
RESEARCH PAPER

Long-wave interface instabilities of a two-liquid DC
electroosmotic system for thin films

A. Navarkar1,2 • S. Amiroudine1 • M. Mayur3 • E. A. Demekhin4,5

Received: 5 December 2014 / Accepted: 31 May 2015 / Published online: 26 June 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Instabilities of the interface between two thin

liquid films under DC electroosmotic flow are investigated

using linear stability analysis followed by an asymptotic

analysis in the long-wave limit. The two-liquid system is

bounded by two rigid plates which act as substrates. The

Boltzmann charge distribution is considered for the two

electrolyte solutions and gives rise to a potential distribu-

tion in these liquids. The effect of van der Waals interac-

tions in these thin films is incorporated in the momentum

equations through the disjoining pressure. Marginal sta-

bility and growth rate curves are plotted in order to identify

the thresholds for the control parameters when instabilities

set in. If the upper liquid is a dielectric, the applied electric

field can have stabilizing or destabilizing effects depending

on the viscosity ratio due to the competition between vis-

cous and electric forces. For viscosity ratio equal to unity,

the stability of the system gets disconnected from the

electric parameters like interface zeta potential and electric

double-layer thickness. As expected, disjoining pressure

has a destabilizing effect, and capillary forces have stabi-

lizing effect. The overall stability trend depends on the

complex contest between all the above-mentioned param-

eters. The present study can be used to tune these param-

eters according to the stability requirement.

1 Introduction

Lab-on-a-chip microtechnologies have shown consider-

able promise in revolutionizing the fields of clinical and

biology research (Sackmann et al. 2014). In such devices,

electroosmosis is used to transport the target species (Park

et al. 2007). However, in order to transport a non-con-

ductive liquid, a system of two immiscible liquids is

formed with the other liquid being conductive. The con-

ductive liquid experiences an electroosmotic flow (EOF),

while the non-conductive liquid placed on top of the

conductive liquid gets dragged by the shear forces at the

interface (Brask et al. 2003). A system of two immiscible

electrolyte solutions is also possible in which both liquids

experience EOF. The interface between these two

immiscible electrolyte solutions has been studied by

Samec et al. (1985) and Senda et al. (1991). It can be

described using the modified Verwey–Niessen (MVN)

model, which represents the interface as a double layer

with excess positive space charge in one phase and equal

negative space charge in the other phase separated by an

inner or compact layer of oriented solvent molecules

(Samec et al. 1985).

To ensure steady and laminar flow for such an appli-

cation, the interfacial instabilities are required to decay in

time. On the other hand, if the aim is to achieve chaotic

mixing of two miscible liquids, the exact opposite is

required (Moctar et al. 2003). In both cases, an
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understanding of the dependence of the interfacial insta-

bilities on different physicochemical parameters is needed.

In the presence of an externally applied electric field, the

liquid experiences an electric field-generated stress named

as the Maxwell stress. Previous works on interfacial insta-

bilities for two-liquid EOF did not consider the Maxwell

stress in the momentum equations (Shankar and Sharma

2004; Thaokar and Kumaran 2005, Uguz et al. 2008; Gao

et al. 2005). Also, these studies did not take into account the

van der Waals interaction forces manifesting in the form of

disjoining pressure and which cannot be neglected in the

case of thin films. The interfacial electrostatics is an

important factor which affects the stability behavior of the

two-liquid system. Choi et al. (2011) have provided the base

state of the system along with complete interfacial elec-

trostatics by incorporating the Maxwell stress but have not

considered the stability analysis of the interface. A com-

plete study of instabilities at a free surface (Mayur et al.

2012) and the base state of an air–liquid interface in 3D

microchannels (Mayur et al. 2014a) has been developed in

the case of a DC electric field. Also the base state of a time-

dependent electric field (AC field) of a free surface has been

given in (Mayur et al. 2014b). However, the full stability

analysis for a liquid–liquid interface is still required for a

time-dependent electric field as instability may lead to

rupture and eventually to liquid–liquid droplet formation as

in the case of a DC field (Ozen et al. 2006).

The stability of the interface depends on the Maxwell

stress which appears due to the net charge distribution in

the presence of an applied electric field, on capillary forces

appearing due to the curvature of the interface, on viscous

forces, and on van der Waals interaction forces. Linear

stability analysis is used to obtain the Orr–Sommerfeld

equations. These equations are then solved with the

asymptotic analysis in the long-wave limit. This paper is

divided into four sections. The first section describes the

physical system under consideration. The electric potential

distribution and the base state velocity profile are derived

in the second section. The third section presents the linear

stability analysis with the long-wave approximation.

Finally, the growth rate and the marginal stability curves

are presented with a focus on the case of transporting a

dielectric liquid.

2 Mathematical formulation

2.1 Electric potential due to ionic charge

distribution

The physical system under consideration consists of thin

films of two immiscible liquids having constant density qi;
viscosity li, and electric permittivity ei, where i = 1 and 2

corresponds to the lower and upper liquids, respectively.

The system is confined between two infinite parallel plates

at y = 0 and y = h2 (see Fig. 1). The interface is repre-

sented by y ¼ h x; tð Þ:
The zeta potential of the substrate at the upper and lower

walls is represented by fu and fb; respectively; fI and QI

are the zeta potential and the surface charge density present

at the interface, respectively, (Choi et al. 2011) and are

taken as independent parameters. In the experimental

studies of the interface between two immiscible electrolyte

solutions (ITIES), Samec et al. (1985) showed that for a

given interface zeta potential (fI), the surface charge den-

sity (QI) can be varied by varying the electrolyte concen-

trations. The water/nitrobenzene interface with LiCl in

water and tetrabutylammonium tetraphenylborate

(TBATPB) can be considered as an example of ITIES

(Senda et al. 1991). The liquids are considered to have a

low concentration of ions in order to ignore the Joule

heating effect (Tang et al. 2004), and hence it ensures that

the properties of the liquids remain constant even if large

electric fields are applied. It is usually assumed that the

ionic distributions are not affected by the fluid flow for an

EOF in straight microchannel which results in the Boltz-

mann charge distribution (Park et al. 2007). For a sym-

metric electrolyte, combining the Boltzmann charge

distribution, the net charge density can be written as,

qe;i ¼ �2zieq0;i sinh
ezi/sc;i

kBT

� �
ð1Þ

and the Poisson equation for the potential distribution,

d2/sc;i

dy2
¼ �

qe;i
ei

ð2Þ

The Poisson–Boltzmann equation for the potential field

can thus be written as,

d2/sc;i

dy2
¼

2zieq0;i
ei

Sinh
ezi/sc;i

kBT

� �
ð3Þ

Fig. 1 Schematics of two-liquid DC EOF system
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where /sc;i is the electric potential due to the space charge

distribution for liquid ‘‘i’’ and q0,i, zi, kB, T, and e are,

respectively, the bulk ionic density, the valence of the ions

in the aqueous phase for liquid ‘‘i’’, the Boltzmann con-

stant, the temperature, and the electron charge.

Using the non-dimensional parameters Usc;i ¼
/sc;i

fb
;

Y ¼ y
h1
, Eq. (3) can be written as,

d2Usc;i

dY2
¼ bSinh vUsc;i

� �
ð4Þ

where b ¼ h2
1

vk2Di
; v ¼ ezifb

kBT
is the ionic energy parameter

and kDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eikBT

2z2
i
e2q0;i

q
is the Debye length. For v\ 1, which

corresponds to fb\25 mV at 25 �C, the Debye–Huckel

linearization can be applied and Eq. (4) can be written as,

d2Usc;i

dY2
¼ Usc;i

De2i
ð5Þ

where Dei ¼ kDi
h1

is the Debye number which represents the

relative extent of the electric double layer with respect to the

characteristic length scale h1. Equation (5) represents two

second-order homogeneous linear differential equations, one

for each liquid. The four non-dimensional boundary condi-

tions required to solve this set of equations are,

Usc;1ð0Þ ¼ 1 ð6Þ

Usc;2 H2ð Þ ¼ �fu ð7Þ

Usc;1ð1Þ � Usc;2ð1Þ ¼ �fI ð8Þ

dUsc;1 1ð Þ
dY

� eR
dUsc;2 1ð Þ

dY
¼ �QI ð9Þ

where �fu ¼ fu=fb; �fI ¼ fI=fb; �QI ¼ QIh1ð Þ= e1fbð Þ; eR ¼
e2=e1 and H2 ¼ h2=h1. The expressions for Usc;1 and Usc;2

are given in ‘‘Appendix 1’’.

2.2 Electric potential due to applied electric field

An external electric field (Eapp) is applied to both the liq-

uids and can be written in terms of the gradient of an

externally applied potential /app

� �
as,

�
d/app

dx
¼ Eapp ð10Þ

Upon using non-dimensional parameters as Uapp ¼
/app=fb;X ¼ x=h1; Eq. (10) can be written as,

dUapp

dX
¼ � 1

ER

ð11Þ

where ER ¼ fb= Eapph1
� �

is the relative strength of the zeta

potential to the applied electric field. Therefore, the

solution of Uapp Xð Þ with the boundary condition

Uapp(0) = 0 is obtained as,

Uapp Xð Þ ¼ � X

ER

ð12Þ

The external electric field does not affect the space

charge distribution Usc,i(Y), and hence, superposition

principle can be applied. The total electric potential for the

i-th liquid can thus be written as,

Ui X; Yð Þ ¼ Uapp Xð Þ þ Usc;i Yð Þ ð13Þ

where Ui is the dimensionless total electric potential for

i = 1 and 2.

3 Hydrodynamic equations

3.1 Governing equations

When subjected to an externally applied electric field, the

liquid experiences Maxwell stress (RM
i ) along with the

hydrodynamic stress (RM
i ). The total stress corresponding

to the sum of both stresses can be written as,

RT
i ¼ RH

i þ RM
i

¼ � pi þ
ei Eij j2

2

 !
I þ li rui þruTi

� �
þ eiEi � Ei

ð14Þ

where Ei ¼ �rUi is the electric field vector, ui ¼ uiiþ vij

is the fluid velocity vector, pi is hydrostatic pressure in the

liquid, and I is the unit tensor. Now, in the case of thin

films, the intermolecular van der Waals interactions cannot

be ignored, and it manifests in the form of a disjoining

pressure (Mayur et al. 2012) given by,

pd;i ¼ � ai

6pd3i
ð15Þ

where ai is the Hamaker’s constant for liquid ‘‘i’’ and di is

film thickness. Hence, for lower film, d1 = h1 and for

upper film d2 = h2 - h1. For an incompressible flow, the

conservation of mass and momentum leads to the following

equations,

r � ui ¼ 0 ð16Þ

qi
oui

ot
þ ui � rð Þui

� �
¼ rpd;i �rpi þ lir2ui þr � RM

i

ð17Þ

The substrate plates at Y = 0 and y = h2 are assumed to be

rigid and impermeable, and hence, we impose the condi-

tions of no slip and no penetration,
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u1 0ð Þ ¼ v1 0ð Þ ¼ u2 h2ð Þ ¼ v2 h2ð Þ ¼ 0 ð18Þ

The perturbed form of the interface between the two liquids

is represented by y = h(x, t). At the interface, the conti-

nuity of tangential and normal components of the velocity

leads to the following equations,

u1 � s ¼ u2 � s; u1 � n ¼ u2 � n ð19Þ

Here, n and s are unit vectors along the normal and tan-

gential directions, respectively, at the interface:

n ¼
oh
ox
i� jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ oh
ox

� �2q ; s ¼ �
iþ oh

ox
j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2q

Considering the force balance at the interface, there is a

continuity of shear stress in the tangential direction, and the

capillary forces create a jump of the normal stresses,

s � RT
i � s

� �2
1
¼ 0 ð20Þ

n � RT
i � n

� �2
1
¼ cj ð21Þ

where ½�21 denotes the jump in variables at the interface, y is

the surface tension coefficient and j ¼ r � n is the curva-

ture of the interface.

Since the two liquids are immiscible, there is no mass

transfer across the interface; hence the fluid velocity at the

interface is equal to the velocity of the interface. This is

given by the following kinematic condition,

oh

ot
þ ui

oh

ox
¼ vi ð22Þ

By using the non-dimensional parameters, X ¼ x
h1
; Y ¼

y
h1
; Ui ¼ ui

Uref
; Vi ¼ vi

Uref
; h ¼ tUref

h1
; Pi ¼ pih1

l1Uref
; H x; tð Þ ¼

h x;tð Þ
h1

; Hi ¼ hi
h1
; lR ¼ l2

l1
; the corresponding non-dimen-

sional conservation of mass and momentum equations can

be written as,

oUi

oX
þ oVi

oY
¼ 0 ð23Þ

For liquid 1,

Re1
oU1

oh
þ U1

oU1

oX
þ V1

oU1

oY

� �

¼ � oP1

oX
þ 3A1

H4

oH

oX
þ o2U1

oX2
þ o2U1

oY2

þ cR;1ER

oU1

oX

o2U1

oX2
þ o2U1

oY2

� �
ð24Þ

Re1
oV1

oh
þ U1

oV1

oX
þ V1

oV1

oY

� �

¼ � oP1

oY
þ o2V1

oX2
þ o2V1

oY2
þ cR;1ER

oU1

oY

o2U1

oX2
þ o2U1

oY2

� �

ð25Þ

For liquid 2,

Re2
oU2

oh
þ U2

oU2

oX
þ V2

oU2

oY

� �

¼ � 1

lR

oP2

oX
� 3A2

H2 � Hð Þ4
oH

oX
þ o2U2

oX2
þ o2U2

oY2

þ cR;2ER

oU2

oX

o2U2

oX2
þ o2U2

oY2

� �
ð26Þ

Re2
oV2

oh
þ U2

oV2

oX
þ V2

oV2

oY

� �

¼ � 1

lR

oP2

oY
þ o2V2

oX2
þ o2V2

oY2

þ cR;2ER

oU2

oY

o2U2

oX2
þ o2U2

oY2

� �
ð27Þ

The dimensionless boundary conditions are as follows:

no slip and no penetration at the two walls,

U1ð0Þ ¼ U2ðH2Þ ¼ V1ð0Þ ¼ V2ðH2Þ ¼ 0 ð28Þ

And at the interface, the continuity of normal velocity,

U1 � U2ð Þ oH
oX

� V1 � V2ð Þ ¼ 0 ð29Þ

and the continuity of tangential velocity,

U1 � U2ð Þ þ V1 � V2ð Þ oH
oX

¼ 0 ð30Þ

The kinematic condition can be written as,

oH

oh
þ Ui

oH

oX
¼ Vi ð31Þ

And finally the continuity of shear stress,

oU1

oY
þ oV1

oX

� �
1� oH

oX

� �2
 !

� 4
oH

oX

oU1

oX

þ cR;1ER

oU1

oX

oU1

oY
1� oH

oX

� �2
 !

� oH

oX

oU1

oX

� �2

� oU1

oY

� �2
 ! !

¼ lR
oU2

oY
þ oV2

oX

� �
1� oH

oX

� �2
 !

� 4
oH

oX

oU2

oX

(

þcR;2ER

oU2

oX

oU2

oY
1� oH

oX

� �2
 !

� oH

oX

oU2

oX

� �2

� oU2

oY

� �2
 ! !)

ð32Þ
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and normal stress balance,

� P1 þ
cR;1ER

2

oU1

oX

� �2

þ oU1

oY

� �2
 ! !(

þ 2

1þ oH
oX

� �2	 
 oU1

oX

oH

oX

� �2

�1

 !
� oH

oX

oU1

oY
þ oV1

oX

� � !

þ
cR;1ER

1þ oH
oX

� �2	 
 oH

oX

� �2
oU1

oX

� �2

þ oU1

oY

� �2
 

�2
oH

oX

oU1

oX

oU1

oY

��
� � P2 þ

lRcR;2ER

2

oU2

oX

� �2
  (

þ oU2

oY

� �2
!!

þ 2lR

1þ oH
oX

� �2	 
 oU2

oX

oH

oX

� �2

�1

 ! 

� oH

oX

oU2

oY
þ oV2

oX

� ���

þ
lRcR;2ER

1þ oH
oX

� �2	 
 oH

oX

� �2
oU2

oX

� �2

þ oU2

oY

� �2
 

�2
oH

oX

oU2

oX

oU2

oY

�
¼

o2H
oX2

Ca 1þ oH
oX

� �2	 
3
2

ð33Þ

In addition to the above-mentioned control parameters

(lR; eR;H2;Dei; �QI ; �fI ; �fu), the problem is now described by

the following additional eight control parameters,

cR;i ¼
eifbEapp

liUref

; Rei ¼
qiUrefh1

li
; Ai ¼

ai

6liph
2
1Uref

;

ER ¼ fb
Eapph1

; Ca ¼ l1Uref

c

Here cR,i is the electroosmotic number, Rei is the Reynolds

number, Ai is the disjoining pressure parameter, ER is the

relative strength of the zeta potential to the applied electric

field, and Ca is the capillary number.

3.2 Basic state solution

The basic state solution is obtained by assuming the flow to

be uniform, steady and, only in the X-direction (Vi = 0)

without a pressure-driven component. Hence, there is no

velocity gradient in the X-direction. Initially the interface

is flat and is represented by the equation Y = 1. Since there

is no curvature of the interface, there are no capillary forces

at the interface. These assumptions result in the following

base state equations for i = 1 and 2,

oUi;b

oX
¼ 0 ð34Þ

o2Ui;b

oY2
þ cR;iER

oUi

oX

o2Ui

oX2
þ o2Ui

oY2

� �
¼ 0 ð35Þ

0 ¼ � oP1

oY
þ cR;1ER

oU1

oY

o2U1

oX2
þ o2U1

oY2

� �
ð36Þ

0 ¼ �1

lR

oP2

oY
þ cR;2ER

oU2

oY

o2U2

oX2
þ o2U2

oY2

� �
ð37Þ

The corresponding boundary conditions to the base state

take the following form,

U1;b 0ð Þ ¼ 0;U2;b H2ð Þ ¼ 0 ð38Þ

U1;b 1ð Þ ¼ U2;b 1ð Þ ð39Þ

oU1;b

oY
� cR;1

oU1

oY
¼ lR

oU2;b

oY
� cR;2

oU2

oY

� �
ð40Þ

Equation (33) is solved with the above boundary condi-

tions, and the analytical solution of the base state velocity

is given in the ‘‘Appendix 2’’.

4 Linear stability analysis

Small perturbations in flow variables are introduced as

follows,

Ui ¼ Ui;b þ ~Ui; Vi ¼ ~Vi; Pi ¼ Pi;b þ ~Pi; H ¼ 1þ ~H

ð41Þ

where the variables with a tilde correspond to perturbation

variables. It has to be noted that the perturbation in the

electric potential field (see Eq. 13) is not considered in the

present work. Such a simplifying assumption has been used

to facilitate an analytical solution of the resulting system of

equations as a first-order approximation of a rather detailed

and nonlinear charge transport such as Poisson–Nernst–

Planck equation. The higher-order contribution to the

system instability due to the perturbation in the ionic

charge distribution requires a detailed numerical analysis

and will be considered in a future work. In order to reduce

the number of dependent variables, velocity components

are converted to their corresponding stream function rep-

resentation as ~Ui ¼ o ~Wi

oY
and eVi ¼ � o ~Wi

oX
. The normal modes

approach is then used to represent the perturbations,

~Wi X; Y ; hð Þ ¼ �Wi Yð Þeia X�Chð Þ; ~H X; hð Þ
¼ �Heia X�Chð Þ; ~Pi X; Y; hð Þ ¼ �Pi Yð Þeia X�Chð Þ

ð42Þ

where a is the wave number,C is the velocity of thewave, and

h is the dimensionless time.Upon substitution of the perturbed

variables and linearization, the base state equations are
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subtracted from the perturbed equations. The pressure term is

eliminated by taking derivative of X-momentum and Y-mo-

mentum equations with respect to Y and X, respectively, and

subtracting one from the other. The following Orr–Sommer-

feld equations for the stream function are then obtained,

d2

dy2
� a2

� �2

�WiðYÞ þ iaRei
d2

dy2
� a2

� �
C � Ui;b

� �


þ d2Ui;b

dY2

�
�WiðYÞ ¼ 0 ð43Þ

The boundary conditions at the interface are to be

applied at Y ¼ 1þ ~H and can be written as Taylor series

expansion around Y = 1, as follows:

�W1 0ð Þ ¼ 0;
d �W1

dY
0ð Þ ¼ 0; �W1 H2ð Þ ¼ 0;

d �W1

dY
H2ð Þ ¼ 0

ð44Þ
�W1 1ð Þ ¼ �W2 1ð Þ ð45Þ

�H
dU1;b 1ð Þ

dY
� dU2;b 1ð Þ

dY


 �
þ d

dy
�W1 � �W2ð Þ ¼ 0 ð46Þ

�W1 � C þ U1;b 1ð Þ
� �

�H ¼ 0 ð47Þ

d2

dy2
þ a2

� �
�W1 1ð Þ þ �H

d2U1;b 1ð Þ
dY2

þ cR;1ER
�H
oU1

oX

o2U1 1ð Þ
oY2

� iacR;1 ER
�H

oU1

oX

� �2

� oU1 1ð Þ
oY

� �2
" #

¼ d2

dy2
þ a2

� �
lR �W2 1ð Þ þ lR �H

d2U2;b 1ð Þ
dY2

þ lRcR;2

ER
�H
oU2

oX

o2U2 1ð Þ
oY2

� ialRcR;2 ER
�H

oU2

oX

� �2

� oU1 1ð Þ
oY

� �2
" #

ð48Þ

� ia Re1 C
d �W1 1ð Þ

dy
� U1;b

d �W1 1ð Þ
dy

þ �W1 1ð Þ dU1;b

dY

� ��

�lR Re2 C
d �W2 1ð Þ

dy
� U2;b

d �W2 1ð Þ
dy

þ �W2 1ð Þ dU2;b

dY

� �� �

þ 3A1
�H þ lR

3A2
�H

H2 � 1ð Þ � a2
�H

Ca


 ��

¼ d2

dy2
� 3a2

� �
d �W1 1ð Þ

dy
� lR

d2

dy2
� 3a2

� �
d �W2 1ð Þ

dy
ð49Þ

The stability information of thin film systems can be

recovered without solving the complete set of equations.

Yih’s method (Yih 1963) (long-wave expansion method)

can be used to expand the dependent variables

W1 Yð Þ;W2 Yð Þ and C in powers of ia:

�Wi � �Wi;0 þ ia �Wi;1

C � C0 þ iaC1

ð50Þ

The lengthy equations corresponding to zeroth and first

order in ia are given in the ‘‘Appendix 3’’. These equations

are solved with an assumption that the capillary forces are

large, i.e., a2=Ca�O 1ð Þ (Mayur et al. 2012). Since the

inertial forces are much weaker than the other forces in

play, Re1 = Re2 * 0. Upon substituting the expansion of

wave velocity (Eq. 48) in the perturbation eWi X; Y ; hð Þ and
ignoring the higher powers of a, the expression for the real

part of the growth rate, rR, is found to be a2C1, and the

critical wave number can then be obtained by equating the

growth rate to zero which in turn gives the marginal sta-

bility curves for the system.

5 Results

5.1 Base state profiles

Let us first define some of the dimensionless parameters in

order to see the effects of some important physical

parameters which act on the system of the two liquids. By

assuming the electroosmotic number in liquid 1, cR,1 = cR;
this number in liquid 2 is then: cR;2 ¼ eR

lR
cR: We assume

here that the heights of the two liquid layers are the same

and so H2 = 2. Moreover, the disjoining pressure param-

eters are supposed to be the same: A1 = A2 = A. The

quantity
cR
ER

represents the applied electric field, and cRER

represents the wall zeta potential (at y = 0). Also, the

present analysis is valid only for low electric pressure as

compared to the capillary pressure. Thus, the stabilizing

effect of the polarization forces (Melcher and Schwarz

1968) can be neglected as the electric pressure does not

compete with the capillary pressure.

Figure 2a shows the electric potential profile due to space

charge distribution ðUscÞ as a function of the vertical axis

Y for different values of the zeta potential at the interface fI .
The other parameters are assumed to have the following

values: De1 ¼ De2 ¼ De ¼ 0:1;QI ¼ 0 and eR ¼ 2. As

expected, for fI ¼ 0, the profile is continuous and shows a

typical potential field profile with symmetric gradients near

the top and bottom walls (EDL zones) for identical value of

the wall zeta potential (fu ¼ 1). Moreover, a discontinuous

potential field appears at the interface for nonzero values of

interface zeta potential (fI ¼ 1 and fI ¼ �1).

Figure 2b represents the base state velocity profile for

different values of the interface zeta potential

(fI ¼ 0; fI ¼ 1; and fI ¼ �1), and all the other dimen-

sionless parameters are the same as in Fig. 2a. For fI ¼ 0;

it shows a plug-type profile for the considered Debye

numbers. For a sufficiently large ( fI
�� �� ¼ 1), flow reversal
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can occur due to electrostatics at the interface. As the

viscous ratio (lR) is equal to 2, the viscous force is larger

on the top layer (liquid 2) than the bottom layer (liquid 1)

and counteracts the electric force, and hence the magnitude

of the velocity is higher on liquid 1. The excellent agree-

ment between the velocity profiles obtained from the pre-

sent model and the one derived by Choi et al. (2011) as

reported in Fig. 2b validates the present Maxwell stress

model used in these thin EDL systems.

5.2 Growth rate

The most important case from the viewpoint of practical

applications is the case when the liquid at the lower layer is

an electrolyte (conductive) and the one at the top layer is a

dielectric (non-conductive). A parametric study of the real

part of the growth rate is undertaken. In this case, the

following parameters are considered: eR � 1 and fI ¼ 0:

Moreover, as the concentration of ions decreases and

vanishes for a dielectric fluid, the corresponding Debye

number De2 ? ? so that Eq. (5) for liquid 2 reduces to

Laplace equation
d2Usc;2

dY2 ¼ 0:

In order to convert the liquid–liquid interface problem to

a liquid–air interface problem, it is essential that the second

liquid should not only be dielectric but also non-viscous. If

the upper media is also inviscid, our problem is converted

to a liquid–air one, and the interface can be treated as a free

surface (Thaokar and Kumaran 2005). A comparison of the

growth rate, rR, as a function of the wave number, a, for
the present work and the work performed by Thaokar and

Kumaran (2005) is presented in Fig. 3. The small deviation

at lR ¼ 0:01 vanishes by decreasing the viscosity ratio by

ten times (lR ¼ 0:001).

Figure 4 shows the growth rate as a function of the wave

number for different magnitudes of the electric field, cR/ER,

all other parameters being fixed and given. Two extreme

values of the viscosity ratio are considered lR ¼ 0:1ð Þ and
lR ¼ 10ð Þ in order to study the effect of viscous force over

Fig. 3 Real part of growth rate with wave number derived from

present study and the one derived by Mayur et al. (2012) for

De = 0.1, Ca = 1, A = 0, eR = 0, fu ¼ 0; fI ¼ 0; ER= 1, cR = 1

and a lR = 0.01, b lR = 0.001

Fig. 2 a Electric potential profile, USC for different values of zeta

potential at interface, fI , and for De1 = De2 = De = 0.1, �QI ¼ 0;

eR = 2, fu ¼ 1; lR = 2, b Base state velocity for the present study

and the one calculated by Choi et al. (2011)
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the electric force. For lower values of viscosity ratio

lR ¼ 0:1ð Þ; the behavior is classical, e.g., the instability

increases as the value of the electric field magnitude

increases. But as the viscosity ratio increases, the opposite

is seen: The system becomes more stable as the magnitude

of electric field increases. This is mainly due the compe-

tition between the electric force which is directed from

right to left (same direction as the velocity field) and the

viscous force which opposes the motion and is thus

directed from left to right. As the value of electric field

diminishes, the viscous force dominates and hence the high

viscous jump of the stress at the interface increases the

instability for lower values of electric force. The increase

in the magnitude of the electric field force counteracts the

viscous force, and hence, the stability of the system

increases. This result is quite important as the stability of

the system can be tuned with the electric field through the

Maxwell stress and the viscosity ratio through the viscous

stress.

This competition between the viscous and electric forces

can be better understood by taking a closer look at the

momentum equations. The non-dimensional X-momentum

equations for liquids 1 and 2, respectively, with an

assumption that liquid 2 is dielectric eR � 0ð Þ and

Re1 = Re2 * 0 can be written as,

0 ¼ � oP1

oX
þ 3A1

H4

oH

oX
þ o2U1

oX2
þ o2U1

oY2
� cR

o2U1

oY2
ð51Þ

0 ¼ � oP2

oX
� 3A2lR

H2 � Hð Þ4
oH

oX
þ lR

o2U2

oX2
þ o2U2

oY2

� �
ð52Þ

In Eq. (51), the coefficient of the viscous force and electric

force term is of the order of one and-cR, respectively. In
Eq. (52), there is only viscous force and its order of

magnitude is lR. For lR = 10 and cR\ 1, the force

experienced by the lower liquid is then much lower than

the viscous force exerted by the upper liquid. Since the

lower liquid drives the flow in the upper liquid through the

interfacial shear stress, a high viscosity ratio would result

in a higher jump in the velocity gradient at the interface.

Consequently, an increase in electric field increases the

driving force experienced by the lower fluid and in turn

tries to compensate for the high viscous forces exerted on it

by the upper fluid. This leads to an increase in the stability

of the system.

Fig. 4 Variation of the real part of growth rate with the wave number

for different values of applied electric field and with De = 0.1,

Ca = 0.01, A = 0.1, fI ¼ 0 and a lR = 0.1, b lR = 10

Fig. 5 Variation of the real part of the growth rate with wave number

for different viscosity ratio and with De = 0.1, Ca = 0.01, eR = 1,

cR = 1, fI ¼ 0 and a A = 0.1, b A = 1
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Figure 5 shows the growth rate variation as a function of

the wave number for different values of the viscosity ratio

and two values of the disjoining pressure, A. From these

figures, it is observed [as in the case of a liquid–gas

interface with a DC field (Mayur et al. 2012)] that upon

increasing the disjoining pressure, the system is more

unstable. This phenomenon can be explained by the fact

that increasing the disjoining pressure pushes the system

away from the mechanical equilibrium of the thin film

hence making the system more unstable. Moreover, the

same kind of behavior as in the previous figure is seen here

where there exists a competition between the viscous force

and the disjoining pressure force. For lower values of A, the

stability of the system is decreased for extreme values of

viscosity ratio (lR ¼ 0:1; lR ¼ 10). For intermediate

values of lR (lR ¼ 1), the system is quasi-stable. The same

behavior is seen for higher values of A, except that at the

crossover point, the instability is higher for lR ¼ 1 than

lR ¼ 0:1: The overall stability of the proposed system can

be tuned with respect to the disjoining pressure by fixing

the other two parameters, i.e., the viscosity ratio and the

electric field.

Figure 6 represents the stability curve (growth rate as a

function of the wave number) for different values of the

capillary number Ca. The instability is always suppressed

by the capillary forces. And, as expected, the instability

grows for non-vanishing values of the zeta potential of the

interface which states that the Maxwell stress experienced

by the interfacial potential inherently destabilizes the

system.

5.3 Marginal stability curves

The marginal stability curve gives an idea of the threshold

value of the wavenumber, e.g., the zones of stable and

unstable regions for a given system. Figure 7 shows the

critical wave number (or the threshold value) as a function

of the capillary number for different values of the electric

field and two extreme values of the disjoining pressure

number (A = 0.1 and A = 1). The critical wavenumber

increases when the magnitude of the electric field dimin-

ishes and when the capillary number increases which is

consistent with the previous analysis. For higher values of

A, the differences in the threshold values of the

Fig. 6 Variation of the real part of the growth rate with wave number

for different Capillary number and with De = 0.1, lR = 2, eR = 1,

cR = 1, A = 0.1 and a fI ¼ 0; b fI ¼ 1

Fig. 7 Marginal stability curve showing critical wave number as a

function of capillary number, Ca for different values of applied

electric field with De = 0.1, lR = 2 and fI ¼ 0 a A = 0.1, b A = 1
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wavenumber are barely noticeable. This result means that

for high values of A, the threshold of the wavenumber does

not change with respect to the values of the electric field

(cR/ER\ 1) and regardless the value of the capillary

number. The inserts in the Fig. 7 show the variation of

critical wave number with cR/ER for a particular value of

capillary number (Ca = 0.4). The decline of critical

wavenumber number with increase in cR/ER shows that the

system is becoming more stable. The critical wavenumber

increases when the disjoining pressure increases.

Figure 8 presents the results of the marginal stability

curve for the two-liquid system as a function of the dis-

joining pressure coefficient for liquid 2, A2, fixing A1 = 1

(Fig. 8a) and Debye number ratio DeR = De2/De1
(Fig. 8b) for different values of the viscosity ratio. In

Fig. 8a, when A2 increases (or the ratio A2/A1 increases),

the instability increases for all values of the viscosity ratio

as for the case for a free surface (Thaokar and Kumaran

2005). In Fig. 8b, the effect of Debye number ratio

(DeR = De2/De1) on the stability of the system is presented

in which both the liquids are conductive. The Debye

number (representing the EDL thickness) affects the sta-

bility of the system differently depending on the viscosity

ratio. For lR ¼ 10; the instability increases with the

increase in DeR. For lR ¼ 0:1; there is significant decline

in stability for DeR\ 3. In both cases, there is very little or

no effect on marginal stability if the Debye number ratio is

increased beyond a limiting value (DeR[ 10). On the other

hand, the stability threshold remains constant whatever the

value of the Debye number ratio for lR ¼ 1:

Figure 9 shows the marginal stability curve as a function

of the zeta potential at the interface and for different values

of the viscosity ratio. For the case of equal viscosity of the

two liquids, the stability does not change irrespective of the

value of zeta potential at the interface. Nevertheless, the

behavior of the stability of the system is opposite for the

extreme values of viscosity ratio (lR = 10, lR = 0.1): It is

observed that the stability increases with �fI (irrespective of
the polarity) for lR = 0.1 and vice versa for lR = 10. In

other words, the stability of the two-liquid system increases

when the magnitude of zeta potential of the interface

increases for highly viscous bottom fluid layer.

The interesting change in the stability behavior with

viscosity ratio as observed in Fig. 4 is reiterated in Fig. 10.

There is a crossover of the curves at lR = 1. For lR\ 1,

the stability decreases with the increase in the applied

electric field, and the exact opposite happens for lR[ 1.

Although one may feel that the viscosity is a stabilizing

force which should damp any growth of perturbations in

Fig. 8 Marginal stability curve showing the critical wave number as

a function of (a) the dimensionless Hamaker’s constant, A2 for

different values of viscosity ratio, lR with De1 = De2 = 0.1, ER = 1,

cR = 0.1 and fI ¼ 1; Ca = 0.01, A1 = 1 (b) the Debye number ratio

(De2/De1), DeR for different values of viscosity ratio, lR with

De1 = 0.1, A1 = A2 = 1, eR = 10, cR = 1 and fI ¼ 1, Ca = 0.1,

eR = 0.1, QI ¼ 1

Fig. 9 Marginal stability curve showing the critical wave number as

a function of the non-dimensional interface zeta potential, fI for

different values of viscosity ratio with De = 0.1, eR = 1, cR = 0.1

and A = 0.1, Ca = 0.001
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this two-liquid system where the upper fluid is dielectric,

the viscous force, here, acts as a driving force in the form

of interface shear stress and hence can destabilize the

system.

All the above results (except Fig. 8b) were focused on

the particularly useful case of the two-liquid EOF system

in which the upper fluid is dielectric. However, if both the

fluids are considered conductive, interesting stability pat-

terns are also observed. The effect of permittivity ratio

(eR) on the growth rate depends on the viscosity ratio if all

other parameters are kept constant. In Fig. 11a, since fI
and �QI are assumed to be zero, electrostatics at the

interface are not playing any role in the stability at the

interface. In case of high viscosity ratio, the instability

increases with an increase in the permittivity ratio. This

generic behavior is because of the increased force on the

more viscous upper fluid. However, in case of low vis-

cosity ratio, if eR is small then the bottom liquid, with

higher viscosity and permittivity, acts like a driver liquid,

and the shear stress at the interface causes instability.

When the permittivity ratio is increased, the upper fluid

gets driven by the applied electric field decreasing the

effect of shear stress at the interface and hence making

the system more stable. However, as soon as an interface

zeta potential is present, then the stability behavior is

changed significantly (see Fig. 11b). In this case the

Maxwell stress at the interface plays an important role in

deciding the stability regions.

6 Conclusion

The analysis of growth rate and marginal stability curves

showed an interesting interplay between the viscous forces,

electric forces, disjoining pressure, and capillary forces in

order to decide the stability of the system. Interfacial

electrostatics and EDL thickness also alter the stability

behavior significantly. If the upper liquid is considered to

be a dielectric, the applied electric field can have stabi-

lizing or destabilizing effects depending on the viscosity

ratio because of the competition between viscous and

electric forces. Similarly viscous forces, although dissipa-

tive in nature, will not always stabilize the system. For

viscosity ratio equal to unity, the stability of the system

gets disconnected from the electric parameters such as

interface zeta potential and EDL thickness. Disjoining

pressure has a destabilizing effect, and capillary forces

have stabilizing effect. The overall stability trend depends

on the complex contest between all the above-mentioned

parameters, and the present study can be used to tune these

parameters according to the stability requirement.

Acknowledgments SA and EAD thank also the financial support

from the French State in the frame of the ‘‘Investments for the future’’

Programme IdEx Bordeaux, reference ANR-10-IDEX-03-02. EAD

would like to thank the Russian Foundation for Basic Research

(Project Nos. 15-08-02483-a, 13-08-96536-r yug a, 14-08-31260 mol-

a, and 14-08-00789-a).

Fig. 10 Marginal stability curve showing the critical wave number as

a function of the viscosity ratio, lR for different values of applied

electric field with fI ¼ 0; De = 0.1, eR = 1, cR = 0.1 and A = 0.1,

Ca = 0.01

Fig. 11 Marginal stability curve showing the critical wave number as

a function of the permittivity ratio, eR in case of both the fluids are

conductive for different values of viscosity ratio with, lR De = 0.1,

eR = 1, cR = 1 and A = 0.1, Ca = 0.01, fu ¼ 1; QI ¼ 0; a fI ¼ 0,

b fI ¼ 1
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Appendix 1

The electric potential Usc;i (i = 1, 2) due the space charge

distribution can be written as follows,

0\Y\1 : Usc;1 ¼ A1e
Y

De1 þ B1e
� Y

De1 ð53Þ

1\Y\H2 : Usc;2 ¼ A2e
Y

De2 þ B2e
� Y

De2 ð54Þ

A1 ¼
e

2
De2 � e

2H2
De2

	 

De2 1þ e

1
De1De1Qi

	 

þ De1eR e
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þ1þH2
De2 Cosh 1�H2
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Appendix 2

The expression of the base state velocity in both liquids are

derived as follows,

U1;b ¼ 4e
1

De1
þ1þH2

De2 De1eR H2cR1 Cosh
1� H2

De2


 �
Sinh

Y � 1

De1


 �
þ Sinh

1

De1


 �
� Sinh

Y
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 �
f
i

 !   (

�Sinh
Y

De1


 �
fu

�
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1� H2
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� ��
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�
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�
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�
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Appendix 3

The set of equations with ia0 order are as follows:

D4 �W1;0 ¼ 0;D4 �W2;0 ¼ 0 ð57Þ

with the corresponding boundary conditions, No slip and

no penetration:

d �W1;0

� �
dY

0ð Þ ¼ 0; �W1;0 0ð Þ ¼ 0;
d �W2;0

� �
dY

H2ð Þ ¼ 0;

�W2;0 H2ð Þ ¼ 0 ð58Þ

Shear stress balance:

D2 �W1;0 þ �H
d2U1;b 1ð Þ

dy2
þ cR;1ER;1

�H
oU1

oX

o2U1 1ð Þ
oY2

¼ lR D2 �W2;0 þ �H
d2U2;b 1ð Þ

dy2
þ cR;2ER

�H
oU2

oX

o2U2 1ð Þ
oY2

� �

ð59Þ

Normal stress balance:

D3 �W1;0 1ð Þ � lRD
3 �W2;0 1ð Þ ¼ 0 ð60Þ

Continuity of normal and tangential velocity:

�W1;0 1ð Þ ¼ �W2;0 1ð Þ;D �W1;0 � �W2;0

� �
1ð Þ

þ �H
dU1;b 1ð Þ

dY
� dU2;b 1ð Þ

dY

� �
¼ 0

ð61Þ

Kinematic conditions:

U1;b 1ð Þ � C0

� �
�H ¼ � �W1;0 1ð Þ;

U2;b 1ð Þ � C0

� �
�H ¼ �W2;0 1ð Þ ð62Þ

The set of equations with ia1 order are as follows:

D4 �W1;1 ¼ �Re1 C0D
2 �W1;0 � U1;bD

2 �W1;0 þ
d2U1;b

dy2
�W1;0

� �

ð63Þ

D4 �W2;1 ¼ �Re2 C0D
2 �W2;0 � U2;bD

2 �W2;0 þ
d2U2;b

dy2
�W2;0

� �

ð64Þ

with the following boundary conditions:

No slip and no penetration:

d �W1;1

� �
dY

0ð Þ ¼ 0; �W1;1 0ð Þ ¼ 0;
d �W2;1

� �
dY

H2ð Þ ¼ 0; �W2;1 H2ð Þ
¼ 0

ð65Þ

Shear stress balance:

D2 �W1;1 1ð Þ�cR;1ER;1
�H

oU1 1ð Þ
oX

� �2

� oU1 1ð Þ
oY

� �2
 !

¼lR D2 �W2;1 1ð Þ�cR;2ER
�H

oU2 1ð Þ
oX

� �2

� oU2 1ð Þ
oY

� �2
 !( )

ð66Þ

Normal stress balance:

D3 �W1;1 1ð Þ � lRD
3 �W2;1 1ð Þ þ Re1 C0 � U1;b

� �
D �W1;0 1ð Þ

�
þ dU1;b H1ð Þ

dY
�W1;0 H1ð Þ �lRRe2�



C0 � U2;b

� �
D �W2;0 1ð Þ

þ dU2;b 1ð Þ
dY

�W2;0 1ð Þ
�
þ 3A1

�H

H1

þ lR
3A2

�H

H2 � 1ð Þ � a2
�H

Ca

� �

¼ 0

ð67Þ

Continuity of normal and tangential velocity:

�W1;1 1ð Þ ¼ �W2;1 1ð Þ;D �W1;1 � �W2;1

� �
1ð Þ ¼ 0 ð68Þ

Kinematic conditions:

C1
�H ¼ �W1;1 1ð Þ;C1

�H ¼ �W2;1 1ð Þ ð69Þ

Thus C1 can be obtained from this last kinematic con-

dition as:

C1 ¼ �W1;1 1ð Þ= �H ð70Þ
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