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of great importance in MEMS, NEMS applications. Being 
the simplest form of fluid structure interaction problems, 
dynamic analysis of fluid-conveying pipe has attracted 
a significant deal of attention from researchers due to the 
rich and interesting properties observed in their dynamic 
behavior. Numerous studies have been carried out on the 
stability of a pipe/beam conveying fluid. Dynamics of a 
system of articulated pipes conveying fluid was first studied 
by Benjamin (1961a, b) theoretically and experimentally, 
which was followed by Gregory and Paidoussis (1966a, 
b), who thoroughly investigated the flutter of tubular can-
tilevers conveying fluid theoretically and experimentally. 
Olson and Jamison (1997) introduced a general-purpose 
finite element program to simulate the dynamics of elastic 
pipes conveying fluid with different boundary conditions. 
Sinha et al. (2001) investigated the dynamic behavior of an 
open-ended cantilever-type pipe conveying fluid and found 
that the additional mass of fluid should be considered in 
the analysis. The dynamics of fluid-conveying cantilevered 
pipe consisting of two segments made of different mate-
rials focusing on the effects induced by different length 
ratios between the two segments was studied by Dai et al. 
(2013). The nonlinear transverse vibrations of highly ten-
sioned pipes with vanishing flexural stiffness and convey-
ing fluid with variable velocity were investigated by OzÖz 
(2001). Bou-Rabee et  al. (2002) examined the stability of 
a tubular cantilever conveying fluid in a multi-parameter 
space based on nonlinear beam theory. Taking into account 
the nonlinear coupling between the longitudinal and trans-
verse vibrations, Lee and Chung (2002) studied the stabil-
ity of a double-clamped pipe conveying fluid. Ryu et  al. 
(2002) thoroughly investigated the transference of eigen-
value curves and the corresponding unstable modes of can-
tilevered pipes conveying fluid. Reddy and Wang (2004) 
derived equations of motion governing the deformation 
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ter instability. It is shown that imposing voltage difference 
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of fluid flow on vibrational frequencies and thus extend 
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1  Introduction

Fluid-conveying pipes/beams are not only the indispen-
sable part of industrial setups such as oil and gas installa-
tions, pump discharge lines, heat exchangers, but also are 
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of fluid-conveying beams employing Euler–Bernoulli and 
Timoshenko beam theories based on von K´arm´an prin-
ciple. They have presented finite element models of the 
resulting nonlinear equations of motion. Kuiper and Met-
rikine (2004) proved analytically the stability of a riser con-
veying oil from seabed to a floating platform as a pipe con-
veying fluid surrounded by an external fluid. Taking into 
account the low fluid velocity, they employed a D-decom-
position method for stability analysis. Stationary bifurca-
tions in several nonlinear models of pipes conveying fluids 
fixed at both ends have analyzed with the use of Lyapunov–
Schmidt reduction and singularity theory by Nikolić and 
Rajković (2006). Qian et  al. (2009) studied the effects of 
thermal loads on the instability of simply supported pipes 
conveying fluid. Utilizing generalized differential quadra-
ture (GDQ) method, Tornabene et al. (2010) extracted the 
critical flow velocity of straight pipes conveying fluids for 
various fluid densities.

Due to the recent technological evolutions in micro/
nano-structures, they have employed to transmit fluids in 
many micro- and nano-fluidic devices. Micro- and nano-
pipe conveying fluids have potential applications in nano-
pipettes, fluid filtration devices, and targeted drug deliv-
ery devices. Consequently, increasing attention has been 
devoted to the vibrations of pipe conveying fluids in micro/
nanoscales. Based on nonlocal elasticity theory, stability of 
tubular micro- and nano-beams conveying fluid was stud-
ied by Wang (2009). In an another work, he developed a 
new theoretical model based on the modified couple stress 
theory for the vibration analysis of fluid-conveying micro-
tubes by introducing one internal material length scale 
parameter (Wang, 2010). Ahangar et al. (2011) studied the 
instability of a cantilever and clamped–clamped microbeam 
conveying fluid based on modified couple stress theory 
(MCST) and compared the results with those derived based 
on classical beam theory. They showed that the material 
length scale parameter affects the natural frequencies and 
critical flow velocities. Based on the strain gradient theory, 
Yin et al. (2011) presented a microstructure-dependent Ber-
noulli–Euler model to analyze the vibration and stability of 
microscale pipes conveying fluid. Analyzing in-plane and 
out-of-plane flexural vibrations of microscale pipes con-
veying fluid by including size effects of micro-flow and 
microstructure into the classical equations of motion is the 
subject of a recent research by Wang et al.(2013). Recently, 
Setoodeh and Afrahim (2014) presented an analytical solu-
tion based on strain gradient theory for the size-dependent 
nonlinear vibrational behavior of micro-pipes conveying 
fluid made of functionally graded materials (FGMs).

The applications of the smart materials such as piezo-
electric materials in engineering structures have drawn 
serious attention recently. The piezoelectric materi-
als are light and able to provide rapid response through 

electromechanical coupling. Such materials generate an 
electric field when subjected to strain fields and undergo 
deformation when an electric field is applied. However, in 
the knowledge of the authors, there has not been any dis-
cussion regarding piezoelectrically actuated microbeams 
conveying fluid.

The objective of this paper is to investigate the effect 
of applying piezoelectric layers on stability of the fluid-
conveying micro-pipes. The equation of motion is derived 
via variational principle. The effect of piezoelectric volt-
age on frequencies and critical flow velocities is discussed 
thoroughly using eigenfrequency branches. For cantilever 
micro-pipes, applying positive/negative voltages on the 
piezoelectric layers generates compressive/tensile forces 
which are inherently nonconservative. This alters the stiff-
ness properties of the system which in turn can change the 
stability situation of the structure. In addition, effects of the 
intermediate support on stability of the system are exam-
ined and it is shown that for some particular range of the 
system configuration, the instability type may change from 
flutter to divergence.

2 � Model description and governing equations

Figure  1 shows the system under consideration, which is 
a cantilever micro-pipe of length L, width b, thickness h, 
density ρ, Young’s modulus E, sandwiched with piezoelec-
tric layers with thickness hp, density ρp, Young’s modulus 
Ep which are attached to the free end of the micro-pipe. 
Parameters U and m are introduced as the average veloc-
ity and mass per unit length of the fluid flowing axially 
through the micro-pipe. The structure may also be modified 
to include an intermediate support as shown in the figure.

Denoting the transverse displacement of the micro-pipe 
as w(x, t), the bending strain energy Ub and the kinetic 
energy Tb of the micro-pipe can be expressed as:

(1)Ub =
1

2

L∫

0

EI

(
∂2w(x, t)

∂x2

)2

dx

Fig. 1   Schematic views of the piezoelectrically actuated micro-pipe 
conveying fluid with intermediate simply support
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where EI is the flexural rigidity, ρ is the mass density, and 
A is the cross-sectional area of the micro-pipe. The poten-
tial and the kinetic energy of the operating fluid can be 
written, respectively, as (Paidoussis 1998):

Applying a voltage Vp on the piezoelectric layers located 
on the micro-pipe surfaces, the resulted compressive or ten-
sile follower force is expressed as (Azizi et al. 2012):

in which ē31 denotes the equivalent piezoelectric coeffi-
cient, Ap and Ep refer to the cross-section area and Young’s 
modulus of the piezoelectric layers, respectively. Moreover, 
the potential energy related to the piezoelectric layers can 
be written as:

The Lagrangian of the coupled system, accounting for 
the kinetic and potential energies, is written as:

Now, referring to the principle of variation, time integral of 
variation of Lagrangian vanishes in any desired time inter-
val as

Now the equation of motion for the micro-pipe in lateral 
vibration will be

where the potential energy of the operating fluid due 
to gravitation is ignored (Uf = 0). The first term in the 
above equation stems from the elastic flexural restoring 

(2)
Tb =

1

2
ρA

L∫

0

(
∂w(x, t)

∂t

)2

dx

(3)Uf =
1

2
(m+ ρA)g

L∫

0

(L − x)
∂w

∂x
dx

(4)Tf =
1

2
m

L∫

0

(
U2 +

(
∂w(x, t)

∂t
+ U

∂w(x, t)

∂x

)2
)
dx

(5)Fp = 2
bē31VpAE

2ApEp + AE

(6)Up =
1

2

L∫

0

(
Fp

)(∂w(x, t)

∂x

)2

dx

(7)L(t) = Tb + Tf − Ub − Uf − Up

(8)δ

t1∫

t0

L(t)dt = 0

(9)
EI

∂4w

∂x4
+ mU2

∂2w

∂x2
+ 2mU

∂2w

∂x∂t

+ (m + ρA)
∂2w

∂t2
= Fp

∂2w

∂x2

force, and the second term corresponds to the centrif-
ugal force of the fluid flowing with constant speed U. 
Third term is recognized as being associated with the 
Coriolis acceleration, and the last term represents iner-
tial effects of both pipe and fluid. In order to ease the 
calculations, following dimensionless parameters are 
defined

Substituting these parameters into Eq. (9) results in the 
following dimensionless equation of motion:

where u and F̂p are the nondimensional flow velocity and 
piezoelectric force, respectively, defined as:

The corresponding boundary conditions for the can-
tilever and clamped–clamped micro-pipes are given by 
Eqs. (13a) and (13b), respectively:

In the case of a micro-pipe with intermediate simply 
support, the micro-pipe is divided into two parts with two 
different coordinate systems. The lateral deflection of the 
left and right parts is denoted by η1 and η2, respectively. At 
the intermediate support, compatibility equations between 
the left and right parts will be

where ξ1 and ξ2 are the spatial coordinates in left and 
right parts, respectively. In order to discretize Eq.  (11), 
Galerkin projection method is used by approximating 
η(ξ, τ) as:

in which qj(τ) denotes the unknown generalized coordi-
nates, and ϕj(ξ) represents the jth natural mode shapes of a 

(10)η =
w

L
; ξ =

x

L
; τ =

[
EI

(ρA+ m)

] 1

2 t

L2
;β =

m

(ρA+ m)

(11)
∂4η

∂ξ4
+ u2

∂2η

∂ξ2
+ 2β1/2u

∂2η

∂ξ∂τ
+

∂2η

∂τ 2
= F̂p

∂2η

∂ξ2

(12)u =
[ m
EI

] 1
2
UL; F̂p =

FpL
2

EI

(13a)η(0, τ) =
∂η(0, τ)

∂ξ
=

∂2η(1, τ)

∂ξ2
=

∂3η(1, τ)

∂ξ3
= 0

(13b)η(0, τ) =
∂η(0, τ)

∂ξ
= η(1, τ) =

∂η(1, τ)

∂ξ
= 0

(14)

η1(ξ1 = e, τ) = η2(ξ2 = 0, τ) = 0

∂η1(ξ1 = e, τ)

∂ξ1
=

∂η2(ξ2 = 0, τ)

∂ξ2

∂η21(ξ1 = e, τ)

∂ξ21
=

∂η22(ξ2 = 0, τ)

∂ξ22

(15)η(ξ , τ) =

N∑

j=1

qj(τ )ϕj(ξ)



580	 Microfluid Nanofluid (2015) 19:577–584

1 3

cantilever microbeam. Substituting Eq.  (15) into Eq.  (11) 
and multiplying by ϕi(ξ) as a weight function and integrat-
ing the outcome over0 ≤ ξ ≤ 1, results in:

where

For stability analysis, the solution of Eq.  (16) can be 
written in the following form:

where q̄j are unknown functions of vibration amplitude, 
and s denotes the complex eigenvalues of the system where 
imaginary part of s ‘Im(s)’ is the natural frequency of 
micro-pipe conveying fluid. The pipe is unstable if at least 
one of the eigenvalues has a positive real part. Substituting 
Eqs.  (18) into (16), one obtains a homogeneous equation, 
which corresponds to the generalized eigenvalue problem

To obtain a nontrivial solution of Eq. (19), it is required that 
the determinant of the coefficient matrix vanishes, namely:

In general, roots or eigenvalues of the characteristic 
Eq.  (20) for pipe conveying fluid cannot be expressed in 
simple explicit form in terms of u, V, and β. There are dif-
ferent numerical techniques to derive the eigenvalues. The 
most commonly used methods are straightforward numerical 
method (Païdoussis 2004), Galerkin method and Argand dia-
gram (Dai et al. 2014), and D-composition method. In this 
paper, employing MATLAB software, the straightforward 
numerical method is used to obtain the eigenfrequencies.

3 � Numerical results and discussion

In this section, the vibrational properties and stability of 
the micro-pipe for different values of fluid velocity as well 
as the applied voltage to piezoelectric layers are investi-
gated. Moreover, effects of the intermediate support on the 

(16)

N∑

j=1

Mijq̈j(τ )+

N∑

j=1

Bijq̇j(τ )+

N∑

j=1

(
Km
ij − K

p
ij + K

f
ij

)
qj(τ ) = 0

Mij =

1∫

0

ϕiϕjdξ ;Bij = 2β1/2u

1∫

0

ϕiϕ
′
jdξ ;K

m
ij =

1∫

0

ϕiϕ
iv
j dξ

(17)K
p
ij = T̂p

1∫

0

ϕiϕ
′
jdξ ;K

f
ij = u2

1∫

0

ϕiϕ
′′
j dξ

(18)qj(τ ) = q̄je
sτ

(19)
(
s2[M]+ s[B]+

[
Km

]
−

[
Kp

]
+

[
Kf

]){
q̄j
}
= {0}

(20)det

(
s2[M]+ s[B]+

[
Km

]
−

[
Kp

]
+

[
Kf

])
= 0

stability are studied. The fluid density used in the simula-
tions is 1000 kg/m3, and the geometrical and material prop-
erties of the micro-pipe and the piezoelectric layers are 
listed in Table 1.

It should be noted that the centrifugal fluid force acts as 
a compressive load, and the piezoelectric layers are subject 
to compressive or tensile loads depending on the sign of the 
imposed voltage. Therefore beyond a critical fluid velocity 
ucr, the micro-pipe loses its stability by divergence (Pitch-
fork) or flutter (Hopf bifurcation) types. Figure 2 presents 
the variations of the nondimensional critical velocity of 
the fluid for the cantilever micro-pipe versus the mass ratio 
β for various applied voltages to the piezoelectric layers. 
Beyond this critical velocity, flutter instability occurs and 
vibration of the micro-pipe becomes amplified. The results 
show that increasing the value of mass ratio increases the 
critical fluid velocity and consequently extends the practi-
cal range of the micro-pipe. On the other hand, applying a 
positive/negative voltage to the piezoelectric layers softens/
stiffens the micro-pipe and consequently reduces/enhances 
the critical velocity of fluid.

Table 1   Geometrical and material properties of the microbeam, pie-
zoelectric layers, and fluid

Parameters Micro-pipe Piezoelectric

Length, L (μm) 800 800

Width, b (μm) 50 50

Height, h (μm) 3 0.01

Inner width, bi (μm) 48 –

Inner height, hi (μm) 1 –

Young’s modulus, E (GPa) 169 78.6

Poisson’s ratio, ν 0.06 0.3

Mass density, ρ (Kg/m3) 2331 7500

ē31 – −9.29

Fig. 2   Nondimensional critical velocity of the fluid versus mass ratio 
for different voltages for cantilever micro-pipe
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Effects of the intermediate simply support on the critical 
fluid velocity are shown in Fig. 3. Assuming the support in 
different locations along the micro-pipe, the variations of 
the critical velocity versus the mass ratio for different pie-
zoelectric voltages are depicted in the figure. It is revealed 
that moving the support toward the free end increases the 

stiffness of the micro-pipe and consequently boosts the 
critical velocity. Figure 3c shows that for a specific range of 
the support location (e > 0.4L), the critical velocity will not 
change by the mass ratio and it only depends on the piezo-
electric voltage level.

It is shown when the support is placed at the end of 
the cantilever micro-pipe (e  =  L) irrespective of the 
mass ratio, the critical velocity is a specific value. This is 
depicted in Fig.  4 where the critical velocity for double-
clamped micro-pipe is also shown for comparison. It is 
revealed that due to its higher stiffness, double-clamped 
micro-pipe has a larger critical velocity compared to 
clamped-pinned pipe.

It should be noted that a cantilever micro-pipe conveying 
fluid is a nonconservative system, and for a specific value 
of the flow velocity, it may lose its stability by flutter. How-
ever, imposing intermediate support can change the criti-
cal velocity as well as the type of instability. Taking into 
account different voltages of the piezoelectric layers and 
various locations of the intermediate support, imaginary 
and real parts of the nondimensional three lowest eigenfre-
quencies are plotted versus the flow velocity. The system is 
unstable if the real part of the any of the eigenfrequencies 
becomes positive.

Ignoring the intermediate support and assuming the 
mass ratio β =  0.5, Fig.  5 shows the effect of piezoelec-
tric voltage on the critical velocity. It is revealed as the 
flow velocity increases, real part of the eigenvalue vanishes 
and the corresponding imaginary part still has a nonzero 
value; this point corresponds to flutter instability. Moreo-
ver, it is inferred that the positive and negative voltages of 
the piezoelectric layers do not change type of the instabil-
ity. However, the negative voltages stiffen the structure and 
extend the stable ranges. In Fig.  5, dimensionless critical 
flow velocities of 10.7, 9.47, and 8.05 correspond to dimen-
sional values of 97.03, 85.87, and 73 m/s, respectively.

Fig. 3   Nondimensional critical velocity of the fluid versus mass ratio 
for different location of the intermediate support and various imposed 
voltages, a e = 0.2L, b e = 0.3L, c e = 0.4L

Fig. 4   Nondimensional critical fluid velocity versus mass ratio for 
different voltages for fixed–fixed and clamped-pinned micro-pipes
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In Figs. 6 through 8, effects of the intermediate support 
on the form of the instability are studied. Assuming the 
support position as e = 0.2L and V = 0, variations of the 
real and imaginary parts of the eigenfrequencies versus the 
flow velocity for two mass ratios are presented in Fig. 6. It 
can be seen that the real part of one of the modes becomes 
zero for u = 11.17 where its imaginary parts are nonzero. 
This physically implies that the system becomes unstable 
by the flutter instability. Comparison of Fig.  6a, b shows 
that raising the mass ratio is responsible for increasing the 
critical flow velocity.

Moving the intermediate support to new position 
e =  0.4L, the diagrams for the evolution of the real and 
imaginary parts of the eigenvalues as a function of the flow 
velocity are plotted in Fig. 7. It is shown for β = 0.2, the 
flutter type instability takes place at u = 8.4 (Fig. 7a). Fig-
ure 7b shows the variations of the real and imaginary parts 

for β = 0.8. It is shown the critical velocity increases as the 
mass ratio increases (ucr = 10.67). However, at the instabil-
ity point, the imaginary part of the eigenvalue becomes zero 
and its real part becomes positive value. This physically 
denotes the divergence instability. Comparison of Figs.  3 
and 7 reveals that imposing intermediate support beyond 
0.4L in addition to the magnitude of the critical velocity, 
the form of the instability also changes from flutter to diver-
gence type for some ranges of the mass ratio (β > 0.33).

Finally, the evolution of the eigenfrequencies of 
clamped–clamped micro-pipe conveying fluid with increas-
ing flow velocity is shown in Fig.  8. In this figure, it is 
assumed that the mass ratio β and voltage of the piezoelec-
tric layers are fixed at 0.5 and 0 v, respectively. It is clear 
that the real and imaginary parts of the first nondimensional 
eigenvalue become zero when the flow velocity is 6.25. 
Therefore the divergence instability is taking place.

Fig. 5   Imaginary and real parts 
of the first three eigenfrequen-
cies of the cantilever micro-pipe 
versus nondimensional flow 
velocity for different piezoelec-
tric voltages as the mass ratio is 
set β = 0.5, a V = −0.5 v, 
b V = 0 v, c V = 0.5 v
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4 � Conclusion

This paper introduces a novel system to enhance the 
dynamic behavior of a micro-pipe conveying fluids. To 

extend the stable margins, the micro-pipe was axially 
loaded with a pair of piezoelectric layers located at its top 
and bottom surfaces. It was shown that imposing negative 
voltage to the piezoelectric layers stiffens the micro-pipe 

Fig. 6   Imaginary and real parts 
of the lowest three eigenfre-
quencies versus the nondi-
mensional flow velocity for 
the cantilever micro-pipe with 
intermediate support (e = 0.2L, 
V = 0 v) with different mass 
ratios, a β = 0.5, b β = 0.9

Fig. 7   Imaginary and real parts 
of the lowest three eigenfre-
quencies versus the nondi-
mensional flow velocity for 
the cantilever micro-pipe with 
intermediate support (e = 0.4L, 
V = 0 v) at different mass 
ratios, a β = 0.2, b β = 0.8
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and increases the critical fluid velocity. Effects of mass 
ratio (defined as the ratio of unit mass of operating fluid to 
the unit mass of micro-pipe) on the critical velocity were 
studied extensively. It was revealed that increasing the mass 
ratio increases the critical velocity and could also change 
the instability type from flutter to divergence. In addition, 
imposing an intermediate simply support, it was shown that 
the stability margins of the system can be improved effec-
tively. It is found that placing the support at about 40 % of 
the beam length from clamped support changes instability 
type from flutter to divergence. The proposed mechanism 
can be employed in the applications where the high fluid 
velocity is required.
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