (Kapitza 
resistance), a phenomenon that is attributed to the differ-
ent vibrational properties of the materials involved. These 
studies found that the thermal resistance is correlated with 
the wettability of the solid surface (Barrat and Chiaruttini 
2003), the density of the liquid, and the wall stiffness (Kim 
et al. 2008). Investigations have also correlated the thermal 
conductivity of fluids with the size of the channel (Sofos 
et al. 2009). Researchers have also shown that under such 
spatial restrictions, the thermal conductivity is highly ani-
sotropic between the parallel and the normal-to-the-wall 
directions. They associated this phenomenon to the reduced 
diffusion in the normal direction, due to the impaired 
motion and collision frequency of the liquid atoms associ-
ated with confinement (Liu et al. 2005).

The main issue in atomic-scale simulations is the com-
putational cost, which increases significantly with the size 

of the simulation domain. Hence, complications arise in 
microflows in which the non-homogeneities and interfacial 
effects of nanoflows are still evident, rendering continuum 
mechanics inadequate, yet the system size is outside the 
practical scope of MD.

This blend of difficulties in such systems renders the 
independent use of either continuum or atomistic meth-
ods insufficient or practically impossible. To account for 
this, mesoscale and hybrid molecular–continuum meth-
ods (HMCM) have been of academic interest for over two 
decades now. These approaches attempt to bridge the two 
types of models into a synergy, which allows for an accu-
rate calculation of the properties of the system at a rela-
tively low computational cost. Mesoscale models comprise 
a single solver, which attempts to give a more efficient 
solution based on atomistic observations, while HMCM 
utilise both molecular and continuum solvers that exchange 
information. Figure 2 shows the time and length scales in 
which quantum, atomistic, continuum, and hybrid methods 
are used.

The paper is organised as follows: Sect. 2 briefly 
describes the MD method and immediately continues with 
a paragraph on the continuum model since both methods 
are the building blocks for the multiscale methods for 
which the discussion follows later on. Since the continuum 
model is based on the average behaviour of atoms and mol-
ecules, it was deemed more intuitive to present the MD 
approach first followed by the continuum one. The aim of 
this section is to provide the reader with the strengths and 
limitations of these approaches, highlighting the need for 
multiscale modelling. Section 3 discusses some popular 

Fig. 1  Density (a) and velocity profiles (b) of a liquid in a nanochan-
nel. a Density profiles of a fluid in a nanochannel. The walls of the 
channel are the thick, dark blue slabs on the top and bottom of the 
figure (where the density is zero since there are no liquid atoms). The 
liquid density is not uniform. Instead, it forms discrete, structured 

layers close and parallel to the channel walls. b Velocity profiles of 
flow in a nanochannel. It shows that at the solid–liquid interface, the 
velocity is not zero. This urges reconsideration of the no-slip condi-
tion commonly used in continuum approaches
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mesoscale approaches, independent methods of intermedi-
ate resolution attempting to overcome the problems of the 
purely molecular or continuum methods. The strengths and 
limitations of each method are also discussed. Section 4 
discusses hybrid multiscale methods. As the name sug-
gests, these utilise both a continuum and a molecular solver 
to address different physical scales. We categorise these 
methods depending on how the system is decomposed into 
molecular and continuum components and how information 
is exchanged between the atomistic and continuum solvers.

Section 5 summarises the conclusions drawn from the 
present work.

2  Computational methods

2.1  Molecular dynamics

Molecular dynamics (MD) is a deterministic computational 
method, which calculates the trajectory of all atoms in time. 
Given the atomic positions r and velocities v, the system is 
evolved through Newton’s equations of motion

where the index i represents and arbitrary particle (atom or 
molecule) and Fi is the force acting on the particle, deter-
mined by

where V is the total potential energy of the system, which 
depends on the relative positioning of all the atoms, as 
well as the nature of the intermolecular and intramolecular 
interactions in the system. An accurate description of this 

(2.1)ṙi = vi, Fi = miv̇i,

(2.2)Fi = −∇V = −
∂

∂r
V ,

potential is within the scope of quantum electrodynamics. 
However, MD uses empirical functions that can accurately 
portray the atomic interactions. A popular pairwise poten-
tial that MD simulations often use for non-bonded van 
der Waals interactions is the Lennard-Jones (LJ) potential 
given by the function

where ɛ is the depth of the potential well and σ is the point 
of intersection with the interatomic distance axis (Fig. 3). 
As Fig. 3 shows, at small interatomic distances, a strong 
repulsive force is acting on the two atoms, which tends 
to infinity as their separation approaches zero. This cor-
responds to the Pauli exclusion principle, which prevents 
the electron shells of the particles from overlapping. The 
blue-shaded region in the figure corresponds to the attrac-
tive London dispersion forces acting between non-reacting 
gases such as argon.

The reason for the crippling computational expense of 
MD is twofold. Firstly, as the systems scale to practically 
meaningful dimensions, the number of atoms increases 
significantly. Even if a pairwise potential is used, the run-
time increases beyond the capabilities of modern comput-
ing. Secondly, the time step used in the simulations should 
be small in order to ensure that the atomic positions vary 
smoothly with time. This is especially true when we con-
sider systems with high temperatures or rapidly varying 
potentials, such as that depicted in Fig. 3, where a large 
time step can result in unnatural atomic overlapping and, in 
turn, cause velocity discontinuities and degrade the energy-
conserving properties of the system (Allen and Tildesley 
1989).

Therefore, the objective of all mesoscale and multi-
scale approaches is to decouple the microscopic spatial and 
timescales from a large part of the domain, thus allowing 

VLJ = 4ε

[

(σ

r

)12

+
(σ

r

)6
]

Fig. 2  Time and length scales of computational methods for micro- 
and nanofluids

Fig. 3  The Lennard-Jones potential. The red-shaded area corre-
sponds to the strong repulsive forces, a product of the Pauli exclusion 
principle, whereas the blue-shaded area corresponds to the attractive 
London dispersion forces
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the simulations to be performed within more realistic 
timescales.

2.2  Continuum model

The continuum model does not treat systems as a collec-
tion of atomic trajectories. Instead, the primitive state vari-
ables such as density ρ, flow velocity u, energy e, tempera-
ture T, and pressure p are considered as functions of time 
and space, averaged over a large number of atoms (e.g. 
ρ = ρ(x, y, z, t) in Cartesian co-ordinates).

The behaviour of fluids in this continuum approach is 
governed by the Navier–Stokes equations, a set of three 
equations based on the conservation of mass, momentum, 
and energy, given by

where the stress tensor Π of a Newtonian fluid is empiri-
cally given by

the heat flux vector q is given by

and the equations of state for p and T are given by

3  Mesoscale methods

In an attempt to bridge the microscopic and macroscopic 
environments, mesoscale methods provide a framework of 
intermediate resolution. They are based on the often cor-
rect assumption that the behaviour of every single atom is 
not required to produce realistic results. Instead, large num-
bers of molecules are grouped together. Within the scope of 
mesoscale methods, these pseudo-particles are considered 
fundamental and interact among themselves without con-
sidering the influence of their constituent atoms.

3.1  Lattice gas automaton

One of the first mesoscale approaches to simulating gases 
is the lattice gas automaton (LGA) method (Pomeau and 
Frisch 1986; Wolfram 1986; Hardy et al. 1973). As the 

(2.3)
∂ρ

∂t
= −∇ · (ρu)

(2.4)
∂ρu

∂t
= −∇ · (ρu⊗ u)−∇ ·Π

(2.5)
∂e

∂t
= −∇ · (eu)−∇ · (Π · u)−∇ · q

(2.6)� = pI− �v(∇ · u)I − µ

[

(∇u)+ (∇u)T
]

(2.7)q = �∇T

(2.8)p = p(ρ, ei) and T = T(ρ, ei)

name suggests, a lattice covers the system and gas particles 
can only be positioned on the lattice sites. Each particle 
can only move along the lattice links (i.e. lattice vectors), 
which are a characteristic of the lattice used. The model 
defines the velocity of each atom based on the lattice link 
along which it will move on to the next time step to reach 
a neighbouring point. Each lattice site can hold a number 
of atoms equal to the number of lattice links attached to 
it. Furthermore, two atoms on the same point cannot have 
the same velocity (i.e. two atoms on the same point cannot 
travel in the same direction). This facilitates the representa-
tion of each lattice point by a Boolean vector with a dimen-
sion equal to the number of possible directions (i.e. lattice 
links) from each node. For each direction, the value is 1 if 
there is an atom on that point moving with that velocity.

In order to illustrate the above, Fig. 4a shows one pos-
sible configuration of atoms (chosen arbitrarily) found on 
a lattice site (the red circle) on a square lattice. The arrows 
indicate the possible values of the velocity. A solid line 
means that an atom moving in that direction is located on 
the lattice point, while a dotted line suggests that such an 
atom is absent. Since the velocity can take four values, a 
four-dimensional vector is used to describe the state of the 
node. Since there is no atom moving in direction 1 and 4 
(suggested by the dotted lines in those directions), the cor-
responding components in the vector are 0. On the other 
hand, the third and fourth components have a value of one, 
indicating that there are two atoms moving in directions 3 
and 4.

At each time step, LGA carries out two operations:

1. Propagation. During this step, the particles are moved 
to nearby lattices depending on their velocities of the 
previous time step. For example, in Fig. 4a the atom 

Fig. 4  Boolean representation of a lattice point (red node) a for a 
square lattice and b for a hexagonal lattice. The arrows indicate the 
possible velocities. A solid line suggests that the red lattice site has 
an atom moving in that direction, while a dashed line indicates that 
there is no particle with that velocity on that point. a Square lattice, b 
hexagonal lattice
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with velocity 2 will move to the top vertex, pointed by 
the arrow, in the next time step. As we have mentioned 
earlier in this section, two atoms located at the same 
point cannot move along the same direction.

2. Collision. If two particles arrive at the same lattice 
point, a collision is detected and the velocities must 
be readjusted. Depending on the implementation of 
the algorithm, a set of collision rules are used to adjust 
the velocities of the colliding atoms. The redistribu-
tion of velocities must conserve mass and momentum. 
The new velocities will reflect the direction of motion 
of the particles in the next step. However, when two 
atoms are using the same link with opposite velocities, 
a collision is not detected and the atoms move freely to 
swap lattice sites.

This seemingly simplistic model can potentially repro-
duce the Navier–Stokes equations by taking averages over 
a large number of nodes. This, however, requires a lattice 
with sufficient symmetry. The fourfold symmetry of the 
lattice depicted in Fig. 4a is incapable of reproducing the 
hydrodynamic equations. For two-dimensional systems, 
the symmetry of the hexagonal lattice illustrated in Fig. 4b 
is indeed sufficient. Such a system allows the atoms to 
move in six directions. To accommodate this, we require 
six-dimensional vectors to store the state of each lattice 
point at each time step. In addition, more collision rules 
are required as particles can now collide at more angles. 
Hydrodynamic lattices are also available for three-dimen-
sional systems.

Finally, it is worth mentioning the key differences 
between MD and LGA since both methods consider inter-
acting particles. MD is gridless and therefore does not 
restrict the motion of atoms. Additionally, as we have men-
tioned in Sect. 2.1, MD considers microscopic interactions, 
which classically approximate quantum mechanical behav-
iour as accurately as possible. This gives rise to realistic 
equations of state, whereas the collision rules of LGA only 
facilitate isothermal relationships between mass, density, 
and pressure. However, the simplicity of LGA models is 
accompanied by a very attractive computational efficiency, 
which is of course the objective of multiscale models.

3.2  Lattice Boltzmann method

The appealing computational simplicity of the Boolean 
nature of LGA methods is inevitably accompanied by 
numerical noise. For example, since an atom with a spe-
cific discrete velocity can either exist (1) or not (0) on each 
node, its density, calculated as the number of atoms on 
each node (i.e. the sum of 1s on the Boolean vector), can 
only have an integer value. Averaging over a large number 
of nodes can reduce this noise but costs computationally. 

The Lattice Boltzmann (LB) method (McNamara and Zan-
etti 1988; Chen and Doolen 1998) attempts to resolve these 
issues by storing the real particle density at each lattice 
point. Furthermore, although the particles can travel along 
the lattice directions, as in LGA, a real number of particles 
on each lattice site occupy each of them. Therefore, the 
density and velocity of the fluid at a certain position along 
a certain direction are given by

where x is the lattice point, i is an arbitrary lattice direction, 
fi(x, t) is the portion of the density of the lattice site mov-
ing in a lattice direction, and ci is the corresponding lattice 
vector.

As in the LGA models, the evolution of the system con-
sists of a propagation and collision step. The propagation 
step is given by

simply stating that the density distribution in a certain 
direction at a node inherits that of its neighbour (along the 
vector ci) from the previous time step. Accounting for colli-
sions, the full equation becomes

where Ω is the collision operator and ci are the lattice-
restricted velocities.

Due to the additional complexity of LB models in com-
parison with LGA, more complicated collision operators 
are required. This is usually approximated by the Bhatna-
gar–Gross–Krook (BGK) operator given by (Bhatnagar 
et al. 1954)

where fi
eq is the equilibrium particle distribution based on 

the discretised version of the Maxwell–Boltzmann equilib-
rium distribution (Qian et al. 1992).

LBM can also treat physical phenomena where body 
forces are involved. Such cases include multiphase and 
multicomponent systems. This, however, requires the addi-
tion of the force to the evolution equation (Eq. 3.3) and 
that the velocity and equilibrium distribution are adjusted 
accordingly (Guo et al. 2002a, b).

The base model described above can be modified to 
accommodate various flow phenomena. For Poiseuille 
flow, the collision rules at the solid–liquid interface are 
adapted so that fluid particles arriving at the boundary are 
bounced back by inverting the lattice velocity (Succi 2001). 

(3.1)ρ(x) =
∑

i

fi(x)

(3.2)u(x) =
∑

i

fi(x)ci

fi(x+ ci�t, t +�t) = fi(x, t)

(3.3)fi(x+ ci�t, t +�t)− fi(x, t) = Ωi(f )

(3.4)Ω : fi → −
1

τ

[

fi − f
eq
i

]
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For Couette flow, this model is adjusted so that part of the 
boundary momentum is injected into the bounced fluid 
(Ladd 1994). This approach models the boundaries at lat-
tice link midpoints and is therefore unable to capture the 
behaviour of arbitrarily curved surfaces. Subsequent stud-
ies have proposed extensions to these models to account for 
more complex geometries (Filippova and Hänel 1998; Guo 
et al. 2002a, b).

LBM has also been adapted to accommodate inlet and 
outlet boundaries. There are two main types of problems 
with different models for each. The first type is when the 
velocity and density are known at the inlet and outlet, 
respectively (Zou and He 1997; Izquierdo et al. 2009). The 
second is when both the velocity and density are known 
at the inlet, and the flow at the outlet is considered fully 
developed (Yu et al. 2005).

The method also enables simulations of complex and 
multiphase flows by modelling potential interactions 
between the pseudo-particles. This is achieved by defining 
an external force, which acts on fi

eq. The mesoscale interac-
tions can naturally give rise to non-ideal fluid. This allows 
for simulation of complex systems such as the effect of 
gas bubbles on the liquid slippage at a rough solid surface 
(Hyvaluoma and Harting 2008). To realise such effects, the 
free-energy functional of the system is considered, giving 
rise to a pressure tensor that can be included in fi

eq (Swift 
et al. 1995).

An alternative method is to include an interaction term 
between the pseudo-particles, given by (Shan and Chen 
1994)

where G is the ratio of the potential to thermal energy, 
ψ(x) is the potential that describes the interactions of the 
pseudo-particles under inhomogeneities, and gi is a lattice-
dependent weighting factor dividing the force among the 
various lattice directions. Adjusting the equilibrium distri-
butions based on the effects of this force on the velocity 
provides an equation of state, which for high values of G 
resembles the van der Waals equation, enabling the simula-
tion of liquid–gas interfaces. Although the thermodynamic 
validity of this pseudo-potential scheme has been criti-
cised as it is not derived from a free-energy functional, it 
has been proved effective in successfully describing vari-
ous systems. Furthermore, the addition of a gradient force 
in Eq. 3.5 can bridge these thermodynamic inconsistencies 
(Sbragaglia et al. 2009).

3.3  Dissipative particle dynamics

Dissipative particle dynamics (DPD) is a mesoscale 
approach in which, unlike LGA and LB, pseudo-particles 

(3.5)F(x) = ψ(x)
∑

i

giGψ(x+ ψ(x+ ci)ci)

move continuously in space rather than jumping across 
points on a lattice (Hoogerbrugge and Koelman 1992). 
These bodies represent groups of atoms or subthermody-
namic ensembles and interact among themselves through 
pairwise interactions. In this sense, DPD can be considered 
as a coarse-grain equivalent of MD. Each pseudo-particle 
moves in free space. Its momentum is updated every time 
step according to the force acting on it given by

The term Fij
C is a purely repulsive, conservative force that 

prevents major overlaps between the particles. This com-
ponent acts in the same way as the repulsive component of 
the non-bonded potentials that MD employs (e.g. Lennard-
Jones potentials). However, the more complicated potentials 
of microscopic simulations produce forces that increase 
to infinity as the interatomic distance approaches zero. As 
we have mentioned in Sect. 2.1, this severely restricts the 
maximum time step that can be used. However, if we aver-
age these interactions over large groups of atoms, such as in 
DPD, a “softer” potential can be used which is finite even at 
zero separation. This allows the use of a much larger time 
step, a very attractive quality of this mesoscale method that 
allows the simulation of more practical systems. The dis-
sipative (Fij

D) force describes viscous, frictional forces, and 
it is a function of interatomic distances and relative veloci-
ties between atoms in the system. Finally, the term Fij

R is a 
stochastic force that introduces Brownian motion. The dis-
sipative and random forces emulate the internal degrees 
of freedom (i.e. the atomic fluctuations within the pseudo-
particles) of these mesoscale particles and regulate the tem-
perature (they act as a Langevin thermostat). Once the force 
is defined, Newton’s second law of motion (Eq. 2.1) is used 
for advancing the trajectory of the system through phase 
space. The conservative force is then given by

where aij is the maximum repulsion between the dissipative 
particle i and j, r is their interatomic distance, and wC(r) is a 
weight function, often set to

This formulation only includes a repulsive component. 
Although this is an accurate approximation of gases, for 
more complex systems such as multiphase flow, an attrac-
tive component should also be added. In this case, the 
weight function can be given by (Liu et al. 2006, 2007)

(3.6)Fi =
∑

i �=j

(

FC
ij + FD

ij + FR
ij

)

(3.7)FC
ij = aijw

C(r)rij

(3.8)wC(r)

{

(1− r) r < 1.0

0 r ≥ 1.0

(3.9)wC(r) = −
[

AW ′
1(r, rc1)− BW ′

2(r, rc2)
]
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where W1(r, rc1) and W2(r, rc2) are spline functions rep-
resenting the repulsive and attractive interactions; A and 
B define their strengths; and rc1 and rc2 are their cut-off 
distances.

Modelling stationary solid surfaces can be achieved by 
fixing or freezing the pseudo-solid particles (as is the case 
with MD). The solid–liquid interactions must be modelled 
accordingly to prevent liquid atoms from penetrating the 
solid walls. Although this can be achieved by increasing 
the solid density as well as assigning a greater repulsive 
interaction between the two phases, such methods have 
presented inaccurate physical behaviour (Kong et al. 1994; 
Jones et al. 1999; Willemsen et al. 2000). Instead, reflec-
tion algorithms can be used to reverse the velocity of the 
fluid particles, in a manner similar to LBM (Revenga et al. 
1998).

4  Hybrid molecular–continuum methods

An alternative method for dealing with systems at micro-
scales is the HMCM in which both molecular (usually 
MD or MC) and continuum (usually CFD and FEM) solv-
ers are used (Kalweit and Drikakis 2011). The basic prin-
ciple behind these hybrid techniques is to limit the use 
of the molecular solver as much as possible. The size of 
the domain (i.e. number of atoms) is the biggest bottle-
neck in molecular methods. Therefore, all HMCM decou-
ple the length scales by running molecular simulations in 
one or more subdomains, small relative to the overall size 
of the system. In addition, some HMCM decouple the 
timescales by running the molecular simulations for only 
selected periods. Figure 5 illustrates a general categorisa-
tion of the available HMCM. Geometric decomposition 

and pointwise coupling are based on how the model allo-
cates the system to the molecular and continuum solvers. 
Geometric decomposition divides the system spatially and 
exclusively allocates one of the two solvers for each region. 
The appropriate exchange of information between them, 
either state variables or fluxes, ensures transparency of the 
computational division and continuity in the physics of the 
system. On the other hand, the pointwise coupling method 
solves the entire system in a continuous fashion and uses 
microscopic refinement around the grid points. Although 
all HMCM decouple the length scales, only some of them 
decouple the macroscopic and microscopic timescales. 
Note that employing equilibrium kinetic theory concepts 
to what is definitely a non-equilibrium process should be 
borne in mind when considering the limitations of multi-
scale methods. Although this is recognised by the present 
authors, it is an issue that requires further elaboration that 
is beyond the scope of the present study. The aforemen-
tioned methods are discussed in more detail below.

4.1  Geometric decomposition

Geometric decomposition (GD) refers to a HMCM in 
which the simulation domain is decomposed into regions, 
some of which are dealt with by the molecular and oth-
ers by the continuum solver. As the objective of such 
hybrid methods is to minimise computational resources, 
the higher-resolution molecular regions should be much 
smaller than the continuum regions.

The continuity of thermodynamic and transport proper-
ties between the various parts of the system is integral in 
modelling a physically accurate environment. It is therefore 
crucial to define a protocol in which the two solvers share 
information with each other and adjust in order to conform 
to the laws of physics. This is achieved by defining an over-
lapping region near the interface of the two regions, called 
hybrid solution interface (HSI), which is treated by both 
the continuous and molecular components.

Figure 6 shows the process behind GD. The continuum 
region on the left, highlighted in light blue, is solved using 
a finite volume method and is therefore divided into cells. 
The grid is extended slightly into the molecular domain. 
The coinciding cells are called ghost cells. Although the 
domain in molecular methods is not traditionally divided 
into a grid, virtual cells are defined which coincide with the 
ghost cells of the continuum solver. This sets up a frame-
work enabling the exchange of information between the 
two.

The coupling of the solvers is bidirectional. The molecu-
lar component calculates properties within the virtual cells 
and imposes them onto the ghost cells. In turn, these will 
adjust the boundary cells (dark blue cells in Fig. 6). On the 
other hand, macroscopic properties in the ghost cells are 

Fig. 5  General classification of hybrid molecular–continuum meth-
ods (HMCM). Geometric decomposition and pointwise coupling 
differ with respect to the implementation of the molecular and con-
tinuum solvers in the simulation box
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imposed onto the molecular domain by adjusting the num-
ber and velocities of the atoms within the corresponding 
virtual cells.

The protocol at the HSI varies significantly between GD 
implementations. However, all GD schemes need to satisfy 
a set of fundamental requirements, namely:

•	 The conservation laws of mass, momentum, and energy 
should hold across the boundary.

•	 The state variables across the boundary must portray a 
physically accurate behaviour. This means that by look-
ing at the flow solution of the simulation (i.e. density 
profiles), the position of the HSI should not be identifi-
able.

The coupling must be also designed in the most simplis-
tic and computationally efficient manner possible.

GD can differ in the type of information used for 
coupling the two solvers. Two broad categories can be 
identified

1. State coupling
2. Flux coupling

These will be discussed in the sections below.

4.1.1  State coupling

State coupling refers to the sharing of state variables such 
as density, temperature, and velocity, across the HSI. 
Figure 7 illustrates a one-dimensional set-up for coupling 
by states with the continuum region being on the left and 
the molecular region on the right. The vertical separation 

is merely an artefact to aid in the visual clarity of the 
figure.

As already mentioned, this exchange of information 
occurs from the continuum to the molecular region and vice 
versa. The transfer of data from the molecular to the con-
tinuum domain is not so complicated since the macroscopic 
quantities can be obtained through spatial and temporal 
averaging of the atomic behaviour. In general, a state vari-
able A has an instantaneous value, obtained by averaging 
the behaviour of many atoms at an arbitrary instance. As 
a statistical quantity, this value can fluctuate significantly 
across different points in time. The reduction in these fluc-
tuations is achieved through averaging the instantaneous 
calculations over a suitably long timescale by:

where 〈A〉t denotes the time average of the quantity A; t0 
denotes the initial time frame in which the value is calcu-
lated; δt is the timescale over which the quantity is aver-
aged; and A(t) is the instantaneous calculation. For com-
putational purposes, the equation can be written in discrete 
form as

where τ denotes the time step of the molecular simulation 
and Nt is the number of time steps used for the averaging. 
The ghost and boundary cells can trivially inherit the calcu-
lated values.

Transferring information from the continuum to the 
molecular domain is a more complicated task. The dif-
ficulty arises from the requirement to construct a micro-
scopic state of 6 N degrees of freedom (momentum and 

(4.1)�A�t =
1

δt

t0+δt
∫

t0

A(t)dt,

(4.2)�A�t =
1

Nt

Nt
∑

τ=0

A(t),

Fig. 6  Schematic representation of GD

Fig. 7  A one-dimensional illustration of coupling by states in both 
directions. The continuum and molecular domains are separated to 
aid visualisation. The arrows symbolise the transfer of states from 
the continuum to the molecular domain (C → M) and vice versa 
(M → C)
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position of N atoms) from the macroscopic state, with 
only five degrees of freedom (ρ, u, and e) (Asproulis et al. 
2009). This interpolation requires additional assumptions 
or stochastically generated values.

For incompressible flows, this is achieved by match-
ing the atomic number density and average velocity in the 
HSI with the corresponding continuum values. Inserting or 
deleting atoms in the virtual cells controls the density. The 
momentum is coupled by rescaling the atomic velocities 
accordingly. The temperature can also be regulated based 
on the equipartition theorem, according to the equation

where ēk is the average kinetic energy of all atoms about 
their mean position, i.e. excluding the kinetic energy of the 
centre of mass within that cell, and κB is the Boltzmann 
constant.

State coupling becomes much more complicated for 
compressible flows as the positions and momenta of the 
atoms must also match the continuum energy. Although in 
its own right this is not a difficult task, the abundance of 
microscopic states fulfilling this constraint must further be 
reduced to those maximising the entropy of the system and, 
in turn, satisfy the second law of thermodynamics. Such a 
task greatly increases the computational complexity of the 
algorithm, a highly undesirable outcome.

Initially, MD–CFD-based state coupling methods were 
used to study 1D incompressible Couette flow, which 
did not permit mass or energy transfer across the HSI 
(O’Connell and Thompson 1995). The molecular and con-
tinuum environments were coupled by exchanging veloci-
ties using constrained Lagrangian dynamics. A 2D state 
coupling scheme was proposed shortly after for the study of 
Poiseuille and Couette flows of supercritical argon (Hadji-
constantinou and Patera 1997) and the moving contact line 
problem (Hadjiconstantinou 1999). The method allowed 
mass flow across the MD/CFD interface by enclosing the 
molecular region within a bigger simulation box with peri-
odic boundary conditions serving as a particle reservoir. 
More recent advances in state coupling, MD–CFD meth-
ods emulated mass flow by inserting and deleting particles 
that cross the HSI (Werder et al. 2005). The model has been 
used to study flow of a LJ fluid around a carbon nanotube 
(CNT), the results of which agreed with those similar cases 
treated exclusively with MD. State coupling methods suit-
able for unsteady flows have also been derived (Liu et al. 
2008).

Methods for reducing the noise resulting from the ther-
mal fluctuations in the molecular domain have also been 
proposed (Ko et al. 2014). This has been achieved by sam-
pling the state variables from multiple, replicated molecular 
systems set at different initial conditions. Furthermore, by 

(4.3)T =
2

3κB
ēk

spatial and temporal regressions, a more accurate exchange 
of variables can be achieved.

4.1.2  Flux coupling

Rather than exchanging information on the state of each 
region, flux coupling methods update the state variables 
by monitoring the inflow and outflow of mass, momentum, 
and energy. The monitoring is required to account for all 
ways in which quantities can be transported. Mass can only 
be transferred through convection, the bulk motion of fluid 
particles. Momentum can be transferred by both convec-
tion and the stresses applied on atoms by their neighbours. 
Finally, energy can be transferred by convection, through 
interatomic stresses, as well as through conduction.

As in the case of state coupling, the transfer of informa-
tion from the molecular to the continuum domain is sim-
pler than the inverse exchange (continuum to molecular). 
We achieve this by monitoring and calculating the flow of 
a quantity through a virtual cell face within the overlapping 
region or an arbitrary volume enclosing the surface. This 
flow can then be imposed on the corresponding ghost cells 
(or corresponding volume enclosing the ghost cell’s face). 
This can be seen in Fig. 8 where the vertical, black, dashed 
line indicates the face of the cell. Figure 8a illustrates that 
the flux is measured by the rate in which atoms or mole-
cules cross this surface. In Fig. 8b, the shaded red region is 
the volume containing the surface, in which the fluxes are 
calculated. Once the atomic trajectories are translated into 
fluxes (again through the use of statistical mechanics), and 
time-averaged, as shown in Eq. 4.2, the fluxes are imposed 
onto the continuum region.

The exchange of fluxes from the continuum to the 
molecular domain is again more complicated as the fluxes 
in and out of the ghost cells must be mapped onto the vir-
tual cells. To account for convective fluxes, atoms are 
inserted or deleted in the virtual cells of the HIS. The num-
ber of atoms regulates the mass transfer, and their velocities 
control the convective momentum and energy transfer. In 

Fig. 8  Schematic representation of flux coupling. a Across cell, b 
across volume
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order to impose momentum transfer through stress, appro-
priate force fields are applied onto the atoms. Finally, the 
conductive flux can be realised by rescaling the velocities 
of the atoms, emulating energy transfer.

Incompressible, isothermal flows are significantly sim-
pler than compressible cases as the two energy fluxes 
(stress and conductive) can be ignored (Hadjiconstan-
tinou and Patera 1997; Barsky et al. 2004; De Fabritiis 
et al. 2007). However, all fluxes can be incorporated into 
the molecular domain, allowing for the simulation of com-
pressible flows (Delgado-Buscalioni and Coveney 2003a). 

Additionally, this method is suitable for phenomena whose 
characteristic timescales are comparable to molecular time-
scales, such as waves (Delgado-Buscalioni et al. 2005; De 
Fabritiis et al. 2007). However, due to the constant need 
to monitor the fluxes across the molecular and continuum 
regions, GD flux coupling methods do not decouple time-
scales and are, therefore, not preferred by some authors 
(Wijesinghe and Hadjiconstantinou 2004; Koumoutsakos 
2005).

Researchers initially used flux coupling methods to study 
incompressible flows (Flekkøy et al. 2000; Wagner et al. 
2002). Mass and momentum fluxes were exchanged within 
the HSI by having a reservoir around the MD region, in 
which atoms were either inserted or deleted, emulating in- 
and outflow. The model was further extended to account for 
compressible flows by incorporating the coupling of energy 
fluxes (Delgado-Buscalioni and Coveney 2003a). This was 
later improved by introducing an algorithm for inserting 
atoms (Delgado-Buscalioni and Coveney 2003b) and even 
polar molecules, such as water (De Fabritiis et al. 2004) to 
achieve the desired energy levels. The applicability of this 
flux coupling approach has rendered it the preferred method 
for various researchers (Delgado-Buscalioni and Coveney 
2003b; Flekkøy et al. 2000). The method was applied on 
incompressible isothermal flows over an oscillatory wall 
(Delgado-Buscalioni and Coveney 2004) and, success-
fully, simulated single tethered polymer in a solvent, sub-
jected to oscillatory flow (Barsky et al. 2004). Past studies 
have investigated the boundary conditions used in the flux 

Fig. 9  A schematic illustration of length decoupling in PWC

Fig. 10  A schematic illustration of time decoupling in PWC. For coupled timescales, the molecular and continuum simulations run in parallel. 
For decoupled timescales, the molecular simulation runs for a number of microscopic time steps at specific macro-time steps
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coupling approaches attempting to smoothen any numeri-
cal artefacts and discontinuities induced at the HSI (Kalweit 
and Drikakis 2008a, b, 2010). Extensions to the flux cou-
pling models have been proposed to take into account the 
fluctuations of state variables when transferring information 
from the molecular to the continuum region. This can be 
achieved by adapting the macroscopic equations as well as 
by implementing a relatively fine grid near the HSI. Such 
flux coupling methods have successfully simulated sound 
waves propagating through water and reflected by a lipid 
monolayer (Delgado-Buscalioni et al. 2005; De Fabritiis 
et al. 2007). Previous investigations have also used GD to 
couple fluxes from the continuum to the molecular domain 
in connection with the study of dynamic friction between 
crystal silver on copper at high pressure (Barton et al. 2011).

4.2  Pointwise coupling

Rather than having regions treated exclusively by a molec-
ular or continuum solver (as is the case with GD), the 
pointwise coupling (PWC) solves the entire domain using 
the continuum solver, with the molecular component act-
ing as a refinement by providing information used for more 
accurate calculations (Asproulis et al. 2012). There are two 
types of problems in which such methods are effective:

(a) Problems in which the boundary conditions (e.g. veloc-
ity slip) need to be resolved by the microscopic solver;

(b) Problems in which the constituent relations need to be 
extracted from the molecular models.

Running molecular simulations in regions small com-
pared to the continuum cell size decouples the length scales 
(Fig. 9). In addition, PWC decouples timescales by com-
puting the microscopic information in small bursts, i.e. a 
small number of time steps (Fig. 10).

The entire domain is solved by the continuum model 
(blue), while the microscopic solver is used at specific grid 
points (red) to assist the macroscopic solution. Several 
PWC-based coupling methods (for both solids and fluids) 
have been proposed based on the above description. These 
differ in the involvement of the molecular solver and the 
means by which the properties in question are computed 
and can be generalised into two categories.

1. Heterogeneous multiscale method
2. Equation-free approach

(a) Patch dynamics
(b) Gap-tooth method

These are described in the following sections.

4.2.1  Heterogeneous multiscale method

The heterogeneous multiscale method (HMM) (Enguist 
and others 2003) assumes knowledge of the physical, con-
tinuum equations required for the calculation and evolution 
of the flow field. As the macroscopic field is not explic-
itly known across the entire domain, there is often a lack 
of data essential for the solution of these equations, e.g. 
stress tensor. The microscopic solver provides the relevant 
information.

For modelling the physical system, the following should 
be considered

•	 The continuum model to be used.
•	 The data computed by the microscopic solver to be fed 

into the macroscopic model.
•	 Conversion of a continuum state into a consistent micro-

state (as explained in Sect. 4.1.1).
•	 Conversion of averaging a microstate to realise the con-

tinuum value.

The system is then advanced based on the following 
steps:

From a macroscopic state variable U, the microstate is 
reconstructed by adjusting the positions and momenta of 
the atoms.

1. Using the molecular solver, the system is evolved and 
the necessary data (usually stress tensor or slip condi-
tion) are computed.

2. The data are then inserted into the macroscopic model 
to realise the field at a later time

Initial implementations of HMM have successfully 
simulated phenomena such as homogenisation, dislo-
cation dynamics, and crack propagation (Weinan et al. 
2003). Subsequent studies have used such methods to 
model complicated flows, e.g. driven cavity flows (Ren and 
Weinan 2005). MD was used to calculate the stress tensor 
from first principles, using the Irving-Kirkwood formula, 
instead of relying on assumptions that are inaccurate for, 
Newtonian fluids. Hence, the investigation concludes that 
such approaches are suitable for complex fluids, e.g. pol-
ymeric fluids. Traditional formulation of HMM is unable 
to study steady state problems since the velocity field U, 
used to impose boundary conditions on the molecular 
solver, vanishes along with the time derivative in Eq. 2.4. 
Recent studies have circumvented this problem by using 
the Laplacian of the streaming velocity and temperature 
(Alexiadis et al. 2013) to calculate momentum and heat 
transfer. In addition, their method avoids using the compli-
cated Irving-Kirkwood equations to calculate the stress ten-
sor and, instead, uses the simpler “framed” cell approach 
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(Hadjiconstantinou and Patera 1997; Drikakis and Asprou-
lis 2010). The approach was validated by simulating a flow 
through a channel under the effect of gravity.

A variation of the HMM is the internal-flow multiscale 
method (IMM), tailored for micro- and nanoflows through 
channels of high aspect ratios (Borg et al. 2012). The sys-
tem is again treated entirely by the continuous solver. How-
ever, the microscopic component treats thin strips across 
the entire width of the channel rather than small regions 
around grid points (Fig. 11). The rationale is that for very 
narrow channels, the molecular regions of traditional HMM 
which need to have a minimum volume (depending on the 
mean free path of the system) might overlap introducing 
a computational overhead surpassing the computational 
expense of full MD. Rather than imposing the velocity field 
onto the molecular region, IMM imposes pressure gradient, 
emulated through an applied force. 

The spacing between the molecular slices depends on 
the rate of change of the flow and geometric properties. 
The faster the change is, the closer these regions should 
be. Hence, such methods are not so effective in simulat-
ing channels interconnected through junctions where the 
geometry varies significantly within small length scales, a 
scenario which is quite common in engineering (e.g. res-
ervoir inlet/exit junction). To accommodate such models, 
an extension of the model has been proposed which treats 
channels of high aspect ratio with IMM, while covering 
the junction components entirely through MD (Borg et al. 
2013b). The IMM approach has further been adopted for 

compressible flows (Patronis et al. 2013) using the direct 
simulation Monte Carlo (DSMC) method.

Recent studies have introduced the fieldwise coupling 
(FWC) approach (Borg et al. 2013a), circumventing 
the limitation of traditional HMM methods in relatively 
coarse grids. In contrast to PWC that couples the molec-
ular region to a node of the continuum grid, FWC cou-
ples the MD and CFD regions. MD simulations are used 
to calculate stress and velocity profiles within molecular 
domain and feed their values into the CFD solver. The 
microscopic elements can have an arbitrary position and 
size, hence increasing the versatility of the method for dif-
ferent characteristic system dimensions and enabling flow 
phenomena of varying length scales to be modelled. The 
HMM-FWC approach in conjunction with DSMC was 
also extended to model heat transfer problems in rarefied 
gases (Docherty et al. 2014).

To further improve the computational efficiency of 
PWC models, MD calculations can be cached into suit-
able data structures for use at a later time step (Asproulis 
and Drikakis 2013). If the information requested by the 
continuum model resembles previously processed data, 
then the molecular result is extracted from the cache, 
rather than requiring recomputing. Furthermore, artifi-
cial neural networks can be trained to optimise the vol-
ume of stored information and to minimise the molecular 
fluctuations.

4.2.2  Equation-free approach

The equation-free approach (EFA) is a PWC method, which 
circumvents the need for continuum closed-form equations 
(Kevrekidis et al. 2003, 2004). The main idea is that small 
bursts of appropriately initialised microscopic simulations 
can be used to calculate the same information that explicit 
continuum formulas would produce. The gap-tooth method 
defines small regions (referred to as “teeth”) in space where 
the microscopic solver calculates desired observation vari-
ables (e.g. density) (Gear et al. 2003). Spatial interpolation 
between the calculations of these regions can compute the 
macroscopic field. This successfully decouples the micro-
scopic and macroscopic spatial scales, but does nothing to 
decouple the time between them.

Patch dynamics can then be used to decouple timescales. 
In general, given the initial value of a property c, marked as 
c0, as well as its time derivative dc

dt
, one can use the forward 

Euler method

to calculate the value of c at future times. Here, τ is the 
macroscopic time step. Although a model would normally 
be used for the derivative, the patch dynamics approach 

(4.4)cn+1 = cn + τ

dc

dt

Fig. 11  Schematic representation of IMM. The entire channel is 
solved with a continuum solver. The molecular component is used 
over sparsely placed, thin regions, spanning the entire width of the 
channel
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calculates it by allowing the microscopic solver to run for 
a small period of time. We can then project the solution to 
the next macroscopic time step τ using the forward Euler 
method (or more generally a Taylor series). During this 
macroscopic time step, the molecular solver is not used at 
all. However, following the projection step, the microscopic 
simulation must be reinitialised accordingly to obtain the 
derivative for the next iteration. Since the molecular com-
ponent runs for a short period of time, following the macro-
scopic time step, the patch dynamics approach also decou-
ples the macro- and micro-timescales.

The macroscopic and microscopic time step used for the 
EFA can vary significantly depending on the problem to be 
modelled and the computational method employed. In fact, 
this approach is by no means restricted to a specific type 
of microscopic model. Many applications have used mes-
oscale models to compute the field in between projections 
for a wide range of applications. Using the LBM, previous 
studies investigated the interaction between arrays of bub-
bles in a two-phase liquid (Sankaranarayanan et al. 2002, 
2003; Theodoropoulos et al. 2004). The EFA, in conjunc-
tion with the LBM, has also been used to study reaction–
diffusion problems (Kevrekidis et al. 2003). Investigations 
have also used patch dynamics with kinetic Monte Carlo to 
study a model of heterogeneous catalytic surface reactions 
(Makeev et al. 2002; Siettos et al. 2003).

Although the above investigations have demonstrated 
that this method is effective, it is usually restricted to prob-
lems where the macroscopic physics are not well under-
stood. In the case where continuum, closed-form equations 
are available, HMCM such as GD or HMM are preferred.

5  Conclusions

The recent academic and industrial interest in micro- and 
nanofluidic devices has necessitated the development of 
computational strategies that can assist the design of such 
devices. From the perspective of the physical understand-
ing of such systems, the high-resolution molecular methods 
are ideal approaches. Their computational cost, however, 
significantly limits their use to systems containing a modest 
number of atoms. For larger scales, the computational effi-
ciency of continuum methods such as CFD is particularly 
appealing, but the steep gradients and discontinuities char-
acterising microflows are beyond the scope of the Navier–
Stokes equations.

This review presented the efforts for the design of com-
putational models attempting to bridge the gap between 
accuracy and computational efficiency. Various mesoscale 
models, which provide an intermediate resolution for com-
putation, and hybrid methods, which use both molecular 
and continuum solvers for the description of the fluid field, 

were presented. To date, there is no universal method, 
which covers all regimes. The appealing simplicity of the 
LGA is compromised by the discrete nature of the veloci-
ties and density, which produces unrealistic physical phe-
nomena for complex systems. Although the more refined 
LBM has been improved significantly over the years to 
include various effects, e.g. multiphase flows, boundary 
conditions, disadvantages emerging from the limitation 
of lattice-based system dynamics still exist. As a coarse-
grained version of MD, DPD is an appealing method with 
the capability of providing an accurate representation of 
complex systems. However, depending on the grouping 
of the molecules, the dissipative pseudo-particles, intera-
tomic and intermolecular interactions can be blurred.

HMCM provide a good comprise by using both solv-
ers. Complications arise, however, in the choice of the 
regions in which the molecular solver will be applied. GD, 
for example, might not be appropriate in systems where 
the entire channel is governed by microscopic phenom-
ena, and therefore, the definition of a continuum region is 
not possible without compromising accuracy. PWC-based 
approaches generally seem to be the most versatile, poten-
tially providing information across the entire domain. 
However, when the geometries and gradients vary signifi-
cantly within small length scales, the number of molecu-
lar regions needs to increase, which can quickly add to the 
overall computational expense.

For highly variable geometries and gradients, the num-
ber of molecular regions needs to increase, which can 
quickly add to the computational expense. Furthermore, no 
mesoscale or HMCM methods are capable of dealing effi-
ciently and effectively with problems in which the molecu-
lar timescales are comparable to and greater than the mac-
roscopic ones. Phenomena falling within this category 
are adsorption and sedimentation. Whether such physical 
behaviour can be simulated using multiscale approaches is 
yet to be seen.

Finally, although significant advances in multiscale 
modelling are yet to be made, the efforts of the last three 
decades have facilitated a number of options, which can be 
considered for a large spectrum of flow regimes of interest 
in engineering.
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