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List of symbols

Latin symbols
C(ξ1, ξ2, t)  Effective particle number density function in 

the ξ1ξ2 frame (see Fig. 8)
C∞(ξ1, ξ2)  Steady-state effective particle number den-

sity in the ξ1ξ2 frame
Dα ,D  Diffusion coefficient of species α
Deff  Dispersion coefficient for the continuous 

separation process

Coordinate system
D1, D2  Dimensionless dispersion coefficients (prin-

cipal values of D)
Pe = Uℓ/D  Particle Peclet number
R(x)  Resolution of a binary mixture at down-

stream distance x from the inlet
Y(x)  Average y crossing coordinate at an exit sec-

tion at downstream distance x from the inlet
Wα  Average (vector) velocity of species α
Wξi  Components of W in the ξ1ξ2 coordinate 

system

Greek symbols
�α(x, y, t)  Effective particle concentration n the global 

coordinate system xy
�∞(x, y)  Steady-state effective particle concentration 

in the global coordinate system xy
�ν(x, y)  Normalized cross-sectional steady-state dis-

tribution of particle crossing coordinate at 
downstream distance x from the inlet

σ(x, y)  Variance of �ν(x, y) profile
�D  Angle between the eigendirection e(1)D  of D 

and the average velocity of the carrier flow 
(see Fig. 1b)

Abstract Theoretical models and experiments suggest 
that the transport of suspended particles in microfluidics-
based sorting devices can be modeled by a two-dimen-
sional effective advection-diffusion process characterized 
by constant average velocity, W, and a typically anisotropic 
dispersion tensor, D, whose principal axes are slanted with 
respect to the direction of the effective velocity. We derive 
a closed-form expression connecting the effective transport 
parameters to separation resolution in continuous particle 
fractionation. We show that the variance of the steady-state 
particle concentration profile at an arbitrary cross-section 
of the device depends upon a scalar dispersion parameter, 
Deff, which is primarily controlled by the projection of 
the dispersion tensor onto the direction orthogonal to W. 
Numerical simulations of particle transport in a Determin-
istic Lateral Displacement device, here used as a bench-
mark to illustrate the practical use of the effective trans-
port approach, indicate that sustained dispersion regimes 
typically arise, where the dispersion parameter Deff can be 
orders of magnitude larger than the bare particle diffusivity.
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�′
W

  Angle between the eigendirection e(1)D  of 
D and the average particle velocity (see 
Fig. 1b)

Calligraphic and miscellaneous symbols

D  Effective dispersion tensor

1 Introduction

In the last two decades, the family of microfluidics-based 
prototypes devised for sorting mixtures of mesoscopic 
objects suspended in a buffer fluid has been continuously 
increasing. While most of the processes carried out in these 
devices are dissimilar by the nature of the suspended objects 
[ranging from healty and tumoral cells Autebert et al. (2012) 
to DNA fragments Dorfman et al. (2013), Raynal et al. 
(2013), Benke et al. (2013), and encompassing viruses and 
proteins Sia and Whitesides (2003)], by the feature driving 
the separation [e.g. size Huang et al. (2004), electric surface 
charge Dorfman et al. (2013), permanent or induced dipole 
Zhang et al. (2010), dielectric constant Jonas and Zemanek 
(2008), acoustic contrast factor Bruus (2012)], as well as by 
the operating conditions (transient or continuous), they all 
share a common governing transport mechanism, namely the 
micro-dynamical interaction between a deterministic drive 
(be it Stokesian drag, electric field, magnetic field, laser light, 
or acoustic pressure) and Brownian fluctuations. Because of 
the micrometric or sub-micrometric size of the suspended 
objects, the effect of stochastic fluctuations cannot be over-
looked in any physically realistic model of transport. With 
the exception of few specific applications [e.g. Brownian 
ratchets Hnggi and Marchesoni (2009), Huang et al. (2003)], 
where the different level of fluctuation intensities can be 
regarded as the ultimate source for the separation, the pres-
ence of diffusion generally hinders separation with respect to 
what can be predicted on the basis of a purely deterministic 
transport model. Furthermore, there are reasons to believe 

that the negative impact of Brownian motion on separation 
performance may go well beyond what could be anticipated 
from the value of the bare particle diffusivity, since disper-
sion-enhanced regimes might arise, which can be regarded 
as the large-scale outcome of the synergistic interaction 
between the small-scale structure of the deterministic drive 
and the stochastic fluctuations.

One of the arguments that supports this idea is that such 
dispersion-enhanced regimes have been known to occur 
when the suspended objects can be assimilated to massless 
tracers and when the deterministic drive is represented by 
an incompressible flow, which can be regarded as stem-
ming from a vector potential. In this case, a complete 
understanding of large-scale transport has been achieved in 
a variety of flows, from the classical closed-form expres-
sion of the effective axial dispersion coefficient in Taylor-
Aris treatment of duct flows, to Brenner’s macrotransport 
paradigm for incompressible spatially-periodic flows, 
where enhanced-dispersion regimes have been analyzed 
and quantified in various lattice geometries [see Ref. Bren-
ner and Edwards (1993) and therein cited references]. On 
the one hand, these theories cannot be directly implemented 
to particle sorting processes since the very source of sepa-
ration is here typically represented by a scalar potential, 
a condition that makes the vector field representing the 
deterministic drive not altogether incompressible. On the 
other hand, increasing numerical evidence is becoming 
available Ghosh et al. (2012), Speer et al. (2012), Cerbelli 
et al. (2013), Cerbelli (2013), Chen (2013), Kirchner and 
Hasselbrink (2005), suggesting that even in the presence 
of mixed potentials (i.e. possessing both scalar and vector 
components), particle transport is consistent with an effec-
tive template which can be regarded as a generalization of 
the behavior of point tracers entrained in incompressible 
flows. Just like the incompressible case, this template is 
characterized by a constant effective velocity and a—typi-
cally anisotropic—constant effective dispersion tensor, 
whose principal axes are slanted with respect to the effec-
tive particle velocity as well as to the average direction of 
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Fig. 1  a Schematic representation of continuous fractionation for a 
binary mixture of particles. The average, large-scale component of 
the deterministic drive is assumed aligned with the x-axis. b Geo-
metric parameters defining the effective transport model. The shaded 

area represents the dispersion ellipsoid, e(1)D , e(2)D  its eigenvectors cor-
responding to the eigenvalues D1, D2, W is the large-scale average 
particle velocity
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the deterministic drive. The main difference induced by 
the presence of the dissipative scalar potential is that here 
the effective particle velocity needs not be aligned with the 
average direction of the deterministic drive. Indeed, it is 
this very effect that acts as a driving force for the separa-
tion in that the structure of the scalar potential is specific to 
the particle feature, such as size, shape, charge, dipole, etc., 
so that particles possessing different characteristics experi-
ence different dissipative potentials and therefore migrate 
along different directions. Besides, the dispersion-enhanc-
ing effect of the deterministic drive quantitatively translates 
into the fact that some of the entries of the effective dis-
persion tensor can be orders of magnitude larger than the 
bare particle diffusivity. This effect must be clearly char-
acterized and predicted at the design stage of the process 
if one is to avoid unchecked negative effects on separation 
resolution. Notwithstanding the possible occurrence of con-
vection-enhanced dispersion, the design of most microflu-
idic separators is still largely based on a purely determin-
istic (diffusionless) setting Huang et al. (2004), Inglis et al. 
(2006), Kralj et al. (2006), Inglis (2009), Loutherback et al. 
(2010), Frechette and Drazer (2009), Long et al. (2008), 
and the theoretical effort put forward to quantify the impact 
of particle diffusion on the deterministic transport has been 
mainly limited to predict the effect of Brownian noise on 
the average particle velocity Gleeson et al. (2006), Heller 
and Bruus (2008), thus overlooking dispersion phenomena 
about the average particle current.

Alongside these numerical studies, a number of recent 
experiments showed how particle dispersion and separation 
resolution can be quite sensitive to the process conditions, 
particle size, and device geometry Collins et al. (2014), Dev-
endra and Drazer (2012), He et al. (2013, 2014), Bogunovic 
et al. (2012), Inglis et al. (2008), Jain and Posner (2008), 
Huang et al. (2004), sometimes with a counter-intuitive 
dependence. This is the case, for instance, of the gravity-
driven Deterministic Lateral Displacement separation experi-
ments reported in Ref. Devendra and Drazer (2012), which 
show unambiguously how particle dispersion can increase 
when increasing particle size (i.e. at increasing particle Peclet 
number). These results suggest that a consistent interpretation 
of experiments and a rational design of microfluidics-assisted 
particle sorters cannot do away with a tailored modelling of 
effective transport. The aim of this article is to provide a quan-
titative framework to bridge the gap between theoretical mod-
elling and experiments. We focus specifically on continuous 
separation processes, which are attracting increasing interest 
in separation science in view of their operational simplicity, 
high throughput, and integrability with Lab-on-Chip tech-
nology Han and Frazier (2008), Kulrattanarak et al. (2008), 
Lenshof and Laurell (2010), Ling et al. (2012). The article is 
divided into two main parts, the first developing the steady-
state solution for the particle number density associated with 

a given generic set of effective transport parameters, the sec-
ond providing a concrete example of how these parameters 
depend on the device geometry and particle features in a typi-
cal fractionation process.

2  Steady‑state particle concentration from a 
continuous localized source

In what follows, we consider a generic setting of a con-
tinuous fractionation process such as that schematically 
illustrated in Fig. 1a. A localized stream of buffer fluid 
entraining two species of suspended particles, labeled “A” 
and “B”, is continuously fed at a point of the separation 
device, which is henceforth assumed as the origin of the 
global Cartesian reference frame x − y. Because of their 
different nature (e.g. size, electric charge, etc.), the parti-
cles react specifically to the deterministic drive, so that the 
continuous feed stream splits into two currents, each char-
acterized by an average deflection angle, say θA and θB, 
respectively. Also, owing to the presence of Brownian fluc-
tuations, quantified by the bulk particle diffusivities DA and 
DB, dispersion of individual particle paths about the aver-
age current should be expected, resulting in a dispersion 
bandwidth that increases as one proceeds downstream the 
average current. If a two-dimensional effective transport 
template can be enforced to describe the motion of each 
particle species, the evolution of the particle number den-
sity function, �α(x, y, t) (henceforth referred to as effective 
particle concentration), is governed by the macrotransport 
advection-diffusion equation

where α = “A”,“B”, Wα and Dα = ((Dα,ij)) represent the 
particle effective velocity and the effective dispersion ten-
sor, respectively, Fα the number of α-particles released 
in the unit time in the transport domain, and δ(x) is the 
Dirac’s delta function representing a feed stream localized 
localized at the origin of the coordinate system. As we con-
sider separately the transport of each particle species, we 
henceforth drop the subscript “α”.

It can be observed that both the effective velocity, W, and 
the dispersion tensor D depend—in a markedly non-trivial 
fashion—upon the interaction between the deterministic 
drive, often possessing a small-scale spatially fluctuating 
component Devendra and Drazer (2012), MacDonald et al. 
(2003), and the isotropic bulk diffusion experienced by the 
particles. A detailed explanation of such dependence is the 
object of current research in microfluidic-assisted separa-
tions and will be addressed in a later section of this article, 
where a recently proposed model Cerbelli et al. (2013) of 
size-based separation in deterministic lateral displacement 
devices is used to illustrate potentialities and limitations 

(1)∂t�α = −Wα · ∇�α +∇ ·
(
Dα · ∇�α

)
+ Fα δ(x),
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of the effective transport approach. For the time being, we 
just assume that the effective transport model in Eq. (1) 
holds true in order to derive the relationship between the 
effective parameters W, D, and the steady-state dispersion 
bandwidth about the average current depicted in Fig. 1a. 
Note that by the symmetry of the effective dispersion ten-
sor, the transport parameters amount to five independent 
scalar quantities, which we next identify as the magnitude 
W = ||W|| of the effective velocity, the principal (eigen-) 
values D̃1, D̃2 of D, the angle �D between the eigenvector 
e
(1)
D  associated with D̃1 and the x-axis, and the angle �′

w
 

between the effective velocity and e(1)D  (see Fig. 1b).
Next, we proceed to derive the solution 

C(ξ1, ξ2, t) = �(x, y, t) to Eq. (1) by using a new Carte-
sian coordinate system ξ1ξ2, still centered at the origin of 
the x − y system, whose axes are collinear with the eigen-
vectors e(1)D  and e(2)D  of the dispersion tensor, respectively. 
Also, we assume that Eq. (1) has been made dimension-
less by assuming a characteristic length ℓ, the characteris-
tic velocity W, the characteristic time ℓ/W , and the refer-
ence concentration Fℓ/W , so that, in the chosen frame, the 
dimensionless velocity is given by W = (cos�′

W
, sin�′

W
), 

and the dimensionless dispersion tensor by 
D = diag (D1,D2) = diag

(
D̃1/(Uℓ), D̃2/(Uℓ)

)
, where 

D1 and D2 are the dimensionless dispersion coefficients. In 
this setting, Eq. (1) can be rewritten as

where Wξ1 = cos(�′
W
), Wξ2 = sin(�′

W
). This equation is 

equipped with the initial condition C(ξ1, ξ2, 0) = 0, express-
ing the fact that the transport domain is devoid of particles at 
the beginning of the transport process. The Green function, 
G(ξ1, ξ2, t), for this problem is given by

The solution at time t can therefore be expressed as

in that by the linearity of the transport process, each ele-
mentary mass released between τ and τ + dτ evolves inde-
pendently of past and future events, and therefore the con-
tribution to the current concentration field is simply the 
superposition of all of the elementary dispersion events for 
0 < τ ≤ t. The steady-state field C∞(ξ2, ξ2) is therefore 
given by the time-asymptotic limit of Eq. (4),

(2)
∂C

∂t
= −Wξ1

∂C

∂ξ1
−Wξ2

∂C

∂ξ2
+ D1

∂2C

∂ξ2
1

+ D2

∂2C

∂ξ2
2

+ δ(ξ1, ξ2),

(3)

G(ξ1, ξ2, t) =
1

4π
√
D1 D2 t

exp

{
−
(ξ1 −Wξ1 t)

2

4D1t
−

(ξ2 −Wξ2 t)
2

4D2t

}

(4)C(ξ1, ξ2, t) =
∫ t

0

G(ξ1, ξ2, τ) dτ

(5)C∞(ξ1, ξ2) =
∫ ∞

0

G(ξ1, ξ2, t) dt.

By setting

the integral at the r.h.s. of Eq. (5) becomes

By setting s = Ŵ t, the r.h.s. of Eq. (7) can be written as

This integral is of the form

and can be computed in closed-form [see, e.g., ef. Grad-
shteyn and Ryzhik (2007)] ultimately yielding

where K0(η) denotes the modified Bessel function of the sec-
ond kind Polyanin and Manzhirov (2007). Once this solution 
is known, the steady state �∞ field in the xy coordinate sys-
tem can be obtained as �∞(x, y) = C∞(ξ1(x, y), ξ2(x, y)), 

where 
(ξ1(x, y)
ξ2(x, y)

)
=

( cos�D sin�D

− sin�D cos�D

)
·
(x
y

)
.

In prototypical experiments using long-exposure micro-
graph Huang et al. (2004), fluorescence intensity of marked 
particles is typically measured along a cross-section of the 
device, at a distance x from the feed source. At steady-state, 
this profile is clearly proportional to the normalized profile

The average y-coordinate, Y(x), of particles paths crossing 
the device section at x = x, and the squared variance σ 2(x) 
of the actual crossing ordinate about the average value, are 
thus given by

(6)

A =
(
1/(4π

√
D1D2

)

α(ξ1, ξ2) = ξ21 /(4D1)+ ξ22 /(4D2)

β(ξ1, ξ2) = Wξ1ξ1/(2D1)+Wξ2ξ2/(2D2)

Ŵ = W2
ξ1
/(4D1)+W2

ξ2
/(4D2)

(7)

C∞(ξ1, ξ2) = A exp
[
β(ξ1, ξ2)

]

×
∫ ∞

0

1

t
exp

[
−

(
α(ξ1, ξ2)

t
+ Ŵ t

)]
dt

(8)

C∞(ξ1, ξ2) = A exp
[
β(ξ1, ξ2)

]

×
∫ ∞

0

1

s
exp

[
−

(
s+

Ŵ α(ξ1, ξ2)

s

)]
ds

(9)

∫ ∞

0

xν−1 exp

[
−

(
x +

µ2

4x

)]
= 2

(µ
2

)ν
Kν(x)

(10)C∞(ξ1, ξ2) = 2A exp {β(ξ1, ξ2)} K0

(
2
√
Ŵ α(ξ1, ξ2)

)

(11)�ν(x, y) =
�∞(x, y)∫∞

−∞�∞(x, y) dy

(12)

Y(x) =
∫ ∞

−∞
y�ν(x, y) dy

σ 2(x) =
∫ ∞

−∞

(
y − Y(x)

)2
�ν(x, y)dy
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On the assumption that the normalized concentration pro-
file �ν(x, y) be symmetric with respect to the average Y(x), 
these quantities are the primary parameters controlling sep-
aration resolution. For instance, in the case of a binary sep-
aration of “A” and “B” particle types, the resolution R(x) at 
x can be defined as Giddings (1991)

If the averages and variances are known as functions of the 
cross-section position x, then the minimum device length 
for accomplishing the separation can be computed by 
requiring that R(x) be equal to a prescribed target value.

To illustrate the effect on anisotropic diffusivity on the 
steady-state particle distribution, Fig. 2 depicts the struc-
ture of the cross-sectional normalized profiles for the case 
where the average velocity W is parallel to the x-axis, 
�D = π/4, and the dimensionless diffusivities are given by 
D1 = 0.1, and D2 = 1.

As can be observed, the near-field profiles (continuous 
lines) possess strongly asymmetric structure, an asymme-
try which is progressively lost at larger distances from the 
particle feed, where the profile attains an almost Gaussian-
like structure, as depicted by the broken line representing 
�ν(x, y) at x = 25. The inset in the figure shows the increase 
of the profile variance as one moves downstream the effec-
tive velocity direction, here parallel to the x-axis. After a 
brief spatial transient, the variance approaches the scaling

(13)R(x) =
|YA(x)− YB(x)|
2
(
σA(x)+ σB(x)

) .

(14)σ(x) ≃
√

2Deff x,

where Deff can be regarded as a phenomenological coeffi-
cient, henceforth referred to as continuous dispersion coef-
ficient, that is specific to continuous separation processes. 
In the next section we investigate how Deff depends upon 
the dimensionless parameters D1, D2, �D, and �′

W
.

3  Continuous dispersion coefficient 
from macrotransport parameters

In principle, the analytical expression in Eq. (10) provides 
all of the information useful to characterize the entire nor-
malized profiles, including its average and variance defined 
by Eq. (12) (or any higher order moment, for that matter). 
However, in the actual computation of C∞(ξ1, ξ2), one 
faces the problem that in practical applications the function 
β(ξ1, ξ2), and the product 2

√
Ŵ α(ξ1, ξ2) defined by Eq. (6) 

typically attain very large values (e.g. of order 103), so that 
the C∞ field defined by Eq. (10) results as the product of an 
exponential function rapidly diverging to +∞ times a factor 
(the Bessel function) quickly decaying to zero. This makes 
a direct approach to the determination of the steady-state 
profile practically unfeasible, even though a closed-form 
solution is available. An efficient way to bypass this repre-
sentation problem is to consider the asymptotic approxima-
tion to the modified Bessel function K0(η) at large values of 
its argument, which yields Abramowitz and Stegun (1972)

This implies that whenever 2
√
Ŵ β(ξ1, ξ2) is sufficiently 

large (which, in turn, implies ξ21 + ξ22 → ∞), the steady-
state field can be approximated as

where h(ξ1, ξ2) = 2
√
Ŵ β(ξ1, ξ2). This approximate solu-

tion lends itself to a handier analysis, which we carry out 
in the coordinate system ξ1ξ2 for simplicity of notation. 
First, we observe that upon the straight line r through the 
origin parallel to W, i.e. with parametric representation (
ξ1 = cos�′

W
s, ξ2 = sin�′

W
s
)
 where s is the arc length on 

r from the origin, the argument of the exponential func-
tion in Eq. (16) vanishes together with its first derivatives 
(see “Appendix”). The estimate of the continuous disper-
sion coefficient from the effective transport parameters 
can thus be obtained by expanding along the y direction 
the approximate field in Eq. (16) in Taylor series about 
the point (x, tan(�D +�′

W
), x) lying at the intersection 

between r and the device cross-section at x. In this expan-
sion, the denominator at the r.h.s. of Eq. (16) is assumed 

(15)K0(η) ≃ e−η
√

π/(2 η) as η → ∞.

(16)

C∞(ξ1, ξ2) ≃
A
√
π

exp
{
β(ξ1, ξ2)− 2

√
Ŵ β(ξ1, ξ2)

}

4
√
Ŵ β(ξ1, ξ2)

=
A
√
π

exp {β(ξ1, ξ2)− h(ξ1, ξ2)}√
h(ξ1, ξ2)

,
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Fig. 2  Main panel: Normalized particle concentration profiles near 
(continuous lines, 0 < x ≤ 4) and far from the particle feed source 
(broken line, x = 25). The concentration profiles in the direction 
orthogonal to W attain a Gaussian-like structure when moving down-
stream the effective velocity direction. Inset: σ(x) versus x (continu-
ous line). The broken line depicts the scaling σ(x) ≃

√
2Deff x
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slowly varying in all of the points where the numerator is 
significantly different from zero. One shows that, within 
this approximation (see “Appendix”),

where D1 sin
2�′

W
+ D2 cos

2�′
W

= D⊥, and where 
�W = �′

W
+�D is the angle between W and the x axis 

(see Fig. 1b). Equation (17) constitutes the relationship 
sought between the dispersion coefficient under steady-
state conditions and the effective transport parameters. 
It is readily seen that D⊥ represents the projection of the 
dispersion tensor onto the direction orthogonal to W, 
i. e. D⊥ = nW · D · nW, where nW is a unit vector orthogo-
nal to W. The denominator of the same relationship yields 
a correction factor which accounts for the fact that the aver-
age particle stream is slanted with respect to the cross-sec-
tion, here assumed orthogonal to the x axis of the global 
coordinate system.

A yet deeper understanding of continuous dispersion can 
be gained by considering the process in an orthogonal ref-
erence frame η1η2, still centered at the feed source point, 
where one of the axis, say η1, is collinear with the r line 
above defined (i.e. is parallel to the effective velocity W). 
Because the argument of the exponential in Eq. (16) van-
ishes identically on r, the solution onto this particular line 
attains the form

where

is the projection of the dispersion tensor onto the direc-
tion parallel to W, i.e. D� = tW · D · tW, tW being a unit 
vector parallel to W. From the above observations, one 
gathers that the steady-state dispersion process from a 
continuous localized source depends upon the two coef-
ficients,D‖ and D⊥, the first controlling the rate of decay 
of the peak intensity along the average particle current, 
the second quantifying the growth of the variance asso-
ciated with the normalized one-dimensional concentra-
tion profile taken along the direction orthogonal to the 
effective particle velocity. In turn, this implies that one 
could infer on the anisotropic character of the effective 
dispersion tensor by steady-state measures of fluores-
cence intensity along two orthogonal directions, one of 
which is collinear with the average particle current. It is 
almost superfluous to remark how such steady-state meas-
urements are much easier to obtain experimentally since 
long-time exposure detection can be used, which bypasses 

(17)Deff =
D1 sin

2�′
W

+ D2 cos
2�′

W

|cos3
(
�′

W
+�D

)
|

=
D⊥

|cos3�W|
,

(18)C∞
(
ξ1(η1), ξ2(η1)

)
=

1√
2π D� η1

(η2 = 0)

(19)D� = D1 cos
2�′

W
+ D2 sin

2�′
W

the sensitivity limits associated with instantaneous fluo-
rescence measures.

4  Case study

As discussed above, there are many physical contexts 
where the interaction between a deterministic drive and 
isotropic Brownian motion at small spatial scales gives 
rise to complex transport regimes characterized by an ani-
sotropic large-scale dispersion process Gross et al. (2014). 
In microfluidic processes devised to separate suspended 
objects, the small scale is usually provided by the small-
est characteristic length of variation of the deterministic 
drive, whose structure often possesses a spatially periodic 
two-dimensional component. This is the case, e.g. of opti-
cal lattices MacDonald et al. (2003), or solid impermeable 
obstacle arrays Loutherback et al. (2009), Devendra and 
Drazer (2012), Green et al. (2009), Huang et al. (2004). In 
this section, we use the latter example, usually referred to 
as Deterministic Lateral Displacement (henceforth DLD), 
as a benchmark to show the occurrence of dispersion-
enhanced regimes in continuous fractionation processes. 
The core of separation devices exploiting this size-based 
sorting principle is a shallow rectangular channel which 
hosts a two-dimensional spatially periodic lattice of iden-
tical micrometer-sized obstacles, typically of cylindrical 
shape (see Fig. 3a).

The lattice is slanted by an angle �l with respect to the 
lateral walls of the channel, which we assume oriented 
along the x direction. A pressure-driven flow, entraining 
a mixture of suspended objects of different size, is forced 
through the lattice. Because of the small size of the sus-
pended objects and of the prevailing laminar flow condi-
tions, particle inertia can safely be neglected in most of the 
cases thus implying a linear relationship between determin-
istic drive and instantaneous particle velocity Maxey and 
Riley (1983). In this overdamped regime, the microdynam-
ical equation governing the local motion of a supposedly 
spherical particle reduces to a Langevin-type stochastic dif-
ferential equation, which, in dimensionless form, writes

where x is the instantaneous position of the center of the 
particle, v(x) represents the deterministic drive, dξ is a 
vector-valued Wiener process characterized by zero mean 
and unit variance, and where Pe = Uℓ/D is the particle 
Peclet number, U, ℓ, and D being a characteristic veloc-
ity, a characteristic length, and the particle bare diffusiv-
ity, respectively. In what follows U is set equal to the aver-
age velocity of the carrier flow, whereas the edge of the 
elementary cell of the periodic lattice (see the grey shaded 
box of Fig. 3a) is assumed as characteristic length ℓ. Note 

(20)dx = −v(x) dt +
√
2/Pe dξ ,
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that the deterministic drive v(x) results as the superposi-
tion of two separate contributions, namely the Stokesian 
drag acted upon the particle by the surrounding fluid, and 
the action of the impermeable obstacles, which forces the 
(center of the) particles to deviate from a purely advec-
tive motion, where the particle would passively trace the 
flow streamline through its center. The analysis of the spe-
cific particle-obstacle and particle-fluid interactions and 
its impact on separation performance has been object of 
intense theoretical, numerical and experimental research, 
both for fixed Frechette and Drazer (2009) and deformable 
Krüger et al. (2014) particle shapes. In what follows, we 
assume a recently proposed rigid-core model Cerbelli et al. 
(2013) for analyzing the impact of Brownian fluctuations 

on particle transport. Briefly, this model assimilates the 
particle to a point-sized tracer collapsed at the particle 
center, which passively follows the unperturbed pressure-
driven Stokes flow through the obstacle lattice, until its 
center comes to a distance equal to the particle radius from 
the boundary of an obstacle. At vanishing distance of the 
colliding surfaces, it is assumed that the particle-obstacle 
interaction is such as to annhilate the component of particle 
velocity normal to the obstacle surface, so that the particle 
glides around the obstacle under the action of the tangential 
velocity component, which is assumed unperturbed. In the 
case of cylindrical obstacles and rigid spherical particles, 
the overall action of the deterministic drive is therefore 
concisely represented by a passive point-sized tracer mov-
ing through a lattice of effective obstacles whose radius is 
equal to the radius of the physical obstacle plus the particle 
radius. It is worth observing that this simplified approach 
overlooks specific phenomena that may prove important in 
defining the deterministic component of particle motion. In 
this respect, the shape variation of the suspended object due 
to fluid-particle or to obstacle-particle interactions Krüger 
et al. (2014), Benke et al. (2011, 2013) is apt to be a crucial 
one.

Figure 3b shows the structure of the unperturbed steady 
Stokes flow within the elementary periodicity cell obtained 
through a finite-element solver by discretizing the domain 
in order 105 triangular element. The discretized solution is 
then bilinearly interpolated in order to define the drag com-
ponent of the deterministic drive v(x) entering Eq. (20). In 
the same figure panel, the particle transport domain defined 
by the effective obstacle is also depicted for different par-
ticle sizes. The implementation of the effective obstacle 
model to practically relevant operating conditions and fea-
sible device geometries has been recently analyzed in some 
detail Cerbelli et al. (2013), Cerbelli (2012). This analysis 
suggests that the large-scale structure of particle trans-
port is indeed consistent with the effective transport tem-
plate expressed by Eq. (1). Specifically, results stemming 
from ensemble statistics of Eq. (20) indicate that (i) both 
the average particle velocity W, and the effective disper-
sion tensor D depend sensitively on operating conditions 
(e.g. flowrate) and particle size (ii) large-scale dispersion 
is typically enhanced over the bare particle diffusivity and 
is generally strongly anisotropic (iii) the principal axes of 
D are slanted with respect to both the average direction of 
the carrier flow and the average particle velocity W. This 
having been established in previous work, we here proceed 
to investigate the relevance of the steady-state template dis-
cussed in the first part of this article to a realistic continu-
ous fractionation process exploiting deterministic lateral 
displacement.

As a case study, we consider the geometry depicted in 
Fig. 3a, which is defined by a lattice angle θl = tan(1/4), 
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Fig. 3  a Lattice geometry and kinematic trajectories of finite-
sized particles showed in their actual relative size (see main text for 
details). The gray-shaded box depicts the unit periodic cell. The aver-
age velocity of the carrier flow is oriented along the x axis. The lat-
tice is slanted by an angle θl = tan(1/4) w.r.t. the x-axis. The smaller 
particle (red) undergoes a zig-zag motion along x. The bigger par-
ticle (blue) follows a displaced mode along the lattice direction. b 
Structure of the pressure-driven periodic Stokes flow in the unit cell 
domain. The contour plot depicts the magnitude of the (dimension-
less) velocity of the carrier flow, ranging from zero (intense blue) 
near the obstacle walls, to 2.5 (intense red) at the center of the 
restricted cross-section between adjacent obstacles. The white area 
depicts the physical obstacle. The thick continuous and broken lines 
depict the size of the effective obstacles for each of the particle sizes 
shown
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and a post radius equal to 0.2 (all lengths are hencefort 
scaled to the edge of the unit periodicity cell). Particles 
of dimensionless radii ρp in the range 0.15 ≤ ρp ≤ 0.2 are 
next considered. Figure 3a shows the trajectories of the 
center of the particles (continuous thick lines) superim-
posed to instantaneous snapshots of the particles shown 
in their actual relative size at regular intervals of time for 
ρp = 0.15 and ρp = 0.20 in the absence of diffusion (purely 
kinematic motion, 1/Pe → 0). One observes that the results 
of the effective obstacle model are consistent with the 
qualitative picture of the separation mechanism proposed 
in Refs Huang et al. (2004), Inglis et al. (2006). Bearing 
in mind this kinematic picture, the obvious question is to 
determine how the presence of Brownian fluctuations in 
Eq. (20) modifies the individual particle trajectories and 
how the dispersion bandwidth depicted in the schematic 
drawing of Fig. 1 is affected by particle size and by the 
flowrate (quantified by the the particle Pe parameter). To 
address these questions, we use Eq. 20 to generate a large 
number (order 105) of noise-driven trajectories all originat-
ing at a fixed location (assumed as the origin of the coor-
dinate system) for each particle size, and we record the 
y value of the first intersection of each trajectory with a 
device cross section at x, where x denotes the dimension-
less distance from the source feed downstream the channel 
axis x. Figure 4 shows the behavior of few individual par-
ticles trajectories for particle sizes ρA = 0.15 and ρB = 0.2 
for Pe = PeA = 103. In this computations, the value of PeB 
is set to PeB = PeA ρB/ρA to account for the fact that the 
particles are dragged by the same carrier flow, consist-
ently with the Stokes-Einstein equation for the estimate of 
the bare particle diffusivity. Henceforth, we use the plain 
symbol Pe to denote Pe(ρA), with the understanding that 

that the Pe number for particles of size different from ρA in 
Eq. (20) is scaled according to the radii ratio.

Note that the size of the larger particle was chosen close 
to the critical value separating the two transport modes 
depicted in Fig. 3a. The extent of the current broadening 
due to spanwise dispersion (i.e. in the y direction) is strik-
ingly dependent on particle size. The dependence is alto-
gether counter-intuitive, meaning that bigger particles—
therefore characterized by a larger Pe value- are by far 
dispersed more pronouncedly than smaller ones. It is worth 
observing that this theoretical prediction is confirmed by 
recent experiments in gravity-driven deterministic lateral 
displacement devices Devendra and Drazer (2012).

We observe that in practical implementations of the 
separation method, particles cross thousands of unit cells 
before they are collected at the device exit, and therefore 
x is of order 103 or larger, thus suggesting that the approxi-
mate solution expressed by Eq. (16) might be appropriate 
to describe the transport process.

From the y-values of the first intersections of individ-
ual particle paths with a fixed cross-section at x, one can 
construct the discretized counterpart of the normalized 
profiles �ν(x, y) in Eq. (11) as the fraction of intersection 
falling between y and y +�y. Specifically, when a large 
number of trajectories (order 105) are considered, the sta-
tistics of the first intersections of particle paths (regardless 
of the time required for the particle to get at the assigned 
cross-section) becomes time-independent (not shown for 
brevity) and proportional to the steady-state concentration 
field �ν(x, y). In agreement with the macroscopic charac-
ter of the effective transport template, the bin size �y is 
chosen of the order of one cell length, so as to smoothen 
out small-scale fluctuations of the particle concentration 
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Fig. 4  Noisy trajectories of suspended particles at Pe = 10
3 (see 

main text for details). a Blue (dark grey) and red (light grey) lines 
depict the trajectories of the center of individual particle paths for 
ρA = 0.2 and ρA = 0.15, respectively. b Zoom-in showing the size of 
the physical obstacles

 0

 0.02

 0.04

 0.06

 0.08

-50  0  50  100  150  200  250

Φ
ν

y

0.16

0.17

0.18

0.16
0.17 0.18

Fig. 5  Normalized distribution of the crossing y-coordinate at an out-
let cross-section located at x = 3.9× 10

3 downstream the feed source 
for particles of different sizes, ρ = 0.16; 0.17; 0.18. Empty and filled 
symbols are associated with Pe = 10

2 and Pe = 10
3
, respectively



1043Microfluid Nanofluid (2015) 19:1035–1046 

1 3

profile. Figure 5 shows the Probability Density Function 
(henceforth PDF) of the intersections for three dimension-
less particle sizes, ρp = 0.16; 0.17; 0.18 at different val-
ues of the Pe parameter, namely Pe = 102 (solid symbols) 
and Pe = 103 (empty symbols).

As can be observed, the average exit position of particle 
paths (approximately identified by the peak of the distribu-
tion) is extremely sensitive to value of the Pe parameter, 
whereas the dispersion width is less sensitive to variation 
of Pe, especially for the largest particle size ρp = 0.18. It 
is worth highlighting that the results depicted in Fig. 4 are 
qualitatively consistent with the experimental determina-
tion of particle concentration profiles in pressure-driven 
DLD devices Huang et al. (2004), as regards both the 
behavior of the profile peak and the dispersion bandwidth.

One notes that the profiles at the larger Pe value indi-
cate that an efficient separation of the larger sized parti-
cles (ρp = 0.18) is possible at these operating conditions, 
a possibility that is not predicted by the purely kinematic 
model, since all of the particle sizes shown are below the 
critical value separating the zig-zag and displaced modes 
in the Pe → ∞ limit, and should therefore display no aver-
age deflection with respect to the direction of the drive. 
This means that Brownian diffusion causes two oppos-
edly directed effects on separation, namely (i) a sensitive 
dependence of the average deflection angle that makes the 
fractionation of a multidispersed mixture possible even in 
cases where purely kinematic models do not predict any 
separation, and (ii) a current-broadening effect caused by 
dispersion-enhanced regimes that hinders separation. Far 
enough from the feed source, i.e. at x of order 102 or more, 

the first (separation-enhancing) effect depends linearly 
upon the distance x in that the profile peak is aligned with 
the effective particle velocity for each given particle size. 
Figure 6 shows the behavior of the average and the vari-
ance of the crossing y-coordinate associated with the first 
intersection of noisy particle trajectories with a generic 
device cross-section located at dimensionless distance x 
downstream the particle feed.

Besides, as predicted by Eq. 14, the dispersion-enhanc-
ing (i.e. separation-hindering) effect, quantified by the vari-
ance σ(x) of the normalized particle concentration profiles, 
scales as 

√
2Deff x. Figure 7a provides an illustration of 

this behavior for ρp = 0.15 at Pe values ranging from 102 to 
5× 103, where it is evident that the x-asymptotic scaling is 
already well established at x ≥ 102. By reason of the above 
observation, from Eq. (13) one gathers that particles of dif-
ferent type can always be resolved if the device length is 
large enough, in that the ratio the r.h.s. of Eq. (13) globally 
grows as 

√
x. Clearly, this theoretical argument does not 

consider practical aspects of the separation such as exceed-
ingly large values of the pressure drop required (which can 
ultimately result in mechanical breakdown of the separa-
tion equipment), nor it takes into account the larger tran-
sient needed to reach steady-state conditions.

From data such as those depicted in Fig. 7a, the dependence 
of the continuous dispersion coefficient Deff on the (dimen-
sionless) bare particle diffusivity 1/Pe can be computed for 
each particle size. The results of this computation are shown 
in Fig. 7b for ρp = 0.15 (triangles), ρp = 0.18 (squares), 
and ρp = 0.19 (circles). The dimensionless bare particle dif-
fusivity 1/Pe is also depicted in the same figure (continuous 
line), so that an immediate visualization of the dispersion 
enhancement due to the interaction between deterministic 
and Brownian motion at microscales can be appreciated. The 
smaller particle size is characterized by a very modest disper-
sion enhancement. An effective enhanced-dispersion regime 
is instead evident for ρp = 0.18, where Deff ≃ 1/

√
Pe, as 

depicted by the dashed line in the figure panel. Finally, a sin-
gular dispersion-enhanced regime characterizes the larger par-
ticle size ρp = 0.19 which is very close to the critical size, say 
ρc, predicted by the kinematic model, which, for this lattice 
geometry, falls in the interval 0.1875 < ρc < 0.19 [see Ref 
Cerbelli et al. (2013)]. As pointed out above, the occurrence 
of critical dispersion regimes near critical particle sizes has 
been both experimentally observed in continuous fractiona-
tion process Devendra and Drazer (2012), and theoretically 
justified in simplified models of transport through periodic lat-
tice of potentials Cerbelli (2013). From the data depicted in 
Fig. 7a associated with the particle size ρp = 0.19, one gathers 
that at practically relevant values of the Pe parameter (e.g. a 1 
μm bacterium in the experimental conditions used to test the 
device proposed in Ref. Huang et al. (2004) is characterized 
by a Pe value of order 5× 103), the dispersion enhancement 
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Fig. 6  Average crossing coordinate versus x for different particle 
size at Pe = 10

2
. (Black)-triangles ρp = 0.16; (blue)-Delta symbols 

ρp = 0.17; (red)-circles ρp = 0.18. The errorbar depict the magnitude 
of the profile variance σ(x). The straight lines depict the best fit of the 
average crossing coordinate in the interval 5× 10

2 ≤ x ≤ 10
3
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factor over the bare particle diffusivity can exceed two orders 
of magnitude, which implies an error of more than a tenfold 
factor in the estimate of the steady-state profile variance.

5  Conclusions

We propose an effective transport template for charac-
terizing continuous fractionation processes of suspended 
mesoscopic objects in periodically-patterned microfluidic 

devices in the presence of diffusion. Assuming a general 
form of the transport equation, characterized by a con-
stant effective velocity W and a spatially homogeneous, 
yet non-isotropic, effective dispersion tensor D, we derive 
in closed-form the steady-state solution associated with 
a localized particle feed, useful for the interpretation of 
steady-state measurements of particle concentration pro-
files (e.g. obtained through long-exposure micrography of 
fluorescent particles). At large (dimensionless) distance x 
from the feed source along the average direction of the 
deterministic drive, the cross-sectional concentration 
profiles attain an almost Gaussian structure, with a peak 
position that depends linearly on x through the effective 
velocity parameters, and a profile variance that scales as 
σ(x) =

√
2Deff x, where the continuous dispersion coef-

ficient, Deff , is primarily controlled by the projection of 
the effective dispersion tensor along the direction orthog-
onal to W. To illustrate the occurrence of effective trans-
port in microfluidic separation processes, we use numeri-
cal results stemming from a recently proposed model for 
predicting size-based particle separation in Deterministic 
Lateral Displacement Devices. These results suggest that 
dispersion-enhanced regimes arise as a consequence of 
the microscale interaction between the deterministic drive 
(presently constituted by the Stokesian drag of the carrier 
flow) and Brownian diffusion. The extent of dispersion 
enhancement is strongly affected by particle size. Spe-
cifically, particles whose dimension is close to the critical 
size separating zig-zag and displaced modes (as predicted 
by a purely kinematic template) show a giant enhance-
ment of dispersion. At values of the particle Peclet num-
ber that are commonly found in concrete applications of 
DLD separations, this giant enhancement can yield values 
of the dispersion bandwidth that are an order of magni-
tude larger with respect to what can be predicted based on 
the bare particle diffusivity. This suggests that an accurate 
prediction of separation resolution in continuous particle 
fractionation cannot do away with an accurate modeling 
of the intertwined action between deterministic motion 
and Brownian fluctuations at the microscale.

Appendix

In what follows, we prove the relationship

expressed by Eq. (14) in the main article. Figure 8 depicts 
the global coordinate axes together with the ξ1ξ2 coordinate 
system that is collinear with the principal axes of the effec-
tive diffusion tensor D.

(21)Deff =
D1 sin

2�′
W

+ D2 cos
2�′

W

|cos3
(
�′

W
+�D

)
|

=
D⊥

|cos3�W|
,
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Fig. 7  a Variance σ(x) of the normalized particle con-
centration profiles versus the dimensionless distance 
x from the feed source downstream the average direc-
tion of the carrier flow for the particle radius ρp = 0.15; 
Diamond : Pe = 10

2; square : Pe = 5× 10
2; circle : Pe = 10

3;
triangle : Pe = 2× 10

3; inverted triangle : Pe = 5× 10
3
. The 

continuous line represent the scaling σ(x) =
√
2Deff x, where Deff 

is regarded as a fitting parameter. b Effective dispersion coefficient 
versus 1/Pe; inverted triangle : ρp = 0.15; square : ρp = 0.18;

circle : ρp = 0.19. The continuous line represents the dimension-
less bare particle diffusivity 1 / Pe, the dashed line depicts the scaling 
Deff ≃ Const./

√
Pe
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With reference to this figure, consider the asymptotic 
approximation to the steady-state particle concentration 
field expressed by Eq. (13) of the main article, which we 
report below

Our approach to prove the result in Eq. (21) is to determine 
the structure of the one-dimensional cross-sectional profile 
C∞(ξ1(u), ξ2(u)) where u is a local coordinate system with 
origin at the point P =

(
x, tan(�′

w
+�D) x

)
 at the inter-

section between the straight line r and the cross-section at x 
[compare Fig. S8 and Fig. 1 of the main article]. As a first 
observation, note that the argument, say g(ξ1, ξ2),

of the exponential function at the r.h.s of Eq. (22) vanishes 
identically onto the r-line, together with its first ξ1- and ξ2
-derivatives, ∂ξ1g, and ∂ξ2g. Thus, if one expands in Taylor 
series G(u) = g

(
ξ1(u), ξ2(u)

)
 as a function of u about the 

point P one gets

Since u = 0 corresponds to the point P one gets that 
G(0) = 0, and G′(u)

∣∣
0
= ∇g · eu = 0 · eu = 0, where 

∇ = (∂ξ1 , ∂ξ2) and where eu is a unit vector parallel the 
cross-section. Therefore one obtains that onto the device 
cross-section the one-dimensional concentration profile ca 
be approximated as

It can be observed that at large x values, the denomina-
tor at the r.h.s. of Eq. (25) is nearly constant in the range 
where the exponential factor is significantly different from 
zero. This implies, that, within this approximation, the 

(22)C∞(ξ1, ξ2) ≃
A
√
π

exp {β(ξ1, ξ2)− h(ξ1, ξ2)}√
h(ξ1, ξ2)

,

(23)g(ξ1, ξ2) = β(ξ1, ξ2)− h(ξ1, ξ2),

(24)

G(u) = G(0)+ G
′(u)

∣∣
0
u+

1

2
G
′′(u)

∣∣
0
u
2 + o(u3)

=
1

2
G
′′(u)

∣∣
0
u
2

(25)

C∞
(
ξ1(u), ξ2(u)

)
≃

A√
π h

(
(ξ1(u), ξ2(u)

)exp
{
G
′′(u)

∣∣
0
u
2

2

}

one-dimensional profile in Eq. (25) possesses a Gaussian 
structure, with a variance σ given by

Therefore, the profile variance σ at x can be estimated from 
the second derivative of the the function G(u) at u = 0, 
which corresponds to P. One obtains

Note that since β(ξ1, ξ2) in Eq. (23) is a linear function of its 
arguments, only the second derivatives of h(ξ1, ξ2) contrib-
ute to the partial derivatives of the g function in Eq. (27). 
The explicit computation of the derivatives at the r.h.s. of 
Eq. (27) yields, after simple algebraic manipulations,

where D⊥ = D1 sin
2�′

W
+ D2 cos

2�′
W
, and where eW and 

ex are unit vectors parallel to W and to the x axis, respec-
tively. From Eq. (26) one obtains

which is equivalent to Eq. (21).
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