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1  Introduction

Particle motion and particle collision in the mesoscale 
channel are typical fluid–solid two-phase problems, which 
play an important role in the performance of many indus-
trial processes involving suspension flows (Liu and Chang 
2013). Analytical theories with simplified assumptions and 
experimental approaches with semi-empirical formulas 
are usually difficult to describe the forces acting on par-
ticles, the momentum transfer of fluid–solid system and 
the change of inter-phase boundary (Giacoma et al. 2014; 
Marco and Dimitris 2011; among others).

To investigate the inherent mechanism of mesoscale 
multiphase flows, many numerical methods have been 
developed, such as smoothed particle hydrodynamics (SPH; 
Liu and Liu 2003), lattice Boltzmann method (LBM; Shan 
and Chen 1993), direct simulation Monte Carlo (DSMC; 
Bird 1963) and true direct numerical simulation (TDNS; 
Feng and Joseph 1995), among which the most significant 
approach is TDNS that fully resolves the flow field around 
the particle and makes a direct coupling between the parti-
cle and fluid motion. Some interesting features have been 
reported, such as vortex shedding, particle trajectory, and 
the drafting, kissing and tumbling (DKT) scenario between 
two particles. In the TDNS, the fluid motion is governed by 
the traditional continuum-level Navier–Stokes equations. 
However, some molecular-level factors which are not fully 
considered in the TDNS may also play an important role at 
mesoscale.

Dissipative particle dynamics (DPD) was derived 
from Molecular Dynamics (MD), via coarse-graining the 

Abstract  Mesoscale dispersed two-phase flows often 
involve complicated dynamic behaviors. Grid-based methods 
within the framework of continuum mechanics are usually 
difficult to capture certain degree of molecular-level effect, 
while the molecular dynamics is only practical at extremely 
small temporal and spatial scales. In this paper, dissipative 
particle dynamics (DPD) is extended to the investigation of 
a fluid–solid sphere system with inertia effect within two 
parallel plates through the modification of DPD weighting 
function and hence the dynamic parameters. The sphere and 
walls are composed of frozen DPD particles that are first 
treated to reach equilibrium state in the simulation. The force 
on the solid sphere is obtained from all the particles included 
in the sphere. The drag coefficient of the frozen sphere is 
evaluated and compared with the classical correlations. The 
initial value problem for the sedimentation of the sphere is 
then solved at certain Reynolds numbers, which is consistent 
with our direct numerical simulation results.

H. Liu · J. Chang · Y. Wang · Z. Tong 
Laboratory of Energy and Environment and Computational Fluid 
Dynamics, North University of China, Taiyuan 030051, China

H. Liu · S. Jiang · Z. Chen (*) 
Department of Civil and Environmental Engineering,  
University of Missouri, Columbia, MO 65211, USA
e-mail: liuhan@missouri.edu

S. Jiang 
Department of Chemistry, University of Missouri,  
Columbia, MO 65211, USA

Z. Chen 
Department of Engineering Mechanics,  
Dalian University of Technology, Dalian 116024, China

M. Liu 
Chinese Academy of Sciences, Beijing 100190, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-014-1529-1&domain=pdf


1310	 Microfluid Nanofluid (2015) 18:1309–1315

1 3

molecular details to capture the physics at mesoscale, by 
Hoogerbrugge and Koelman (1992). It has been developed 
to simulate complex fluid flows involving colloidal suspen-
sion, polymer, phase separation, interface dynamics, mem-
brane and two-phase flow at the mesoscopic scale (Liu et al. 
2007; Revemga et al. 1999; Fan et al. 2006; among others). 
DPD is more computationally efficient than MD, and more 
sufficient to capture the details at mesoscale level than con-
ventional continuum-level simulation techniques (Marsh 
et al. 1997). Hoogerbrugge and Koelman (1992) first stud-
ied the creep flow through a square array of cylinders and 
proved the possibility of using DPD to simulate hydrody-
namic phenomena, in which the fluid flow was limited to 
creep flow and the inertia effect could be neglected. Boek 
et al. (1997) later computed the viscosity of suspended ball, 
pole and disk. With the modified DPD method proposed by 
Espanol and Warren (1995) and Boek and Schoot (1998) 
further investigated the fluid flow through periodic cylin-
der array and obtained the dimensionless drag force, which 
offers the feasibility of DPD simulation at certain limited 
Reynolds numbers. After that, Chen et  al. (2006), and 
Kim and Philips (2004) computed the fluid flow through a 
sphere/cylinder. Their simulation results have shown that it 
is possible to simulate hydrodynamic phenomena at certain 
Reynolds numbers, but that it might be inaccurate at high 
Reynolds numbers because of the fluid compressibility.

In the DPD methods as summarized above, the DPD 
particles are treated to simulate the water response, but 
the dynamic properties of the DPD system, such as the 
Schmidt number, Sc, and its viscosity η, are far below 
those of water. In addition, there is no experimental or ana-
lytical solution to verify the typical sphere settlement in 
DPD simulation. In this paper, an improved DPD method 
is proposed that aims to study the fluid–solid system 
response at mesoscale, by resolving the water flow around 
a solid sphere and computing the particle force from the 
coupling between the solid and fluid particles. To validate 
the way how the solid sphere is represented in the simu-
lation procedure, the numerical results are compared with 
the experimental correlations and direct numerical simula-
tion (DNS) results.

2 � DPD formulation

DPD simulates the motion of a set of interacting “parti-
cles”. The particles move according to Newton’s second 
law as follows:

(1)
dri

dt
= vi,

dvi

dt
=

∑

j

f ij,

where, ri and vi are the position and velocity vectors of the 
mass centre of particle i. The particle mass is taken as the 
unit of mass. The vector fij represents the interparticle force 
applied on particle i by particle j, which is assumed to be 
pairwise additive and consists of three parts, including a 
conservative force Fij

C, a dissipative force Fij
D and a random 

force Fij
R, as shown below,

In Eq.  (1), the sum runs over for all other particles 
within a certain cutoff radius rc, taken as the unit of length 
in the conventional DPD formulation. In the current study, 
it is allowed that rc ≥ 1.0, and its value varies for different 
kinds of forces. The cutoff radius will be further discussed 
in Sect.  3. The conservative force Fij

c is a soft repulsion 
which is given by

where aij is the maximum repulsion between particles i and 
j. rij = ri − rj with its amplitude rij =

∣∣rij
∣∣, and r̂ij = rij/rij is 

the unit vector directed from the mass centre of particle j to 
i. The dissipative and random forces take the forms of 

and

respectively, where γ and σ are the coefficients characterizing 
the strengths of these forces. wD(r) and wR(r) are r-depend-
ent weight functions vanishing for r > rc. vij = vi − vj, and ζij 
is Wiener increment with the properties of

where i ≠  k and j ≠  l. The detailed balance condition is 
similar to the Fluctuation–Dissipation theorem relating the 
strength of the random force to the mobility of a Brownian 
particle, which requires that

with kB being the Boltzmann constant, T the system tem-
perature and s the exponent of the weighting function. In 

(2)fij = FC
ij + FD

ij + FR
ij ,

(3)FC
ij =

{
aij
(
1− rij

)
r̂ij, rij < rc

0, rij ≥ rc

(4)FD
ij = −γwD

(
rij
)(
r̂ij · vij

)
r̂ij,

(5)FR
ij = σζijw

R(rij)r̂ij,

(6)

〈
ζ(t)ij

〉
= 0 and

〈
ζik(t)ζjl

(
t′
)〉

=
(
δijδkl + δilδjk

)
δ
(
t − t′

)
,

(7)

wD(r) =
[
wR(r)

]2
=

{
(1− r/rc)

s,

0,

r < rc
r ≥ rc

γ = σ 2

2kBT
,
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the traditional method, the s in the weight function for the 
dissipative force usually equals 2. Here, it is written in a 
more general form. The effect of s to the dynamic proper-
ties of the system will be discussed in Sect. 3.

Equation  (7) ensures that the particulate temperature, 
strictly speaking, the fluctuation of the system kinetic 
energy, remains constant. As far as the thermal energy 
is concerned, the random two-particle force Fij

R, which 
represents the results of thermal motion of all molecules 
contained in particles i and j, “heats up” the system. The 
dissipative force Fij

D reduces the relative velocity of two 
particles and removes the kinetic energy from their mass 
center to “cool down” the system. When the detailed 
balance for Eq.  (7) is satisfied, the system temperature 
will approach the given value. The dissipative and ran-
dom forces act like a thermostat in the conventional MD 
system.

In the simulation, the DPD particles are frozen to sim-
ulate the solid object (sphere) and walls, as illustrated in 
Fig. 1. The solid object moves due to its gravity g as well 
as the interaction force from the surrounding fluid parti-
cles. The total force applied on the solid object is obtained 
via the summation looping through all the particles con-
tained in the object. The differential equation governing the 
motion of the sphere mass center is given by

where M is the total mass of the sphere, V is the velocity 
of the sphere, and G and F denote the body force of the 
sphere and the interactive force between the sphere and 
surrounding fluid particles, respectively. The differential 
equation governing the rotation of the sphere about its mass 
center takes the form of

where T is the moment of external forces, I the mass 
moment of inertia, and ω the angular velocity.

(8)M
dV

dt
= G + F

(9)
d(Iω)

dt
= T

3 � Improved model parameters and test problems

3.1 � Improved model parameters

In this section, parametric modification is conducted to 
improve the dynamic performance of the simulated DPD sys-
tem. The proposed numerical scheme is then verified with the 
well-established experimental data and analytical solutions.

In the DPD simulation, the model parameters must be 
carefully chosen to describe the fluid as water. Groot and 
Warren (1997) found that to satisfy the compressibility of 
water, the coefficient of the conservative force should be

and recommended the values of σ = 3.0 and λ = 0.65 in 
the Verlet-type algorithm. In this paper, the density is cho-
sen to be ρ = 4.0 so that the period of the face-centered-
cubic (FCC) lattice becomes 1.0, and the plane lattice size 
of the solid sphere and wall particles is also equal to 1.0. 
The unit of energy is set to be kBT, i.e., kBT = 1. Accord-
ing to Eq.  (7), we have γ = 4.5. It follows from Eq.  (10) 
that aij = aff = 18.75 with the subscript f stands for “fluid.” 
Until now, the study of the physical bases on how the solid 
particles interact to each other is still ongoing. In the cur-
rent work, according to the research efforts from Fan et al. 
(Fan et al. 2003), it is assumed that aww = 5.0, where the 
subscript w stands for “wall or frozen,” for the interaction 
between frozen particles, and that afw = √

aff aww = 9.6825 
for the interaction between fluid and frozen particles.

The dissipative force directly affects the rate of momen-
tum transfer of the system and thus the dynamic properties 
of the system, such as the Schmidt number Sc and viscosity 
η. Since the Schmidt number of a typical DPD fluid, about 
10−4 cP, is three orders of magnitude less than that of the 
water, various methods have been proposed to increase the 
dynamic properties, such as increasing the cutoff radius, 
decreasing the temperature, and/or increasing γ and using 
different thermostat for the system (Anurag et  al. 2009; 
Low 1999; among others).

Similar to Groot and Warren’s analysis (1997), assuming 
a uniform density (g(r) ≈ 1.0), we can obtain the dynamic 
properties of the DPD system. The dissipative viscosity can 
be expressed as a function of s,

As shown in Fig. 2 the dissipative viscosity decreases dras-
tically with the increase of s. The dissipative viscosity can 

(10)aij = 75kBT/ρ

(11)

ηD = 2πγρ2

15

∫ ∞

0

r
4
w
D(r)dr

= 2πγρ2r5c

15

(
1

s+ 1
− 4

s+ 2
+ 6

s+ 3
− 4

s+ 4
+ 1

s+ 5

)

Fig. 1   Schematic diagram of the simulation domain
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be derived from the weight function of Eq. (7). When s = 2, 
the weight function for the conventional DPD formulation is 
recovered. The s is chosen on the premise that the continuity 
of the weighting function itself and a mild discontinuity of its 
gradient are satisfied, and it improves the dynamic properties 
of the DPD system such as the Schmidt number, Sc, and vis-
cosity η. Hence s = ½ is chosen in the present study.

Then, unlike the traditional weighting func-
tions, wD(r)  =  (1  −  rc)

1/2 is chosen in our simulation. 

Sc = 1
2
+

(
2πγρr4c

)2

1999kBT
 is also adopted in the current work, 

which becomes larger than 1
2
+

(
2πγρr4c

)2

70875kBT
 at s  =  2. For 

example, if a set of parameters ρ = 4, γ = 4.5, kBT = 1.0 
and rc = 1.0 are chosen, Sc would increase about ten times. 
It can be found from the above equation that Sc is propor-
tional to γ2 and rc

8. To further increase the Sc, it is an effi-
cient way to increase the values of γ and rc. However, the 
increase of γ usually causes larger fluctuation of thermal 
energy, while the increase of rc results in larger computa-
tion cost. Therefore, the weighting function used here is 
obtained by combining it with a moderate increase in the 
cutoff radius for the dissipative weighting function. Thus, 
Sc can reach to a certain level within a reasonable computa-
tional cost. With the moderate increase in the cutoff radius 
(in our current simulation rc = 2.0), the values of diffusiv-
ity D = 0.011, viscosity η = 71.288 and Schmidt number 
Sc = 1,636.907 are chosen in the current work, respectively.

A modified version of the velocity-Verlet algorithm 
(Groot and Warren 1997) is used here, with the time step 
being 0.02. The flow domain is divided into grids, and local 
data are collected in each bin. The flow properties, such as 
stress, position, velocity, density and pressure, are calcu-
lated by averaging over all of the sampled data points in 
each bin over certain time steps.

3.2 � Test problems

The Poiseuille flow in a slit is simulated first with the 
improved DPD formulation. The fluid domain is given by 

−30 ≤ x ≤ 30, −1.5 ≤ y ≤ 1.5 and −15 ≤ z ≤ 15, respec-
tively. The periodic boundary condition is applied in the 
x and y directions. The inner wall layers are located at 
z = ±15.25. There are 21,240 fluid particles in the chan-
nel and three wall layers parallel to the (x, y) plane con-
sisting of 2,160 wall particles in each side. The dimension-
less gravity (g = 0.02) is applied to each fluid particle at x 
direction, which later drives the flow.

The body force field is equivalent to imposing a pres-
sure drop of ρgLx in the channel with the length of Lx. The 
development of velocity profile at different time is illus-
trated in Fig.  3. It can be seen that the velocity profile is 
fully developed after about 1,200 time steps with a no-slip 
boundary condition. If the fluid is Newtonian, the analyti-
cal solution of Navier–stokes equation is

As can be seen from Fig. 3, the analytical result is in a 
good agreement with the simulation data at t = 1,200.

In Fig. 4, the temperature with kBT = 1 is uniformly across 
the channel. The density profile is also uniformly across the 
channel except for the regions near the walls, where small 

(12)Vx = 3.75

[
1−

( z

15

)2]

Fig. 2   The relationship between s and dissipative viscosity

Fig. 3   The development of velocity profiles in Poiseuille flow

Fig. 4   The temperature and density profiles in Poiseuille flow
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fluctuations in density still exist but are not as severe as those 
predicted by MD simulation (Kim et al. 2008).

The comparison of the shear stress predicted by DPD 
simulation with that obtained from the analytical solu-
tion is shown in Fig. 5. It can be seen that there is a very 
good agreement between two results across the channel, 
although there is some numerical noise in the regions near 
the wall surfaces.

4 � Drag coefficient of a three dimensional sphere

To show the ability of the proposed procedure to deal with 
the problems relevant to inertia, the drag coefficient of a 
three dimensional sphere in the channel is considered here. 
The fluid domain is given by −50 ≤ x ≤ 50, −8 ≤ y ≤ 8 
and −20 ≤  z ≤  20, respectively. Periodic boundary con-
dition is applied in the x and y directions. The inner wall 
layers are located at z = ±20.25. The center of sphere is 
located at x = 0, y = 0, z = 0 with its radius r = 2.8. There 
are 145,616 fluid particles in the channel, 12,000 particles 
in the walls parallel to the (x, y) plane in each side, and 
384 frozen particles in the sphere, respectively. To achieve 
different Re numbers, the fluid particles are driven by dif-
ferent dimensionless gravity forces in the x-direction. The 
drag force is determined after the flow field is fully devel-
oped. Then the drag coefficient can be achieved from the 
equation as follow,

where FD is the drag force which is the summation of the 
interparticle force from all the particles included in the 
sphere, d is the diameter of the sphere, ρf is the fluid par-
ticle density, and U is the relative velocity between the 
sphere and the fluid along the x direction.

Figure  6 shows the results of the drag coefficient as 
compared with those from Batchelor’s (1967), and Brown 

(13)CD = 8× FD

πd2ρfU|U|

and Lawler’s (2003) correlations. Batchelor’s correlation 
is applicable to creeping flow, while the Brown’s correla-
tion is suitable for a broad extent with Re ≤  2 ×  105. It 
is shown that the DPD simulation results fit well with the 
correlations in the range of small Reynolds numbers and 
the difference between them increases with the increase of 
velocity.

5 � Solid sphere sedimentation

Within the framework of conventional continuum mechan-
ics, the behavior of a single sphere can be classified into 
five regimes: steady equilibrium with monotonic approach, 
steady equilibrium with a transient overshoot, weak oscilla-
tory motion, strong oscillatory motion and irregular oscil-
latory motion, which occur at different Reynolds number 
intervals, depending on the channel width (Feng et  al. 
1994). While in DPD simulation, the reliable results are 
usually limited to the range of low Reynolds numbers, as 
discussed in Sect. 4 as well as other literatures (Chen et al. 
2006; Kim and Phillips 2004; among others). Therefore, 
the sedimentation of a single DPD sphere is only simu-
lated at low Reynolds number. A sphere that consists of 936 
frozen DPD particles is released from the top of a chan-
nel with zero initial velocity, which moves according to 
Eqs. (8) and (9). The schematic diagram is shown in Fig. 1. 
The fluid domain of the channel is given by −50 ≤ x ≤ 50, 
−1.5 ≤ y ≤ 1.5 and −20 ≤ z ≤ 20, respectively, and filled 
with 47,400 fluid particles. The diameter of the shpere is 
5.0. Periodic boundary condition is applied in the x and y 
directions. The inner wall layers are located at z = ±20.25. 
There are totally 3,600 frozen wall particles. The sphere is 
driven by the dimensionless gravity force in the x-direction. 
To compare the DPD results with the continuum hydrody-
namics method, DNS, from our previous work (Chang et al. 
2010), the channel width is set as the characteristic length, 
and the width and length are both set to be dimensionless. 

Fig. 5   The shear stress distribution in Poiseuille fluid
Fig. 6   The drag coefficient of a three dimensional spherical object at 
different Reynolds numbers
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The Reynolds numbers are determined by the termi-
nal velocity. To get the same Reynolds number, the DPD 
sphere is subjected to a gravitational force, which equals to 
0.03, and the ratio of DNS sphere to fluid is 1.00008 to 1.

The sphere trajectories are illustrated in Fig.  7. If it is 
released from the channel center, the DPD sphere will set-
tle along the centerline and the sedimentation is stable, 
which is consistent with the result from our DNS simula-
tion. If the sphere is released off the center, it will migrate 
to the centerline and eventually settle steadily along the 
centerline, which demonstrates the same trend as the DNS 
result but with a longer time to reach the center. This dif-
ference indicates that the DPD method, which can capture 
certain degree of molecular-level details, shows different 
sedimentary behavior from the DNS method which could 
only conform to the continuum hydrodynamics at larger 
length scales. The reason might be due to the fact that DPD 
method is a coarse-grained method, and the DPD fluid 

particle may show a different performance of physical prop-
erties from the fluid in DNS. So it also implies that there is 
a scale effect on the sphere sedimentation by using the DPD 
and DNS methods. Besides, the understanding and formula-
tion of the inherent relationship between the DPD particle 
and DNS fluid are still unknown for most cases. Figure 8 
shows the detailed sphere distribution along the channel at 
different time instants in the DPD and DNS simulations, 
and demonstrates the difference we discussed above.

6 � Concluding remarks and future tasks

A mesoscale simulation procedure is proposed in this paper 
to explore the fluid–solid system with the inertia effect by 
utilizing DPD simulation. First, the dynamic behavior of 
the DPD system is improved by modifying the traditional 
dissipative weighting functions. Then, the equations of 
motion for the frozen sphere are formulated based on rigid 
body dynamics. Finally, several typical cases are tested, 
and compared with the classical correlations or our DNS 
simulation results.

Within the parameter ranges examined, it is shown that 
the simulation results obtained from the improved DPD 
method are not only consistent with those from continuum 
hydrodynamics, but also could predict certain degree of 
molecular-level details, which indicates that the proposed 
procedure could become a useful numerical tool to study 
the behavior of mesoscale fluid–solid system with the iner-
tia effect. Based on the preliminary results, the fluid–solid 
interaction problems with the inertia effect at a wider range 
of Reynolds numbers will be investigated in the future.
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