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destillocapillary flows may reach conversion efficiencies 
similar to pressure-driven flow.
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1  Introduction

The need for improving energy sustainability demands 
for the utilization of low-grade waste heat, which is emit-
ted at temperatures just slightly above ambient. This can 
be attempted by various approaches, and many of them 
are in the focus of ongoing research. Examples are heat 
recuperation devices based on the Rankine cycle (Chen 
et  al. 2010; Tchanche et  al. 2011), adsorption refrigera-
tion (Saha et al. 2003) or thermoelectric conversion (Rif-
fat and Ma 2003; Bell 2008). A major challenge is the 
circumstance that suitable techniques need to be avail-
able at low costs and low technical complexity: Lower 
temperature levels imply smaller Carnot factors, and, in 
order to harvest a non-negligible amount of exergy, mas-
sive parallelization of the waste heat recovery devices 
has to be feasible. While efficient operation of most ther-
moelectric converters requires relatively high operating 
temperatures between 150–450 °C (Saqr and Musa 2009) 
or higher (Biswas et  al. 2012), the design and afford-
able fabrication of highly efficient thermoelectric con-
verters is still topic of intense research (Shakouri 2011). 
At this time, ultra-low-cost and robust low-complexity 
approaches of small-scale exergy recovery systems, 
which are applicable to any host device featuring a tem-
perature gradient in a highly parallelizable fashion, are 
not readily available yet.

Abstract  In this work, the shear-induced electrokinetic 
streaming potential present in free-surface electrolytic 
flows subjected to a gradient in surface tension is assessed. 
Firstly, for a Couette flow with fully resolved electric dou-
ble layer (EDL), the streaming potential per surface stress 
as a function of the Debye parameter and ζ-potential is ana-
lyzed. By contrast to the Smoluchowski limit in pressure-
driven channel flow, the shear-induced streaming potential 
vanishes for increasing Debye parameter (infinitely thin 
EDL), unless the free surface contains (induced) surface 
charge or the flow at the charged, solid wall is permitted 
to slip. Secondly, a technical realization of surface-tension-
induced streaming is proposed, with surface stress acting 
on the free (slipping) surfaces of a micro-structured, super-
hydrophobic wall. The streaming potential is analyzed with 
respect to the slip parameter and surface charge. Finally, 
the surface tension is assumed to vary with temperature 
(thermocapillarity) or with surfactant concentration (des-
tillocapillarity). The maximal thermal efficiency is derived 
and compared to the Carnot efficiency. For large thermal 
Marangoni number, the efficiency is severely limited by 
the large heat capacity of aqueous solvents. By contrast, 
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In this context, electrokinetic flow through micro-chan-
nels has received renewed attention as a means of convert-
ing kinetic energy of a flow driven by a pressure gradient 
into electric energy (Yang et al. 2003; van der Heyden et al. 
2005). In such systems, free ions dissolved in a (typically 
electroneutral) carrier liquid accumulate in the vicinity of 
walls carrying a surface charge to form an electric double 
layer (EDL). Within this layer, typically a few up to a cou-
ple of hundred nm thick, the ions stay mobile and can be 
convectively transported along the channel as a streaming 
current. At steady state, to comply to charge conservation, 
charge polarization induces a streaming potential, which 
in turn drives a conduction current equal in value but in 
opposite direction as the streaming current. Simple elec-
trolytes come at low cost, and channel widths larger than 
the EDL-thickness are detrimental for the magnitude of the 
streaming potential. These characteristics render electroki-
netic streaming suitable for miniaturization and paralleli-
zation, so that sufficient power densities can be achieved. 
As a drawback, the performance of conventional electroki-
netic streaming devices is spoiled by the circumstance that 
the excess ions accumulate in direct vicinity of fixed walls 
where frictional losses are highest. As a viable alternative, 
one may consider flows where the excess ions screen exter-
nally applied electric fields at free surfaces not subject to 
the no-slip-condition.

Work on electrokinetic free-surface flows has mostly 
focused on the interaction of external electric fields with 
the fluid domain, either to address stability issues (Taylor 
and McEwan 1965; Surgy et al. 1993) and electro-osmotic 
propulsion of liquid films (Melcher and Taylor 1969) or 
to understand electrosprays (Salata 2005) as well as elec-
trowetting (Mugele and Baret 2005), to name a few. In 
recent years, along with the general trend of miniaturiza-
tion, flow domains of similar characteristic length scale as 
the EDL-thickness have received increased interest (Qian 
et  al. 2009). Such considerations are crucial in drain-
age models of thin films and foams (Tsekov et  al. 2010; 
Karakashev and Teskov 2011) or to address the electrohy-
drodynamic stability of ultrathin electrolyte films which 
are electro-osmotically sheared by an external field (Joo 
2008; Mayur et al. 2012). In comparison, much less work 
has been done on mechanically driven charge separation in 
flow domains where at least one interface is not bounded 
by a wall. The most prominent example of this category 
is probably Lord Kelvin’s famous water dropper to gener-
ate direct current (DC) voltages in the kV-range (Thomson 
1867; Marín et al. 2013). The high voltages are achieved by 
the circumstance that the convectively transported charges 
are enclosed within drops, which are (electrically) insu-
lated from each other by (dielectric) air. While the con-
tinuous domain in conventional electrokinetic streaming 
in channels limits the streaming potential by the opposing 

conduction current, the latter is avoided altogether in the 
Kelvin dropper and related devices (Duffin and Saykally 
2008). With respect to continuous electrokinetic free-sur-
face flows driven by a pressure gradient, researchers have 
addressed charge separation in free-surface guided micro-
channels (Lee et  al. 2006) as well as electrokinetic flow 
over superhydrophobic surfaces (Zhao 2011; Seshadri and 
Baier 2013). In the latter, wall friction is reduced by sus-
pending the flow on an array of air pockets trapped in the 
channel walls.

Free-surface flows can be driven also by stresses at the 
interface caused by a non-uniform surface tension. Cor-
responding effects become particularly dominant for large 
surface-to-volume ratios of the fluidic domain. Surface ten-
sion is affected by temperature (thermocapillarity or ther-
mal Marangoni effect) or by the concentration of another 
dissolved phase (destillocapillarity or solutal Marangoni 
effect). The shear-induced electrokinetic streaming in free-
surface flows with the aim to (partially) convert thermal or 
chemical energy into electric energy is in the focus of the 
present study.

In Sect. 2, double-layer effects are addressed at hand of a 
(hypothetical) Couette-type of flow, including those caused 
by a molecular wall slip of similar order as the Debye 
length. In Sect.  3, as a technically more feasible exam-
ple and in the limit of infinitely thin EDL, previous work 
on electrokinetic flow over superhydrophobic surfaces is 
extended to account for fluid propulsion by means of a sur-
face tension gradient along the grooves, which enclose air 
pockets. Based on these considerations, in Sect. 3.3.1, the 
thermal efficiency is derived when the surface tension is a 
function of temperature (thermal Marangoni effect), i.e., 
thermocapillarity provides for the required liquid propul-
sion. The latter system is one of the first, technically fea-
sible approaches of thermally driven electrokinetic charge 
separation (Grosu and Bologa 2010), directly converting 
thermal into electric energy. It is a low-cost and low-com-
plexity approach and might be useful as small-scale waste 
heat recovery device.

2 � Electrokinetic streaming in planar Couette‑type 
flow

As schematically shown in Fig. 1, in this section a liquid 
layer of a symmetric electrolyte of thickness H (in y-direc-
tion) is considered. The horizontal extent S in spread direc-
tion z (from now on termed the axial direction) of the layer 
is assumed to be much larger than H. The flow is viewed 
as being uniform in x-direction, i.e., the system is essen-
tially two-dimensional. The layer is bounded from below 
by a flat solid wall (subscript ‘w’), exhibiting a Navier-slip 
coefficient b, and from above by an inert gas phase. The 
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liquid–gas interface (subscript ‘i’) has a surface tension σ.  
The latter varies in z-direction, giving raise to a shear-
induced fluid propulsion and streaming potential φst(z). The 
flow is potentially supported by an axial pressure gradient, 
∂zp, where ∂z(.) = ∂(.)/∂z. In the following, the EDL, with 
a thickness of �D typically in the order of 1–10  nm, will 
be resolved. This is only useful if H is at least not much 
larger than �D. Such ultra-thin films are known to dewett 
most solid substrates or at least undergo significant surface 
deformations. Here it is assumed that the solid surface is 
treated in such a fashion that it is superhydrophilic to polar 
liquids (Drelich et  al. 2011) and remains fully wetted at 
all times. For instance, for an aqueous solution, this can 
be accomplished by coating a surface with titanium diox-
ide (TiO2) and subsequent irradiation with ultraviolet (UV) 
light (Watanabe et  al. 1999). Furthermore, as will be dis-
cussed in the next section, an electric field perpendicular 
to the film interface will be applied to induce an interfacial 
charge. The corresponding electrohydrodynamic pressure 
generated at the interface is negative and lowers the local 
fluid pressure. This leads to thickening of the film, i.e., it 
counteracts dewetting effects, at least if the applied electric 
field is below the threshold of electrohydrodynamics insta-
bilities at the interface (Taylor and McEwan 1965). Thus, 
the surface deformations will be neglected, and the layer 
has a uniform and constant thickness H.

2.1 � Axial velocity distribution

The liquid motion is described by the velocity vector 
v = (0, v,w), where incompressibility ∇ · v = 0 holds. 
Furthermore, assuming Newtonian, low Reynolds num-
ber (creeping) flow of (constant) dynamic viscosity η, the 
Navier–Stokes equation in z-direction can be approximated 
by (Stokes limit)

where p denotes the total fluid pressure. Gravitational 
effects are neglected. The flow is fully developed so that 
∇2w = ∂2y w. The electrostatic forces on the (neutral) sol-
vent due to the dissolved ions are considered by the Max-
well stresses in terms of the charge density ρe and the total 
electric potential φ. The latter is the linear superposition 
of an EDL-potential ψ(y, z) and the streaming potential, 
i.e., φ(y, z) = ψ(y, z)+ φst(z). The charge density can be 
expressed by the Poisson equation. Using the lubrication 
approximation (H/S)2 ≪ 1, ρe is given by

where ǫ is the (constant) dielectric permittivity. With this, 
the momentum balance in y-direction can be expressed by

where p0(z) is the externally applied hydraulic pressure. 
The last term on the right-hand side (RHS) is the electro-
hydrostatic pressure. In what follows, the variation of ψ in 
streaming direction z is omitted. Inserting (2) and (3) into 
(1) and integrating twice in y-direction leads to the velocity 
distribution w(y, z) in (axial) streaming direction, namely

In (1), for shorter notation, the electric fields E|w ≡ −(∂yψ)|w 
and E|i ≡ −(∂yψ)|i were used as well as ζ|w ≡ ψ|w (charges 
in the Stern-layer are ignored). The subscript |w stands 
for evaluation at y = 0. In (4), the Navier-slip condition 
w|w = b(∂yw)|w applies at the wall. At the sheared interface, 
the stress condition η(∂yw)|i = ∂zσ is fulfilled, where the 
subscript |i stands for evaluation at y = H.

As it becomes relevant in Sect. 3.3.1, (4) remains valid 
if the viscosity is dependent on temperature and the latter 
varies in z only. In this case, as a consequence of the expan-
sion in terms of H/S within a lubrication approximation, 
contributions to (1) due to ∇η emerging from the complete 
viscous stress term, ∇ · η[∇v + (∇v)T ], can be shown to 
be of higher order in H/S and negligible (Dietzel and Hardt 
2015).

2.2 � Electric currents

Using the Navier-slip condition, the (width-averaged) 
streaming current Ist = W−1

∫ W

0

∫ H

0 ρe w dy dx can be 
expressed by

(1)0 = −∂zp+ η∇2w− ρe∂zφ,

(2)ρe ≈ −ǫ∂2yψ ,

(3)p = p0 + ǫ
1

2
(∂yψ)2,

(4)

w = ∂zp0

η

[
1

2
y2 − H(y + b)

]
+ ∂zσ

η
(y + b)

− ǫ∂zφst

η

[
ψ − ζ|w + yE|i + b(E|i − E|w)

]
.

Fig. 1   Sketch of the planar liquid film of film height H, horizontal 
extent S ≫ H and driven by a gradient in surface tension, ∂zσ, as 
well as by a pressure gradient ∂zp0. The propulsion leads to an axial 
velocity distribution w(y) and a streaming potential of �φst = ∂zφstS.  
The wall has a ζ-potential of ζ|w, while the potential at the interface 
is denoted by ζ|i. The potentials are related to electric fields E|w (or 
surface charge density q|w) and E|i (or q|i), respectively
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where W is the extent of the layer in x-direction.
Along with the condition of vanishing ion flux across the 

interface, using the Nernst–Planck equation in the lubrica-
tion approximation suggests that each ion species obeys a 
Boltzmann distribution, namely

where ψ is the EDL-potential and nk (k = 1, . . . ,K) are the 
local ion number concentrations, while nk|c and ψ|c are the 
concentrations at an (arbitrary) reference location y = y|c fur-
ther away from charged walls and interfaces. Furthermore, one 
has ψD = kBT∞/(eν) and νk = νk/ν, where the elementary 
charge is denoted by e, νk are the ion valences, kB is the Boltz-
mann constant and T the temperature. A non-uniform tempera-
ture either compresses or expands the EDL (Dietzel and Hardt 
2012). For T = T(z), nk|c may vary in z, giving rise to varia-
tions of ψ (and ψ|c) in z as well. Besides affecting the ion dis-
tribution and the conduction current, this can have an effect on 
the mechanical equilibrium of the ion cloud (thermo-osmosis) 
(Dietzel and Hardt 2015), which is beyond the scope of the pre-
sent study. Corresponding effects were found to be generally 
small and only noticeable if the liquid film thickness is of the 
same order as the EDL. Thus, in the present work, we neglect 
the (weak) dependence of ψ on T, which was already implied 
by using ∂zψ = 0 before. Since ρe = e

∑K
k=1 νknk and given 

the linear independency of the nk, (2) suggests that in this case 
also ∂znk = 0. It follows that nk|c ≡ n∞, ψ|c ≡ 0 and T ≡ T∞,  
where n∞ is a constant reference concentration and T∞ is a 
constant reference temperature.

In this case, the only non-convective mechanism of ion 
transport in streaming direction is the total conduction cur-
rent due to the induced potential gradient, reading

where ωn,k ≈ Dn,k/(kBT) denote the ionic mobilities, with 
Dn,k as the (Fickian) diffusion coefficients. With this, the 
conduction current of a symmetric ν : ν electrolyte with 
identical diffusion coefficient Dn,k ≡ Dn for each ion spe-
cies can be written as

(5)

Ist

ǫ
= −∂zp0

η

[ ∫ H

0

ψdy−Hζ|w+
1

2
H2E|i+bH(E|i − E|w)

]

+ ∂zσ

η

[
ζ|i−ζ|w+HE|i+b(E|i−E|w)

]

− ǫ∂zφst

η

[ ∫ H

0

(∂yψ)2dy+2E|i(ζ|i−ζ|w)+HE2
|i

+ b(E|i−E|w)
2

]
,

(6)nk = nk|cexp
[
−νk

(
ψ − ψ|c

)
/ψD

]
,

(7)Icd = −e2∂zφst

∫ H

0

K∑

k=1

ωn,kν
2
k nkdy,

(8)
Icd

ǫ
= −Dn∂zφst

�
2
D

T∞
T

FCS

where

and

is the (nominal) EDL-thickness.

2.3 � Streaming potential

2.3.1 � General considerations

By requiring that the total current Ist + Icd vanishes, charge 
conservation determines the convection-induced streaming 
potential, leading to

where

Expression (11) remains valid if T varies in z-direction. In 
this case, in (12) the local viscosity and temperature need 
to be used. However, the hydrodynamic radius R0 of com-
mon salt ions is relatively unaffected by temperature (Oelk-
ers and Helgeson 1989). Then, the Stokes–Einstein relation 
Dn ≈ kBT/(6πηR0) implies that ηDnT∞/T = η∞D∞,n is a 
constant, where D∞,n and η∞ are the diffusion coefficient 
and the liquid viscosity, respectively, both determined at 
T = T∞. Hence, at least for simple 1:1-electrolytes, (12) 
and (11) can be considered to be unaffected in case that 
T = T(z). This will become relevant in Sect. 3.3.1.

For evaluation of the streaming potential described by 
(11), an expression for the EDL-potential needs to be found 
which fulfills the Poisson–Boltzmann equation. With (6), 
the latter reads

In the vicinity of a boundary with arbitrary values of the 
potential ζ|s, the Gouy–Chapman model (GC) allows for an 
analytical solution of (13), while the overlap of the EDLs 
is neglected. As it will be shown, this inaccuracy is only 

(9)FCS =
∫ H

0

cosh(ψ/ψD)dy

(10)�D =
√

ǫkBT∞
2e2ν2n∞

(11)

−∂zφst =
{
− ∂zp0

[
Hζ|w−

∫ H

0

ψdy− 1

2
H2E|i+bH(E|w − E|i)

]

+ ∂zσ
[
ζ|w − ζ|i−HE|i+b(E|w−E|i)

]}/
Fφ ,

(12)

Fφ = ηDn

�
2
D

T∞
T

FCS + ǫ

[ ∫ H

0

(∂yψ)2dy − 2E|i(ζ|w − ζ|i)

+ HE2
|i + b(E|w − E|i)

2

]
.

(13)∂2y (ψ/ψD) = �
−2
D sinh(ψ/ψD).
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relevant if H is equal or smaller than �D and ψ/ψD exceeds 
O(1) at the same time. The GC-model is given by (Russel 
et al. 1989) (p. 102)

where ̃y ≥ 0 is directed normal from the charged boundary into 
the interior of the electrolyte. For the potential due to the wall 
charge, ỹ ≡ y and the subscript |s ≡ |w, while for the interfa-
cial charge, ỹ ≡ H − y and |s ≡ |i. The ζ-potentials and elec-
tric fields are not independent from each other but related via 
the surface charge densities q = −ǫ∂yψ(j · nB), where j is the 
unit vector in y-direction and nB is the outward directed normal 
vector of the domain boundary. Accordingly, at the wall one 
has q|w = ǫE|w(j · nB) and at the interface q|i = ǫE|i(j · nB).  
The derivative of (14) leads to an expression for ζ|s as a func-
tion of the corresponding surface charge density q|s, namely

Non-overlapping EDLs imply that far away from the 
charged boundary, (∂yψ)|∞ → 0 and (ψ)|∞ → 0. Along 
with (13), this can be used to show that

Subsequently, using (14), one has

The corresponding ζ-potentials as a function of the sur-
face charge densities can be evaluated with (15). Hence, Fφ 
expressed by (12) is fully determined. Finally, integration 
of (14) leads to

where χ|w/i = tanh( 1
4
ζ|w/i/ψD), χ̂|w/i = χ|w/ie−H/�D and

(14)
ψ

ψD

= 2ln

[
1+ exp(−ỹ/�D)tanh(

1
4
ζ|s/ψD)

1− exp(−ỹ/�D)tanh(
1
4
ζ|s/ψD)

]
,

(15)ζ|s = −2ψDarsinh

(
�D

2ǫψD

q|s

)
.

(16)FCS = H + �
2
D

2

∫ H

0

(
∂yψ

ψD

)2

dy.

(17)

∫ H

0

(
∂yψ

ψD

)2

dy = 8

�D

[
exp(−2H/�D)− 1

]

×
[

sinh2( 1
4
ζ|i/ψD)

exp(−2H/�D)tanh
2( 1

4
ζ|i/ψD)− 1

+
sinh2( 1

4
ζ|w/ψD)

exp(−2H/�D)tanh
2( 1

4
ζ|w/ψD)− 1

]
.

(18)

∫ H

0

ψ

ψD

dy = �D

{
χ|wΛ

(
χ2
|w, 2,

1

2

)
+ χ|iΛ

(
χ2
|i , 2,

1

2

)

− χ̂|wΛ
(
χ̂2
|w, 2,

1

2

)
− χ̂|iΛ

(
χ̂2
|i , 2,

1

2

)}
,

is the Lerch transcendent. In the derivation of (18), the 
identity (Gradshteyn and Ryzhik 2007)

and Λ(̺2, 2, 1/2) = 2[Λ(̺, 2, 1)+Λ(−̺, 2, 1)] was used. 
With (17) and (18), the streaming potential (11) as a func-
tion of the viscosity, diffusivity, bulk salt concentration, 
surface charge densities as well as EDL- and film thick-
nesses is fully determined.

At small ζ-potentials but arbitrary film heights, the results 
obtained with the GC-model can be compared to those found 
with the Debye–Hückel (DH) approximation. In general, one 
may specify the EDL-potential in terms of either the surface 
charge densities or the ζ-potentials at the boundaries. Although 
the first option might be in many cases physically more mean-
ingful, the GC-model is derived by specifying the relevant  
ζ-potential. To allow for easier comparison between the mod-
els used in this work and also with other work of electrokinetic 
streaming found in the literature, we will follow this approach 
in the DH-model as well. To this end, two cases will be distin-
guished, one where only one wall ζ-potential is applied (while 
(∂yψ)|∞ → 0 and (ψ)|∞ → 0), and another, where ζ|w as 
well as ζ|i is imposed. The first is simply described by

and is equivalent to the GC-model of non-overlapping (NO) 
EDLs. This implies that for very thin films, the charges 
inside the EDL might not completely screen the wall sur-
face charge, i.e., a finite electric field at the interface might 
remain. The second case is governed by

Here, the electric fields at the boundaries are derived from 
(22) and given by

and

respectively. Just as for the GC case, the corresponding 
streaming potential is inferred from (11) for both cases.

As will be used in Sect. 3, for large H ≫ �D at arbitrary 
slip length b, the streaming potential is found to be

(19)Λ(̺,ϑ , ξ) =
∞∑

k=0

(ξ + k)−ϑ̺k

(20)

∫
ln(1+ az)

dz

z
= (az)Λ(−az, 2, 1)

(21)ψ(DH,NO) = ζ|wexp(−y/�D)

(22)ψ(DH) = ζ|i
sinh(y/�D)

sinh(H/�D)
+ ζ|w

sinh[(H − y)/�D]
sinh(H/�D)

.

(23)E
(DH)
|i = − ζ|i

tanh(H/�D)�D
+ ζ|w

sinh(H/�D)�D

(24)E
(DH)
|w = − ζ|i

sinh(H/�D)�D
+ ζ|w

tanh(H/�D)�D
,
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where σ∞ = 2e2ν2n∞D∞,n/(kBT∞) = ǫD∞,n/�
2
D is the 

electric conductivity of the bulk electrolyte. In (25), since 
by assumption H ≫ �D, the exact form of the ion distri-
bution in the double layer is irrelevant. Hence, within this 
limit of infinitely thin EDLs and no wall slip, a shear-
induced streaming potential (with ∂zp0 = 0) is solely 
caused by the convective motion of charges accumulated at 
the free surface not bounded by the no-slip condition.

2.3.2 � Streaming potential without induced interfacial 
charge and wall slip

In the following, the streaming potential is analyzed for the 
case that only a fixed wall ζ-potential equal to ζ|w is present. 
Furthermore, the fluid at the wall is assumed to comply to 
the no-slip condition. Then, the streaming potential reads

From this, one can see that there is a qualitative difference 
between shear- and pressure-induced electrokinetic stream-
ing. For large H, the integrals in (26) vanish so that, on the one 
hand, the pressure-induced streaming potential (with ∂zσ set to 
zero) attains the well-known Smoluchowski limit given by

On the other hand, in the same limit, the shear-induced 
streaming potential at ∂zp0 = 0 behaves according to 
(∂zφst/∂zσ)H≫�D

∼ (H/�D)
−1, i.e., it vanishes for a film 

thickness much larger than �D.
The behavior of ∂zφst/∂zσ as a function of H is depicted 

in Fig.  2a. Results obtained with the GC-model are com-
pared with approximations in the DH-limit, where in the lat-
ter case the corresponding EDL-potential is given by (21). 
Two wall ζ-potentials were used, either |ζ|w| = 25 · 10−3 V 
or |ζ|w| = 125 · 10−3 V, while �D ≈ 10−7 m. At the low ζ
-value, agreement between the GC- and the DH-model is 
excellent so that corresponding solutions completely over-
lap. For |ζ|w| = 125 · 10−3V, along with H/�D � 100

, the DH-approximation overestimates the streaming 
potential. For H/�D � 100 alone, the streaming poten-
tial relative to the applied shear and ζ|w [as plotted in (a)] 
is larger for smaller values of ζ|w than for larger ones. The 

(25)

− (∂zφst)H≫�D

=
−∂zp0H

[
1
2
q|i+ b

H
(q|i+q|w)

]
+∂zσ
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H
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]

η∞σ∞+q2|i+ b
H
(q|i + q|w)2
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−∂zp0
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Hζ|w−ψD

∫ H
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ψ
ψD
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)
+∂zσζ|w

η∞D∞,n

�
2
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(
η∞D∞,n

2
+ǫψ2

D

) ∫ H

0

(
∂yψ

ψD

)2
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.

(27)

(
∂zφst

∂zp0

)

Smol

= ζ|w�2D
η∞D∞,n

.

electro-osmotic and conductive backflow of the ions [sec-
ond part in the denominator of (26), driven by the stream-
ing potential itself] increases quadratically with |ζw|, 
reducing the streaming potential at higher ζ-potentials. As 
expected, for H ≫ �D, (∂zφst/∂zσ)H≫�D

∼ (H/�D)
−1.

(a)

(b)

(c)

Fig. 2   a Shear-induced streaming potential according to expres-
sion (26), calculated either with the Gouy-Chapman model (GC) 
(no EDL-overlap but arbitrary ζ-potentials) or with Debye-Hückel 
(DH) approximation (small ζ-potentials). The wall ζ-potential is 
either |ζ|w| = 25 · 10−3V or |ζ|w| = 125 · 10−3 V, while �D≈10−7 m 
b Schematic visualization of axial velocity distributions w in pres-
sure- or shear-driven flow, as well as corresponding number con-
centrations n of dominant ion species in EDL for either h0,1 = 10 �D 
or h0,2 = 20 �D. c Streaming potential calculated with (11) (labeled 
‘exact’) instead of (26) (labeled ‘approx’) if electric field at free sur-
face left unscreened by EDL is considered
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At H ≫ �D, the vanishing streaming potential in shear-
driven flow in comparison with the constant value obtained 
in pressure-driven flow can be explained by comparing the 
changes in the respective axial velocity profiles of these flow 
types upon an increase of H. This is schematically shown in 
Fig. 2b. The abscissa contains the distance from the wall in 
an (for the present purpose of qualitative explanation) arbi-
trary length unit. The wall potential is equal to ζ|w. Also in 
arbitrary units, the ordinate shows the axial velocities or the 
number concentration of the dominant ion species in the 
EDL, respectively. As illustrated, the EDL-thickness remains 
practically unaffected if the film height H > �D is increased 
from 10 to 20 multiples of �D. For pressure-driven flow, the 
peak velocity at y = H increases quadratically with H so that 
also the velocities within the EDL increase correspondingly, 
enhancing the convective ion transport. By contrast, for 
shear-induced flow, the flow velocities do not change within 
the EDL and the convective ion transport remains the same. 
For both types of flows, the conduction current increases lin-
early with H. Hence, pressure-driven flow compensates for 
the enhanced conduction current with increased H, whereas 
shear-driven flow does not. As a consequence, the shear-
induced streaming potential vanishes for H ≫ �D.

The use of the specific form of the integral expression in 
(26) [which can be traced back to the simplified form of FCS 
expressed by (16)] implies that effects caused by an incom-
plete screening of the wall charge by the EDL (e.g., in case 
of the film being very thin) is neglected. If considered, 
only the magnitude of the electro-osmotic and conductive 
backflow of ions is affected so that, at most, this is only 
relevant at higher values of ζ|w. For instance, in Fig. 2c, the 
streaming potential as a function of H/�D is depicted for 
ζ|w = −125 · 10−3 V when the electric field at the inter-
face left unscreened by the EDL is calculated from the GC-
model and used in the complete Eq.  (11). In other words, 
E|i is imposed in such a fashion that it corresponds to the 
value of ζi calculated from the GC-model. In this case, the 
latter is the accurate description of the EDL-potential even 
if the film is thinner than the EDL. This case is labeled with 
‘exact.’ For comparison, the streaming potential calculated 
with (26) is shown as well (labeled with ‘approx’), which is 
identical to the corresponding case displayed in Fig. 2a. As 
can be seen, the difference becomes visible only for film 
heights smaller than �D. Furthermore, the discrepancy is 
significantly reduced for lower values of ζ|w (not shown).

2.3.3 � Shear‑driven streaming potential with induced 
interfacial charge and wall slip

If an electric field E|i is used to induce a surface charge 
density q|i at the free interface, in the limit of large H and 
vanishing slip length b, the shear-induced streaming poten-
tial reads

In the following, this expression is abbreviated with 
(�φst/�σ)E|i,∞.

In Fig.  3a, the shear-induced streaming poten-
tial is plotted as a function of H/�D for the ζ-poten-
tial pairs (ζ|w, ζ|i) = (−25, 25)× 10−3 V and 

(28)

−
(
∂zφst

∂zσ

)

E|i �=0,H≫�D

= − E|i
η∞D∞,n/�

2
D + ǫE2

|i

= q|i
ǫη∞D∞,n/�

2
D + q2|i

.

(a)

(b)

Fig. 3   a Shear-induced streaming potential if the surface charge den-
sity is induced at the interface by an electric field E|i, causing an interfa-
cial potential ζ|i. Slip is excluded (b = 0). The local streaming potential 
(∂zφst/∂zσ)E|i �=0, as determined by (11) (∂zp0=0) is non-dimensional-
ized with its value for very large H, expressed by (28). For shorter nota-
tion, (�φst,σ )/(�φst,σ ,∞) = (∂zφst/∂zσ)E|i/(∂zφst/∂zσ)E|i �=0,H≫�D

. 
Results from the GC-model are plotted in thick lines, while correspond-
ing results obtained from the DH-approximation are plotted in thin lines. 
Results from full numerical simulations (NM) are shown with sym‑
bols. The ζ-potential pairs are either (ζ|w, ζ|i) = (−25, 25)× 10−3 V 
or (ζ|w, ζ|i) = (−125,−125)× 10−3 V. b Plot of 
�φst,σ /(�φst,σ ,∞) as a function of molecular wall slip length 
b for either (ζ|w, ζ|i) = (−25,−25)× 10−3 V (cases A–C) or 
(ζ|w, ζ|i) = (−125,−125)× 10−3 V (cases D, E). The slip length is 
either zero (A, for reference), b = �D (B, D) or b=10�D (C, E), while 
�D ≈ 10−7 m. At low ζ-potential, the GC-model (thick lines) is com-
pared with results obtained within the DH-approximation (thin lines), 
which fully agree with numerical simulation (not shown). At large ζ
-values, the GC-model is compared to results obtained by full numerical 
simulation (symbols)
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(−125,−125)× 10−3 V, respectively. Slip is not 
included (b = 0) so that the electric field at the wall 
itself (given by E|w) has no direct effect on the stream-
ing potential (other than being related to ζ|w). By con-
trast, the different values of the interfacial potentials 
ζ|i = [25,−125] × 10−3 V are induced by corresponding 
fields E|i ≈ [−0.27, 3.0] × 106 V m−1 (when �D≈10−7 m).  
Thus, expression (28) differs from zero and is used for 
non-dimensionalization of the (shear-induced) stream-
ing potential �φst/�σ as a function of H/�D. As before, 
predictions according to the GC-model are compared 
with those obtained from the DH-solution. For the lat-
ter, the electric fields at the boundaries are given by (23) 
and (24), respectively, instead of expression (15) used 
in the GC-model. Hence, solutions obtained at identical  
ζ-potentials either from the GC-model or from the DH-
model do not necessarily represent equal surface charge 
densities. For verification, solutions obtained by numeri-
cally solving the Poisson–Boltzmann Eq. (13) as well as 
the integral 

∫ H

0 (∂yψ/ψD)
2dy are plotted with symbols for 

selected values of H/�D. The boundary value problem was 
solved with the BVP4C-function implemented in Matlab 
R2012b, while the numerical integration was conducted 
employing the TRAPZ-function. For small ζ-potentials and 
H/�D � 2.5, good agreement between all three solution 
approaches is found, whereas the GC-model underpredicts 
the streaming potential for smaller values of H/�D. The 
deviation of the GC-model from the full numerical solu-
tion improves for ζ|w = ζ|i = −125 · 10−3 V. However, for 
these larger ζ-potentials, the DH-model first overpredicts 
(H/�D < 2), then underpredicts (H/�D � 2) the stream-
ing potential by up to 40% and only approaches the correct 
value for H/�D > 30.

In the previous discussion of Fig. 2a, it was highlighted 
that especially for smaller values of H/�D and larger  
ζ-potentials, the electro-osmotic and conductive back-
flow of ions has a diminishing effect on the streaming 
potential. Owing to the third term in (12), the correspond-
ing effect is more involved if a surface charge is induced 
at the free surface. This is because this particular term of 
Fφ can either increase or decrease the streaming potential 
relative to (�φst/�σ)E|i,∞, whereas all other terms con-
tributing to Fφ always diminish it. For instance, for ζ|i < 0 
(i.e., E|i > 0) while ζ|w − ζ|i > 0, the streaming potential 
is enhanced. On the other hand, it is reduced when ζ|i > 0 
(i.e., E|i < 0) while still ζ|w − ζ|i > 0. The possible param-
eter combinations are too manifold to be discussed exhaus-
tively within the scope of the present work. In addition, 
such effects become only relevant for very small values of 
H/�D ≈ O(1). For large H/�D, this contribution vanishes 
in all cases.

Figure  3b illustrates the effect which a molecular slip 
length b of O(�D) has on (�φst/�σ)E|i. Corresponding 

modifications of the shear-induced streaming poten-
tial are in effect only if H is not much larger than �D.  
Hence, for H ≫ �D, (28) remains valid even if the liq-
uid molecules at the solid wall do slip for a distance 
b � O(�D). In (b), two ζ-potential pairs are used, 
either (ζ|w, ζ|i) = (−25,−25)× 10−3 V (cases A-C) or 
(ζ|w, ζ|i) = (−125,−125)× 10−3 V (cases D,E). The slip 
length is either zero (A, for reference), b = �D (B,D) or 
b = 10�D (C,E). The results obtained with the GC-model 
are plotted with thick lines of different styles. At low  
ζ-potentials, the GC-model is compared to correspond-
ing predictions according to the DH-approximation plot-
ted in the same style but with thin lines, which fully agree 
with numerical simulations using the full Poisson–Boltz-
mann equation (13) (not shown). If slip is included at low  
ζ-potentials and small H/�D, the GC-model significantly 
underpredicts the achievable streaming potential. This 
indicates that the consideration of EDL-overlap is of cru-
cial importance in these cases. At large ζ-potentials, the 
GC-model is compared (at selected values of H/�D) with 
results obtained from numerical simulations, which are 
denoted by symbols. As apparent from this plot, molecular 
slip increases the streaming potential with increasing slip 
length only if, next to H � b, the ζ-values are sufficiently 
low. For larger ζ-potentials, the fifth term in (12), quantify-
ing the slip-enhancement of the electro-osmotically driven 
counter flow, grows faster with b than the slip-induced 
enhancement of the convective ion transport, as expressed 
by the corresponding term in the nominator of (11). For 
large H/�D, this also follows directly from (25). Hence, for 
larger ζ-potentials, the (shear-induced) streaming potential 
is decreased with increasing slip length.

In the next section, in the limit of infinitely thin EDL, 
an example of a technically feasible approach of shear-
induced ion streaming is discussed. In this setting, we also 
turn to the achievable efficiencies for energy conversion on 
the backdrop of surface-driven flow combined with large 
(apparent) slip.

3 � Electrokinetic streaming in shear‑driven 
channel flow with superhydrophobic surfaces

The setup under discussion is schematically shown in 
Fig. 4. A symmetric electrolyte flows in a stationary fash-
ion across a micro-structured surface of length S, where 
the periodicity is given by 2W. The distance between the 
ribs is 2B so that the free-surface fraction can be defined 
by a = B/W. All dimensions of the micro-structure are 
assumed to be much larger than the Debye length �D. The 
electrolyte is assumed to be in the Cassie–Baxter state, 
implying that it does not enter into the surface grooves (Oh 
et al. 2011). Therefore, the electrolyte domain is bounded 
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by a liquid–solid interface and a liquid–gas interface, 
which is assumed to remain flat. Given the large difference 
in viscosity between the liquid and the gas (Schönecker 
et al. 2014), the shear stress within the gas phase trapped 
inside the surface grooves will be neglected.

The chosen configuration is an idealization and a spe-
cial case in the sense that in an experimental realization the 
fluid may at least partially enter the grooves. Furthermore, 
for a given free-surface fraction, one would employ a peri-
odic pattern of pillars rather than ribs simply to give more 
stability to the capillary surface. However, the chosen setup 
allows for an analytical treatment and permits to highlight 
the main physical effects clearer and more intuitively than 
possible at hand of full numerical treatments. Furthermore 
and more importantly, we are specifically interested in an 
upper limit of the conversion efficiency from mechanical to 
electric energy, for which the chosen idealization is particu-
larly helpful.

The flow is induced by a shear stress τ = ∂zσ which acts 
along the free interface between the ribs in longitudinal 
direction. The solid surface in contact with the electrolyte is 
charged and causes the accumulation of an ion cloud in the 
electrolyte of surface charge density q|w. An external elec-
tric field is applied perpendicular to the spread direction of 
the free surface, which induces a charge density q|i. The 
electric field E|i used to induce q|i is limited by the electro-
hydrodynamic stability of the interface and the break-down 
voltage of the surrounding air (Oh et al. 2011). The former 
provides an upper estimate for the spacing 2B, while the 
latter limits E|i to O(106 V m−1). As shown in the previous 
sections, since all of the geometric parameters are assumed 
to substantially exceed �D, q|w can be expected to have a 
negligible effect on the electrokinetic streaming. The flow 
is assumed to be fully developed, so that the nonlinear part 
of the Navier–Stokes equations can be neglected. Under 

steady state, the flow is then governed by the Stokes equa-
tions, where the axial velocity is described by (1).

3.1 � Velocity

The shear stress along the free surface leads to an axial fluid 
velocity wσ. In turn, the electric net charge convectively 
transported with this flow causes a charge polarization and 
a corresponding (induced) streaming field ∂zφst. Next to the 
conduction current in the bulk, this gradient in electric poten-
tial drives an overall electro-osmotic counter flow, denoted 
herein by wq|s. In this context, the fluid velocity due to the 
electro-osmotic fluid propulsion related to the presence of 
the ion cloud at the solid wall is denoted by wq|w, and wq|i 
describes the corresponding flow due to the ion cloud at the 
free surface. Given the linearity of the Stokes equation, all 
of these velocity contributions can be treated separately. The 
total axial fluid velocity w is then given by their linear super-
position. In the following, for notational simplicity, η ≡ η∞.

Firstly, the flow wσ due to a surface tension gradient, 
inducing a constant shear stress η(∂ywy)|i = −∂zσ at the 
gas–liquid interface, is considered. On the solid wall, the no-
slip condition applies, while due to symmetry, the shear rate 
vanishes in the channel center-plane, (∂yw)|y=H = 0. As long 
as no back pressure is applied, Eq. (1) reduces to the Laplace 
equation, (∂2x + ∂2y )wσ = 0, for the velocity in z-direction.

In the limit of infinite separation between the plates, 
(Philip 1972) (case 5) showed that the solution for wσ 
above the lower surface is given by

Here

is a non-dimensional velocity field with the properties 
Φ0(x, 0) = 0 for 0 < x < (1− a)W (i.e., at the solid wall) 
and ∂yΦ0(x, 0) = 0 for (1− a)W < x < W (i.e., at the free 
surface). Far away from the surface, limy→∞ ∂yΦ0 = W−1.  
Im(ξ) is the imaginary part of the complex number ξ and 
i denotes the imaginary unit. Strictly speaking, (29) [with 
(30)] is only a valid solution for the present problem in the 
limit H → ∞. However, wσ (x, y) rapidly approaches a con-
stant for y ≫ W, in particular

where

(29)wσ (x, y) = −W∂zσ

η

[
Φ0(x, y)−

y

W

]
.

(30)Φ0(x, y) =
2

π
Im

[
arcsin

(
sin( π

2W
(x + iy))

sin(π
2
(1− a))

)]

(31)[Φ0(x, y)− y/W ] − β� ∼ e−πy/W ,

(32)β� = − 2

π
ln cos

(πa
2

)

Fig. 4   Sketch of the geometry considered. Fluid is in Cassie–Bax-
ter state between two structured plates at distance 2H. The striped 
areas are posts with no-slip walls, between them is a planar liquid–
gas interface where a constant stress η(∂yw)|i = −τ is exerted. Due to 
symmetry, it is sufficient to solve the Laplace equation, ∇2w = 0, in 
the gray area. An exemplary solution of the flow field within this unit 
cell is shown on the right (obtained with Comsol Multiphysics)
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is the non-dimensional velocity scale for this type of flow. 
In consequence, the parameters relevant herein, i.e., the 
flow rate and the line-average of the velocity at y = 0, are 
excellently approximated by (29) already for H � W. A 
numerical quantification of this assertion is made in the 
“Appendix”, where it is also shown how flow rates and line 
averages of the velocity are related.

Next, the velocity field wq|i (originating from the charge 
accumulated at the gas–liquid interface) is described. In the 
limit of an infinitely thin EDL as treated herein, the overall 
electro-osmotic force per volume on the ion cloud accu-
mulating in the vicinity of the free surface can be replaced 
(Gao et al. 2005; Steffes et al. 2011) by an effective stress 
condition η(∂ywq|i)|i = −q|i∂zφst = −τ∞,q, while in the 
bulk (∂2x + ∂2y )wq|i = 0. All solid surfaces are subject to the 
no-slip condition. Together with the symmetry condition 
(∂yw)|y=H = 0 on the centerplane between the two plates, 
one thus has the same scenario as treated when solving for 
wσ. Hence, wq|i is given by

The electro-osmotically driven fluid velocity along a solid 
(no-slip) wall adjacent to an ion cloud screening a constant 
surface charge density −q|w is generally given by

Within the DH-approximation, the potential within the 
EDL can be approximated by ψ ≈ ζ|wexp(−y/�D), so that 
in close proximity of the no-slip wall one has

The Helmholtz–Smoluchowski (HS) velocity is denoted by 
uHS = −ǫζ|w∂zφst/η. In the limit of an infinitely thin EDL, 
wq|w ≈ −uHS. The wall ζ-potential as a function of q|w is 
given by (15) or can be approximated by ζ|w ≈ −q|w�D/ǫ.  
Thus, for a finite wall charge, the HS-velocity vanishes 
in the limit �D → 0; therefore, this contribution will be 
neglected from here on.

Note, however, that in the case of an uncharged free surface, 
the electro-osmotic flow is dominated by the charge on the no-
slip region and the velocity profile between the plates essen-
tially constitutes a plug-flow of velocity uHS (apart from the 
region of size ∼ �D at the no-slip wall), since the free-slip sur-
faces do not contribute to viscous dissipation (Squires 2008). 
Also note that the HS-velocity scales as uHS = �Dq|w(∂zφst/η) 
while the electro-osmotic velocity due to charges in the gas–
liquid interface scales as (β�W)q|i(∂zφst/η), i.e., the relevant 
length scale defining the former is �D while the latter scales 
with β�W ≫ �D; this again confirms that the influence of uHS 
can safely be neglected for our purposes.

(33)wq|i(x, y) = −Wq|i∂zφst
η

[
Φ0(x, y)−

y

W

]
.

(34)wq|w(y) = − ǫ

η
[ψ(y)− ζ|w]∂zφst.

(35)wq|w(y) = uHS
[
exp(−y/�D)− 1

]
.

3.2 � Flow rates and electric currents

The overall flow rate is determined by integrating the 
velocity distribution across half of the channel height, i.e.,

where w = wσ + wq|i as expressed in Eqs.  (29) and (33). 
According to Philip (1972) (or using the asymptotic 
behavior of (31) together with Eq. (68) discussed in the 
“Appendix”),

and the flow rate can be calculated to read

where

and

with β‖ as dimensionless velocity scale defined by (32).
The streaming current is determined by

In y-direction, (Φ0 − y/W) changes on the scale of W, 
whereas ρe(x, y) varies within the length scale �D ≪ W and 
is zero outside the EDL. Hence, one can safely make the 
approximation

with

and

(36)Q̇ = W−1

∫ W

0

∫ H

0

w dy dx,

(37)

∫ W

0

∫ H

0

(Φ0 − y/W) dy dx = HWβ�

(38)Q̇ = −LQ,q∂zφst − LQ,σ ∂zσ ,

(39)LQ,q =
q|i
η
HWβ�

(40)LQ,σ = 1

η
HWβ�,

(41)

Ist = W−1

∫ W

0

∫ H

0

ρew dy dx = −q|i∂zφst + ∂zσ

η

×
∫ W

0

∫ H

0

ρe(x, y)[Φ0(x, y)− y/W ] dy dx.

(42)

Ist ≈ −q|i∂zφst + ∂zσ

η
×

∫ W

0

[Φ0(x, y)− y/W ]
∫ H

0

ρe(x, y) dy dx

≈ −LI ,q∂zφst − LI ,σ ∂zσ

(43)LI ,q =
q2|i
η
Wβ�

(44)LI ,σ = q|i
η
Wβ�.
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Note that within a distance �D from the solid wall 
Φ0 − y/W ≈ 0, so that the transport of q|w by wq|i can 
safely be neglected in our situation. In summary, the volu-
metric flux and the streaming current in the channel can be 
expressed by

where the Lj are the Onsager coefficients as expressed 
above.

3.3 � Efficiency

Following (8) with FCS ≈ H, the conduction current in the 
bulk can be approximated by

with the bulk conductivity σ∞ defined in the paragraph fol-
lowing Eq. (25). If used as an energy converter, the electro-
kinetic streaming device is embedded in a closed electric 
circuit with an external electric consumer of electric resist-
ance1 R aligned in parallel to the internal electric resistance 
of the energy converter itself. With �φst = S∂zφst, overall 
charge conservation requires −LI ,q∂zφst − LI ,σ ∂zσ

= [σ∞H + S/(RW)]∂zφst so that

where L(0)I ,q = LI ,q + σ∞H. If R → ∞, one obtains the 
streaming potential under vanishing external load, namely

For ∂zp ≡ 0 and identifying (1+ b/H)=̂β�W/H, this 
expression agrees with (25). If R remains finite, the power 
extracted by the consumer reads

where �σ = S∂zσ. The mechanical power fed into the sys-
tem equals

where w|i is the averaged axial velocity along the free sur-
face. Given the no-slip condition at y = 0 along the solid 
wall, one can write

(45)

(
Q̇

Ist

)
= −

(
LQ,q LQ,σ
LI ,q LI ,σ

)(
∂zφst
∂zσ

)
,

(46)Icd ≈ −ǫ
DnH

�
2
D

∂zφst = −σ∞H∂zφst,

1  Since only half of the channel height is considered, the correspond-
ing total external resistance for the full channel, i.e., two half-systems 
in parallel, is R/2.

(47)−∂zφst =
LI ,σ

L
(0)
I ,q + S/(RW)

∂zσ ,

(48)−(∂zφst)|R→∞ = q|iβ�W/H

ησ∞ + q2|iβ�W/H
∂zσ .

(49)Pex =
(�φst)

2

R
=

[
LI ,σ

L
(0)
I ,q + S/(RW)

]2
(�σ)2

R
,

(50)Pin = aWS∂zσ w|i,

With (47) the conversion efficiency from mechanical to 
electric energy thus reads

According to (39) and (44), one has LQ,q = HLI ,σ. In addi-
tion, following the notation used by Xuan and Li (2005) 
and Heyden et al. (2006) with the dimensionless parameter

and the (dimensionless) figure of merit

one finds

which is formally identical to the conversion efficiency 
obtained for pressure-driven flow (Xuan and Li 2005). Its 
maximum with respect to � (i.e., the external load)

is reached for �|max = 1/
√
1− Z . Expression (56) is 

monotonously increasing with Z. Re-inserting the expres-
sions for the Onsager coefficients, Z can be expressed by

i.e., 0 < Z < 1, and Z increases with β‖. According to (32) 
and as shown in Fig. 5a, β‖ monotonously increases with a 
and hence so does ηm2e,max. The latter is depicted as a func-
tion of Z by the dashed line in Fig. 5b.

3.3.1 � Thermocapillarity‑induced streaming

In the following, the special case is considered that the 
mechanical surface stress is caused by a temperature-
dependent surface tension, i.e., ∂zσ = −γT∂zT , where 
γT is the change of surface tension with temperature T 

(51)

w|i =
1

B

∫ W

W−B

w|idx = 1

aW

∫ W

0

Φ0(x, 0)dx

= − 1

aH
(LQ,q∂zφst + LQ,σ ∂zσ).

(52)

ηm2e =
Pex

Pin

= S/(RW)

L
(0)
I ,q + S/(RW)

×

HL2I ,σ

LQ,σ [L(0)I ,q + S/(RW)] − LQ,qLI ,σ

(53)� = L
(0)
I ,q RW/S

(54)Z =
L2I ,σ

LQ,σL
(0)
I ,q

H

(55)ηm2e =
Z�

(�+ 1)(�+ 1− Z�)
,

(56)ηm2e,max =
Z

(1+
√
1− Z)2

= (1−
√
1− Z)2

Z

(57)Z−1 = 1+ ησ∞

q2|iβ�

H

W
,
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(Marangoni coefficient). Disregarding the thermal conduc-
tion in the solid walls, the heating power required to main-
tain the axial temperature gradient reads

where ρ is the density, cp the heat capacity and k the ther-
mal conductivity of the electrolyte. With the average fluid 
velocity w=1/W

∫ W

0 wdx=aw|i and α=k/(ρcp) as the 
thermal diffusivity, the conversion efficiency from thermal 
to mechanical energy is given by

with � = γT/(ρcpH). In case of maximum efficiency 
(�|max = 1/

√
1− Z), one finds

(58)Pth = −(ρcpSw+ k)HW∂zT ,

(59)η
(γT )
t2m = Pin

Pth

= �

1+ α/(Sw)
,

where M = γT�TW/(ηα) is the thermal Marangoni num-
ber. With (56), the total conversion efficiency from thermal 
to electric energy can be written as

This expression, scaled by �, is plotted in Fig.  5b for 
Mβ�=[0.1, 1, 10, 100]. In this plot, the dashed line indi-
cates the limiting case of M → ∞, for which the conversion 
efficiency from mechanical to electric energy at optimal 
electric load, η m2e,max [as expressed by (56)], is recovered. 
At smaller values of M, the conversion efficiency from ther-
mal to electric energy is at its maximum for

where Z|max → 1 for large M.
The factor � appears to be the main limiting factor for 

η
(γT )
t2e,max since the latter cannot exceed this value even for 
Z → 1 (e.g., if q|i is very high or by using discontinuous fluid 
domains so that σ∞ is vanishingly small). Electrolytes exhib-
iting a larger value of γT than those using water as ion sol-
vent are scarce. For the latter at 25 ◦C, �H ≈ 3.6 · 10−11 m

. Hence, in the limit of large M (heat conduction is neglected) 
and Z = 1, overall efficiencies which are at least only one 
order of magnitude smaller than the Carnot efficiency 
ηC = �T/T∞ ≈ O(0.1− 1%) (for �T = 1− 10K and 
ambient conditions) appear only feasible for channels being 
a few nm thick. In this context, one has to keep in mind that 
all the above analysis has been carried out for H ≫ �D. Alter-
natively, reducing ρ by confining air bubbles in the liquid 
domain, i.e., by using a ‘porous’ working fluid such as liq-
uid foams, might be a feasible approach, reducing the heat 
transported within the bulk of the fluid. Such systems will 
depend on the addition of surfactants to stabilize the enclosed 
air pockets. These surfactants may have an effect on the ion 
distribution so that a more detailed analysis beyond the scope 
of the present paper is required. Furthermore, the presence of 
surfactants will generally decrease the value of γT.

In the limit of a small Marangoni number, heat transfer 
is conduction-dominated and the overall efficiency can be 
approximated by

Thus, in this limit of vanishingly small fluid velocities, it 
might be beneficial to use—next to a large value of W/H—a 

(60)
α

Sw
= 1

Mβ�

1√
1− Z

,

(61)η
(γT )
t2e,max =

�

1+ 1/(Mβ�
√
1− Z)

Z

(1+
√
1− Z)2

.

(62)Z|max = 1− 1

3+ 2
(
Mβ�+

√
2
√
1+Mβ�

) ,

(63)
(
η
(γT )
t2e,max

)
M→0

= γ 2
T�T

ηk

W

H
β�

Z
√
1− Z

(1+
√
1− Z)2

.

(a)

(b)

Fig. 5   a Dimensionless velocity scale β‖ versus free-surface frac-
tion a, according to Eq.  (32). Note that β‖ diverges for a → 1. This 
unphysical behavior is elucidated in Schönecker et al. (2014), along 
with a remedy. b Scaled thermal efficiency at optimal electric load, 
η
(γT )
t2e,max/�, versus figure of merit Z, according to Eq. (61). The prod-

uct of the Marangoni number M and β‖ assumes values according to 
Mβ�=[0.1, 1, 10, 100]. In realistic situations, β‖ is typically of O(1) 
so that these values directly correlate to the Marangoni number. 
For M → ∞, the conversion efficiency from mechanical to electric 
energy at optimal electric load, ηm2e,max [as expressed by (56)], is 
recovered. This is indicated by the dashed line. From Eq.  (57), it is 
evident that the figure of merit approaches 1 for a large velocity scale, 
β‖, and is reduced by viscous dissipation and loss currents scaling 
with the viscosity, η, and conductivity, σ∞, respectively
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discontinuous fluid domain since in this case k is small. A 
similar measure is not effective if, compared to convection, 
heat conduction in the liquid is negligible since the majority 
of thermal energy would be transported in each liquid parcel.

3.3.2 � Destillocapillarity‑induced streaming

Surface tension does not depend only on temperature but 
also on the concentration of surface-active components. 
Hence, the electrokinetic streaming might be induced by 
a surface stress caused by a gradient in the bulk concen-
tration c of a surfactant. For simplicity, only a single sur-
factant is considered. In the dilute limit, the activity coef-
ficient is approximately equal to unity so that

where µ(s) is the chemical potential of the surfactant, 
Rm = 8.31 J/(mol K) is the universal gas constant, and Γ  is 
the surface excess concentration. If the flow is fully devel-
oped and the interface remains flat, the power required to 
maintain the concentration gradient can be approximated 
by

where D(s)
|i  and D(s) are the surfactant diffusivities at the 

surface and in the bulk, respectively. A non-soluble sur-
factant corresponds to c → 0 so that the conversion effi-
ciency from chemical to mechanical energy is approxi-
mately given by

In case of maximum efficiency (� = 1/
√
1− Z), one finds

If surface diffusion is negligible, then Pch ≈ Pin and the 
overall conversion efficiency from chemical to electric 
energy is given by (56). Typically, for the channels with 
superhydrophobic walls as treated herein, this maximum 
efficiency remains for realistic values of the induced sur-
face charge density of below 10−4 C m−2 within a few per-
cent (Seshadri and Baier 2013).

4 � Conclusions

In this study, the charge separation and energy conversion 
in electrokinetic free-surface flow driven by a gradient in 

(64)∂zσ = −Γ ∂zµ
(s) ≈ −Γ RmT∂zln(c),

(65)

Pch = aWΓ
(
w|i − D

(s)
|i ∂zln(Γ )

)
�µ(s)

+WHc
(
w− D(s)∂zln(c)

)
�µ(s),

(66)
ηc2m = Pin

Pch

= 1

1− D
(s)
|i
w|i

∂zln(Γ )

.

(67)
D
(s)
|i
w|i

∂zln(Γ ) = a

Γ

D
(s)
|i η

RmTWβ�

∂zln(Γ )

∂zln(c)

1√
1− Z

.

surface tension were analyzed. At hand of a simple Cou-
ette-type of flow, it was shown that there is a qualitative dif-
ference between shear- and pressure-driven electrokinetic 
streaming if charges are only present at non-slipping walls. 
While the streaming potential generated by Poiseuille-type 
of flow typically attains a constant value at large chan-
nel cross sections, the streaming potential per shear and ζ
-potential vanishes at large film heights H according to 
(H/�D)

−1, where �D denotes the thickness of the Debye 
layer. At H ≈ O(�D), the decrease in the streaming poten-
tial with increasing H/�D is less than for larger H. This is 
caused by the—in this limit more important—contribution 
stemming from the electro-osmotic counter flow, which 
is even more pronounced with increasing values of the 
ζ-potential.

For large film heights, the Helmholtz-Smoluchowski 
limit present in pressure-driven streaming is seen to be 
(qualitatively) recoverable for shear-driven flow if an elec-
tric field is applied perpendicular to the free surface to 
induce an interfacial charge density. In the limit of small 
H ≈ O(�D), the streaming potential can be further manipu-
lated within a wide range if the solid walls exhibit a molec-
ular slip of O(�D). This leads, along with the values and 
signs of the wall and interfacial ζ-potentials, to a multitude 
of possible parameter variations. More specifically, it was 
seen that molecular slip is only beneficial for low-to-mod-
erate ζ-potentials. This was again traced back to the oppos-
ing effect of the electro-osmotically driven counter flow.

In the limit of an infinitely thin double layer, the find-
ings were compared with a technically more feasible slit 
channel flow bounded by superhydrophobic walls. To this 
end, the flow profile and streaming potential were derived 
when a surface tension gradient along the air-filled micro-
structured grooves is used to propel the fluid. It was shown 
that the final equations governing the electrokinetic stream-
ing are equivalent to those obtained for the Couette-type 
of flow if a corresponding velocity scale and apparent slip 
length is used. In this context, it was discussed that not only 
this velocity scale increases with increasing free-surface 
fraction but accordingly also the figure of merit, which in 
turn implies a higher conversion efficiency from mechani-
cal to electric energy.

In the case that the variation of surface tension is tem-
perature-induced, a thermal-to-electric conversion effi-
ciency was derived. For large thermal Marangoni number, 
the efficiency was seen to be severely limited by the typi-
cally small Marangoni coefficient as well as by the large 
heat capacity of typical electrolytes. It was argued that even 
employing discontinuous fluid domains may not be helpful 
to remedy this fundamental problem. By contrast, for small 
Marangoni number, it might be beneficial to split the fluidic 
domain into parcels or foam lamellas to reduce the effec-
tive thermal and electric conductivity. However, a more 
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detailed study has to be undertaken to quantify the effects 
of surfactants added for the stabilization of the air pock-
ets. For continuous domains and any Marangoni number, 
the maximal achievable thermal efficiency is found to be 
at least an order of magnitude smaller than the Carnot fac-
tor, even if the film/channel cross section is not larger than 
O(�D). Finally, it was demonstrated that for a concentra-
tion-dependent surface tension, conversion efficiencies can 
be achieved which qualitatively agree with those obtained 
for pressure-driven charge separation, being typically of 
O(1%).

The findings are useful for the design and feasibility 
tests of devices which employ thermocapillarity or des-
tillocapillarity as a means to generate electric voltage from 
electrokinetic streaming.

Acknowledgments  This work was in part supported by the Ger-
man Research Foundation (DFG) through Cluster of Excellence 259, 
‘Center of Smart Interfaces.’ Steffen Hardt is acknowledged for fruit-
ful discussion.

Appendix: Solution details of the Laplace equation

The velocity field between parallel plates containing peri-
odic patches of no-slip and constant shear regions was 
estimated using the result by Philip, Eq.  (30), for such a 
flow in an infinite half-plane, y ≥ 0. No analytical result 
is known for a finite plate separation. However, the range 
of validity of this approximation can be assessed numeri-
cally. For this, the Laplace equation, ∇2w = 0, was dis-
cretized using the finite element method as implemented 
in the commercial code Comsol Multiphysics. By symme-
try, the computational domain can be restricted to a unit 
cell indicated by the gray area in Fig.  4. The boundary 
conditions are w(x, 0) = 0 for 0 < x < (1− a)W  (at the 
solid wall) and η∂yw(x, 0) = −τ for (1− a)W < x < W 
(at the constant shear surface). On all other boundaries 
symmetry conditions apply, i.e., (n · ∇)w = 0 with n 

being the outward normal at the boundary. The average 
velocity, (HW)−1

∫ H

0

∫ W

0 w dx dy, normalized with the ana-
lytic value corresponding to Philip’s solution, β‖Wτ/η, is 
tabulated in Table 1 for different values of the free-surface 
fraction, a = B/W , and aspect ratio, H/W . It is evident 
from the table that for H/W = 1 the numerically obtained 
results deviate by only O(10−3) from the corresponding 
analytical result and even for H/W = 0.75 the agreement 
is O(10−2).

For the analysis presented in the main text, flow rates 
and line averages of the velocity field are needed. Normal-
ized with the length or area of the integration region, these 
averages turn out to be identical, attesting the relevance of 
Table 1. In fact, even for finite H, one can show that

for any 0 ≤ y0 < y1 ≤ H; thus, line averages and the flow 
rate are inherently linked. A sketch of a proof of this relation is 
as follows: Since w is harmonic, ∇2w = 0, it is the imaginary 
part of a holomorphic function f (x + iy) = v(x, y)+ iw(x, y) 
with v,w : R2 → R, (Lawrentjew and Schabat 1967). 
By Cauchy’s integral theorem, Im[

∮
γ
f (ξ)dξ ] = 0 for 

any closed path γ. Choose γ as the rectangle with vertices 
ξ = iy0, 2W + iy0, 2W + iy1, iy1 as shown in Fig. 6. Due to 
the Cauchy–Riemann conditions, v(x,H) is constant since 
∂xv|y=H = −∂yw|y=H = 0; similarly, v(0, y) and v(2W , y) 
are constant since ∂xw|x=0 = 0 = ∂xw|x=2W. Thus, not only 
w(x, y) = w(x + 2W , y) is periodic in x, but so is v and thus 
f . The line integrals on the legs with constant x thus cancel, 
which completes the proof.
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