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affects the amplitude, phase and response time. For a tor-
sion mirror, the dynamic performance is especially impor-
tant since it determines the devices performance directly. It 
must be taken into consideration when designing and opti-
mizing the MEMS torsion mirror. According to the move-
ment direction of plate, air damping can be classified into 
slide-film damping and squeeze-film damping, and the tor-
sion mirror is governed by squeeze-film damping.

As the MEMS torsion mirror has been widely used in bar-
code reader, micro-projector, medical examination, spectrom-
eters and so on (Yalcinkaya et al. 2007; Sprague et al. 2005; 
Sakai et al. 2011; Chen et al. 2013), the research of squeeze-
film air damping in MEMS torsion mirror is very meaningful. 
Pan et al. (1998) found the expression of damping torque for a 
rectangular torsion mirror in the Fourier series solution and in 
the double sine series solution under the assumption of small 
displacements. Hao et  al. (2002) solved the Reynolds equa-
tion which was linearized for the analytical formula describing 
the air-damping effect with Green’s function method. Chang 
et al. (2002) proposed an analytical solution that is obtained 
from the linearized modified molecular gas film lubrication 
(MMGL) equation. Minikes et al. (2005) presented a squeeze-
film model with artificial viscosity and the molecular dynam-
ics model are adapted for the case of a torsion mirror under 
a wide range of vacuum levels. Bao et  al. (2006) simplified 
the nonlinear Reynolds equation and deduced the expression 
of damping torque by solving the equation. Veijola (2007) pre-
sented simple but accurate compact models for the squeeze-
film damping of rectangular mirror. Pandey et  al. simulated 
the effect of squeeze-film damping by progressively refin-
ing the model for the boundary conditions to show how the 
numerically computed results get close to the experimental 
value (2007) and presented a squeeze-film damping model in 
a double-gimballed torsional mirror with two conditions—a 
large air gap to plate length ratio and complicated boundary 
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1  Introduction

Air damping cannot be ignored in micro-electro-mechani-
cal systems (MEMS) devices due to its lager surface area 
to volume ratio of the moving parts (Bao 2005), and it is a 
significant factor of the dynamic characteristics because it 
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conditions (2008). Li (2008) analyzed effects of gas rarefac-
tion and surface roughness of squeeze-film damping by using 
the linearized average Reynolds type equation. Li and Fang 
used molecular dynamics method (2010a) and wavelet inter-
polation Galerkin method (2010b) for the numerical simula-
tion of torsion mirror under the effect of squeeze-film damp-
ing, respectively. Leung et  al. (2011) validated the modified 
Reynolds equation method for the prediction of low-pressure 
squeeze-film damping compared with Monte Carlo simula-
tion method. Moeenfard et al. used the extended Kantorovich 
method to analytically solve the problem of squeezed-
film damping of micro-mirrors (2011), and in (2012), they 
extended Bao’s model to analytically solve the problem of 
squeeze-film damping in micro-mirrors considering the bend-
ing of torsion beams. Pantano et al. (2012) proposed a numeri-
cal study of both parallel and torsion plates at decreasing pres-
sure by numerically solving a full 3D Navier–Stokes equation 
and compared different formulations that are solved by both 
analytical and numerical means to determine which is the 
most performing (2014). Gugat (2013) presented a transfor-
mation that allowed a fast and reliable numerical evaluation of 
the coefficient of damping torque for torsion mirrors. Famileh 
et al. (2015) solved the governing equations of squeeze-film 
damping numerically by the entropy generation analysis. But 
all of them focused on rectangular torsion mirrors, and expres-
sions of squeeze-film damping torque of circular or elliptical 
torsion mirrors have not been reported.

In order to calculate the damping of circular and ellip-
tical torsion mirrors, the nonlinear Reynolds equation is 
solved in polar coordinate and elliptical coordinate. First, it 
is solved in polar coordinate, and the expression of damp-
ing torque of circular torsion mirror is given in Sect.  2. 
Then, in Sect. 3, it is solved in elliptical coordinate when 
rotation axis is minor axis and major axis, followed by the 
expression of damping torque of elliptical torsion mirror. 
Section  4 presents the numerical simulation of squeeze 
air damping in comparison with the result of the formula 
deduced by this paper, and Sect.  5 discusses the applica-
ble condition of the equation. In Sect.  6, conclusions are 
drawn.

2 � Circular torsion mirror

The simplified nonlinear Reynolds equation was deduced 
by Bao et al. (2006), and the equation is:

where p is a deviatory pressure caused by the squeeze-film 
air damping, µ the viscosity, h the height between mirror 
and bottom, ϕ the torsion angle. And this equation is estab-
lished under the condition:
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where φ = ϕamh
−1, am is half length of the mirror and φ nor-

malized angle. The right part of Eq. (1) can be expanded into 
a Taylor series, and this is the basic equation of this paper:

The schematic diagram of circular torsion mirror is 
shown in Fig. 1a. The boundary condition of basic equation 
in this situation is p(x, y)|x2+y2=r20

= 0, where r0 is radius of 
the mirror. It is much easier to solve it in polar coordinate 
than in Cartesian coordinate. The boundary condition in 
polar coordinate is p(r = r0) = 0 ,and the basic equation is:

Equation (4) can be solved by the method of eigenfunc-
tion expansions (Asmar 2005). The eigenfunction of this 
equation is (Liang et al. 2010):

With the method of eigenfunction expansions, p can be 
assumed as:

According to the characteristic of trigonometric functions, 
cosn θ can be expanded to:

With Eqs. (6) and (7), Eq. (4) can be expanded:
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The coefficients of the variables r and θ in both 
side should equal in Eq.  (8), so we have l = n+ 2, and  
with boundary condition p(r = r0) = 0, the coefficients 
are: 

where l is even and greater than zero in Eq. (9a). l and k are 
both odd or both even, and l is greater than k greater than 
zero in Eq. (9b). In Eq. (9d), k is greater than zero. And in 
other cases, Clk = Dlk = 0. So p is:
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when torsion angle is small, the Taylor series of Eq.  (4) 
approximates to its first order, and thus, the max value of n 
is 1. The expression of deviatory pressure p in this situation 
is shown in Eq. (11), and 3D diagram is shown in Fig. 2.

The damping torque is Tcir =
∫

pxdxdy =
∫

pr cos θrdrdθ . 
Because of the orthogonality of trigonometric functions, 
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Fig. 1   The schematic diagram 
of circular and elliptical torsion 
mirror. a Circular torsion mir-
ror, b elliptical torsion mirror 
with torsion axis in minor axis, 
c elliptical torsion mirror with 
torsion axis in major axis and d 
cross section of torsion mirror

Fig. 2   The deviatory pressure of circular mirror when torsion angle 
is small
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the result of integration is not zero only when k equals 1. 
So, we arrive at:

where φ = ϕr0h
−1, γ (φ) can be calculated:

Let the damping torque Tcir = Tcir(0)γ (φ), where Tcir(0) 
is the damping torque when φ equals zero. And the curve 
of function γ (φ) is shown in Fig. 3. With Tcir = ccir

∂ϕ
∂t

, the 
coefficient of damping torque is:

where ccir(0) means the coefficient of damping torque 
when φ equals zero.

3 � Elliptical torsion mirror

The basic equation, which refers to the Taylor series form 
of simplified nonlinear Reynolds equation, Eq. (3), should 
be changed into elliptical coordinate form to facilitate solv-
ing. The elliptical coordinate is shown in Fig.  4 (Elliptic 
2013). The relationship between Cartesian coordinate and 
elliptical coordinate is (Korn and Korn 2000): 
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where c is focal length of the ellipse, ξ a nonnegative real 
number and η ∈ [0, 2π).

The major axis length of elliptical mirror is a, and the 
minor axis is b. Substitute ξ = cosh−1(a/c) into Eq.  (15) 
and we have:

Assuming ξ0 = cosh−1(a/c), it can be seen from above 
that ξ = ξ0 describes the outline of the elliptical mir-
ror. So, boundary condition in elliptical coordinate is 
p(ξ = ξ0) = 0. There are two cases in this situation that 
torsion axis is in minor axis or major axis.

(15a)x = c cosh ξ cos η

(15b)y = c sinh ξ sin η

(16)
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Fig. 3   The function γ (φ) versus φ

Fig. 4   The schematic of elliptical coordinate

Fig. 5   The function of coshmξ sinmη
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3.1 � Torsion axis in minor axis

When torsion axis is in minor axis, as shown in Fig. 1b, the 
basic equation in this situation is:

As in previous section, the method of eigenfunction expan-
sions is still used. The eigenfunction of Eq. (17) is solved by 
separation of variables method. Let p(ξ , η) = Ξ(ξ)H(η), 
and thus, we have Ξ(ξ) = Am coshmξ + Bm sinhmξ and 
H(η) = Cm cosmη + Dm sinmη, where m is a natural num-
ber. So, we have:

For coshmξ sinmη, it is not continuous since its left-sided 
limit sinmη and right-sided limit − sinmη are not equal in y 
direction of Cartesian coordinate, which is shown in Fig. 5. 
For sinhmξ cosmη, it is not smooth since its left deriva-
tive m cotmη and right derivative −m cotmη with respect 
to y are not equal, which is shown in Fig. 6. For function 
p, which describes a natural variable, it is not reasonable 
to include a discontinuous or non-smooth expression. Then, 
the eigenfunction can be simplified to:

With the method of eigenfunction expansions, expression p 
can be assumed as:
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and according to the characteristic of hyperbolic functions, 
coshn ξ can be expanded to:

With Eqs. (20), (21) and (7), Eq. (17) becomes:
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of Eq. (22), the coefficients of variables ξ and η should be 
equal. When k and l are exchanged in Eq.  (22), it can be 
easily found that Alk = Akl since (l2 − k2) = −(k2 − l2) 
and f (n, l, k) = −f (n, k, l). And the coefficients are: 

where l is even and l is greater than zero in Eq.  (23a). In 
Eq. (23b), l, k and n are all odd or all even and l is greater 
than k greater than zero. In Eq.  (23c), l is not equal to k. 
And in other cases, Alk = Blk = 0. So, p here is:

When torsion angle is small, as before, the expression of 
deviatory pressure p in this situation can be simplified and 
3D diagram is shown in Fig. 7.
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Fig. 6   The function of sinhmξ cosmη
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The equation of damping torque is Tminor =
∫

pc cosh ξ cos ηc2(cosh2 ξ − cos
2 η)dξdη. Because of the 

orthogonality of trigonometric function, the result of inte-
gration is not zero only when k equals 1 or 3. Thus, we have:

When ξ0 approaching infinity, the elliptical mirror 
approaches a circular mirror. In this situation, the major 
axis length can be considered as the radius of mirror. And 
Eq. (25) becomes:

This result is entirely consistent with the torque damping 
of circular mirror. With Tminor = cminor

∂ϕ
∂t

 and Eq. (25), the 
coefficient of damping torque is:

3.2 � Torsion axis in major axis

When torsion axis is in major axis, as shown in Fig. 1c, the 
torsion axis is x axis. The basic equation becomes:

With the method of eigenfunction expansions, the expres-
sion of p can be assumed as Eq. (20). And according to the 
characteristic of trigonometric functions and hyperbolic 
function, sinhn ξ and sinn η can be expanded to:
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With Eqs. (20), (29) and (30), Eq. (28) becomes:

The coefficients of variables ξ and η in both sides should 
equal in Eq.  (31). In the same way, it is also found that 
Alk = Akl and Blk = Bkl, and the coefficients are: 

where l is even and l is greater than zero in Eq.  (32a). 
And l and k are both odd in Eq. (32b), while they are both 
even in Eq. (32c) and l is greater than k greater than zero. 
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Fig. 7   The deviatory pressure of elliptical mirror with axis in minor 
axis when torsion angle is small
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In Eqs. (32d) and (32e), l is not equal to k. In other cases, 
Alk = Blk = 0. Thus, p is:

when torsion angle is small, as before, the expression of 
deviatory pressure p in this situation can be simplified and 
3D diagram is shown in Fig. 8.

The damping torque in this case is 
Tmajor =

∫

pc sinh ξ sin ηc2(sinh2 ξ + sin2 η)dξdη. 
Because of the orthogonality of trigonometric function, the 
result of integration is not zero only when k equals 1 or 3. 
Thus, we have:

Since sinh 3ξ0 = 4 sinh3 ξ + 3 sinh ξ, the limit of Eq.  (34) 
is also exactly the same with the damping torque of circular 
mirror when ξ0 approaching infinity. With Tmajor = cmajor

∂ϕ
∂t

 
and Eq. (34), the coefficient of damping torque is:

4 � Numerical simulation

CoventorWare® is a reliable software to simulate MEMS 
devices, which uses finite element modelling (FEM) or 
boundary element method (BEM) solvers to do simulation. 
Consequently, its simulation results can be used to verify 
the accuracy of numerical solution of the formula before.

3D model of mirror is established and meshed in 
extruded bricks type, as shown in Fig. 9. The 3D meshed 
model of circular mirror whose radius is 500 µm is shown 
in Fig.  3. In the field solvers, DampingMM module is 

(33)p =
∞
∑

l=0

∞
∑

k=0

(Alk cosh lξ cos kη + Blk sinh lξ sin kη)

(34)
Tmajor =

∞
∑

odd n

12πµn(n+ 1)C
n−1
2

n

2n(n+ 3)(n+ 5)

(c sinh ξ0)
n+5

h
n+2
0

cosh3 ξ0

sinh 3ξ0

∂φ

∂t
φn−1

=
πµ(c sinh ξ0)

6

2h3

cosh3 ξ0

sinh 3ξ0

∂ϕ

∂t
γ (φ)

(35)cmajor =
πµ(c sinh ξ0)

6

2h3
cosh3 ξ0

sinh 3ξ0
γ (φ)

chosen to acquire the coefficient of damping torque. In the 
setting dialogue, squeezed or slide-film flow is selected 
and the 3D model is simulated with the damping coeffi-
cient ranging from 10 to 106 Hz with a 101  kPa pressure 
and 300 K temperature. The boundary condition is “edge”, 
which means that the relative (to ambient) pressure at the 
specified edge will be set to zero. The specified edge is the 
intersection of the boundary of mirror and the surface of 
mirror which faces the air.

From the results of simulation, it is clear that the squeeze 
damping coefficient of rotation mirror hardly changes 
with the frequency and shows a good consistence with the 
results of formula. The comparisons of damping coefficient 
between formula and simulation are shown in Figs. 10, 11 
and 12.

Fig. 8   The deviatory pressure of elliptical mirror with axis in major 
axis when torsion angle is small

Fig. 9   The mesh model of micro-torsion mirror

Fig. 10   Comparison between the coefficient of damping torque cal-
culated by CoventorWare® (scatter) and formula (line) of circular 
mirror
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Figure 10 compares the damping coefficient results of 
different radius of circular mirror when the gap between 
substrate and mirror is 100, 200 and 300 µm. The lines are 
the results of formula and the triangles; squares and dots 
are the results of simulation. The maximum relative error is 
3.8 %, based on the results simulated.

Figures  11 and 12 compare the damping coefficient of 
elliptical mirror with different eccentricity when its major 
axis is 500, 1000 and 1500 µm. The rotation axis is the 
major axis and minor axis, respectively, when the gap 
between substrate and mirror is 200 µm. Similarly, the 
lines are the results of formula and the triangles; squares 
and dots are the results of simulation. It is also clear that 
the results of simulation and formula are well consistent 

with the maximum relative error of 3.2  % for major axis 
as the rotation axis, while the minor axis is 3.1 %. When 
the eccentricity is zero, the eclipse becomes circular. The 
result of the formula of eclipse mirror when the eccentricity 
is zero is perfectly consistent with the result of simulation 
of circular mirror, which further proves the accuracy of the 
formula.

In addition, the squeeze damping coefficient getting 
from formula is continuous. Consequently, we can figure 
out the variation tendency of the damping coefficient when 
one of the mirror parameters changes, which means the for-
mula will be a useful tool to optimize the structure of mir-
ror with lower damping torque.

5 � Discussion

We discuss the range of application of the basic equation 
in this section. From the expression of damping torque, 
the maximum damping pressure is pmax = pmax(0)γ (φ). 
pmax(0) of elliptical mirror is smaller than circular mirror 
when its major axis length is identical with the radius of the 
circular mirror, so we could use the derivation of Eq. (11), 
the expression of circular mirror, to get the max value of p:

Apply Eq. (36) to Eq. (2):

With Eq.  (13) and Fig. 3, we have φγ (φ) = 1.44 when φ 
equal 0.6 and φγ (φ) = 2.45 when φ equal 0.7. Therefore, 
φ should be <0.7, and it is same as Bao’s conclusion (Bao 
et al. 2006).

6 � Conclusions

Nonlinear Reynolds equation is solved in polar coordinate 
and elliptical coordinate, and the squeeze-film air-damping 
torque of circular and elliptical torsion mirrors is deduced 
in this paper. The method of eigenfunction expansions is 
used to solve the nonlinear Reynolds equation, and then, 
we have the series solution of deviatory pressure. With inte-
gral, the damping torque is calculated and the expression 
can be generalized to Tsq = Tsq(0)γ (φ). Tsq(0) is the damp-
ing torque when torsion angle is zero, which is a function 
of mirror’s parameters, viscosity of air and angular veloc-
ity. γ (φ) is strongly nonlinear function of φ. We find that 
when ξ0 approaching infinity, i.e., the shape of elliptical 
mirror approaching circularity, its damping torque expres-
sion approaches circular mirrors. Compared with numerical 

(36)pmax =

(

r20µ√
3h2

∂φ

∂t

)

γ (φ)

(37)φγ (φ) ≪ 6.96

Fig. 11   Comparison between the coefficient of damping torque cal-
culated by CoventorWare® (scatter) and formula (line) of elliptical 
mirror with torsion axis in minor axis

Fig. 12   Comparison between the coefficient of damping torque cal-
culated by CoventorWare® (scatter) and formula (line) of elliptical 
mirror with torsion axis in major axis
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simulations, the formula calculated results meet well with 
the simulated results of CoventorWare®. And the expres-
sion is valid under the condition φ < 0.7.
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