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Abstract A method is presented to determine isothermal

flows of three-component rarefied gaseous mixtures in long

tubes. The flow is subject to arbitrary but small local

density gradients, when linearization can be applied. The

mixture is described by the McCormack kinetic model,

which is solved by discretizing the spatial and velocity

spaces. Results are presented for the realistic and hard-

sphere molecular interactions. The dimensionless kinetic

coefficients are presented and commented for He–Ar–Xe

mixture in a wide range of the rarefaction and numerous

values of the mole fractions. The velocity profiles of the

components are also shown. An additional method is also

developed to solve the flow problem of the mixture driven

by a global pressure difference between the two ends of the

tube. The flow rates and the distributions of the mole

fractions and the pressure along the axis of the tube are

presented for pressure-driven flows of He–Ar–Xe mixture.

The flow of the ternary mixture exhibits the separation

phenomenon. The profiles of the mole fractions are non-

uniform.

Keywords Ternary gas mixture � McCormack kinetic

model � Discrete velocity calculation � Pressure-driven

flow � Gaseous separation

1 Introduction

Flows of rarefied gases through long channels have great

scientific importance. The analysis of these flows has

recently received significant attention, which is well justi-

fied by the appearance of gaseous micro- and nanoflows

and the revival of conventional applications in vacuum

technology (Kandlikar and Garimella 2006; Li 2008; Jou-

sten 2008; Sharipov 2013). When the mean-free path of the

molecules becomes comparable with the characteristic

length of the flow, the description should be based on the

kinetic level valid in the whole range of the gaseous rare-

faction (Cercignani 2006).

Previous numerical works have focused on the solution

of linearized kinetic equations by using deterministic or

probabilistic methods. For gaseous mixtures, more flow

parameters are involved in the description. The molecular

interactions can be defined by the original Boltzmann

equation or kinetic models. For computational perspectives,

the application of kinetic models is more straightforward

since their numerical solution requires less computational

effort. Among various approaches, e.g., Sirovich (1962),

Morse (1964), Andries et al. (2002), McCormack (1973),

the McCormack linearized kinetic model (McCormack

1973) seems the most suitable for the representation of

gaseous mixtures. All transport coefficients in the model

can be adjusted to arbitrary values; hence, the transport

processes of the mixture can accurately be described. The

McCormack kinetic model for binary gases has been solved

by using the discrete velocity method for flows between two

parallel plates (Naris et al. 2004b) and through long chan-

nels with rectangular (Naris et al. 2004a), circular (Sharipov

and Kalempa 2002; Szalmas 2013a), triangular, and trape-

zoidal (Szalmas and Valougeorgis 2010) cross sections. The

predictions of the model have been validated against the

experimental measurement of the flow rate of He–Ar gas

mixture for pressure-driven flows (Szalmas et al. 2010). The

comparative study yielded good agreement between the

theoretical and experimental flow rates. The model has also
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been solved by using the probabilistic variance-reduced

direct simulation Monte Carlo for various flow configura-

tions (Szalmas 2012, 2013b). The flows of gaseous mixtures

in channels are affected by the separation phenomenon

(Sharipov and Kalempa 2005; Szalmas and Valougeorgis

2010; Szalmas et al. 2010; Szalmas 2010). At finite rare-

faction, the number of molecular collisions is reduced, and

the different species acquire different macroscopic speeds,

resulting into the non-uniformity of the mole fractions of

the components. All previous works have referred to binary

gases, and practically, there is no similar work for mixtures

with more components. However, multi-component gases

can appear in applications and can exhibit interesting

physical phenomena. For this reason, it is useful to consider

such flows as well.

The goal of this paper is to determine isothermal flows

of ternary gaseous mixtures through long tubes. The most

general case is considered when arbitrary local density

gradients are present in the gas. The McCormack kinetic

model is used to describe the three-component gaseous

mixture. A methodology is developed to solve the model

and calculate the so-called kinetic coefficients. Results are

delivered in terms of the kinetic coefficients and the

velocity profiles for a selected He–Ar–Xe mixture in a

wide range of gaseous rarefaction and various values of the

mole fractions. Furthermore, a method is presented to

calculate the properties of a global pressure-driven flow in

a long tube. The component flow rates and the distributions

of the mole fractions and the pressure of He–Ar–Xe mix-

ture are shown and commented on.

2 Definition of the problem

The flow of a ternary gas mixture through a cylindrical tube

under isothermal condition is considered. The radius and

the length of the tube are denoted by R and L. It is assumed

that the tube is long R� L. The axis of the channel is

along the z0 Cartesian coordinate direction, while its cross

section is located in the ðx0; y0Þ coordinate sheet. The

problem has axial symmetry. The radial coordinate in the

cross section is also introduced as r0. The mixture consists

of three components, a ¼ 1; 2; 3. The number density and

the molecular mass of the species are given by na and ma.

The mole fraction of each species is introduced as

Ca ¼ na=n, where n ¼
P

a na is the total density.

The gaseous mixture is characterized by the rarefaction

parameter

d ¼ PR

lv0

; ð1Þ

where P is the total pressure, l is the viscosity, and v0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
is the characteristic molecular speed. Here,

kB; T are the Boltzmann constant and the temperature, and

m ¼
P

a Cama is the average mass of the mixture.

It is supposed that the gas is subject to the following

local dimensionless density gradients

Xa ¼
ona

oz0
R

na
: ð2Þ

The main interest of this work is in the particle fluxes of the

species defined by

J0a ¼ 2p
ZR

0

nau0azðr0Þr0dr0; ð3Þ

where u0azðr0Þ is the axial component of the velocity of

species a.

Since the channel is long, the speed of the flow is small,

and a linearized description can be used. In this work, the

most general case when all possible driving terms are

present is considered. The particle flux is a linear function

of the density gradients

J0a ¼ �
X3

b¼1

L0abXb; ð4Þ

where L0ab are the generalized kinetic coefficients. It is

noted that the elements of L0ab are subject to the Onsager

relation, L0ab ¼ L0ba (Sharipov 1994). The dimensionless

kinetic coefficients are introduced according to

Lab ¼
2

naAv0

L0ab; ð5Þ

where A ¼ R2p is the area of the cross section.

The primary goal of this work is to calculate the dimen-

sionless kinetic coefficients Lab. If these coefficients are

known, the local flow can be deduced for all possible values of

the driving forces Xa due to the linear description. In addition,

the flow rates and the distributions of the mole fractions and

the pressure for global pressure-driven flows of the ternary

mixture are calculated. This calculation is based on the pre-

computed kinetic coefficients and the consideration of the

conservation of the mass along the axis of the channel.

3 Method of solution

3.1 The McCormack model

The local flow problem is solved at the kinetic level by

utilizing the McCormack kinetic equation. Such a

description is valid in the whole range of the gaseous rar-

efaction. The McCormack model consists of a free relax-

ation term and a third-order polynomial source term

(McCormack 1973). The coefficients of the polynomial are
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related to the Chapman–Cowling integrals, which ensure

the correct transport properties in the hydrodynamic limit.

The gas is described by the velocity distribution function

faðv; r0; z0Þ with v denoting the microscopic velocity. This

function is linearized according to

faðv; r0; z0Þ ¼ f ð0Þa ðv; z0Þ½1þ haðv; r0Þ�; ð6Þ

where haðv; r0Þ is the perturbation function and

f ð0Þa ðv; z0Þ ¼ naðz0Þp�3=2v�3
0a e�v2=v2

0a ð7Þ

is the local equilibrium distribution with v0a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=ma

p
.

Dimensionless coordinates and velocity variables are

introduced according to r ¼ r0=R, z ¼ z0=R and ca ¼ v=v0a.

The cylindrical representation of the dimensionless

molecular velocity ðcar;u; cazÞ is defined by cax ¼
car cosðuÞ and cay ¼ car sinðuÞ.

By using the new coordinates, the McCormack kinetic

equation for the three-component gas mixture and the

cylindrical geometry reads such that

cax

oha

or
� cay

r

oha

ou
¼ xa

X3

b¼1

Qab � Xacaz; ð8Þ

where xa ¼ R=v0a and

Qab ¼ �cabha þ 2
ma

m

� �1=2

Aabcaz þ 4Babcaxcaz

þ 4

5

ma

m

� �1=2

Dabcaz c2
a �

5

2

� � ð9Þ

is the collision term. Here, the coefficients Aab, Bab, Dab

are given by

Aab ¼ cabuaz � mð1Þab ðuaz � ubzÞ �
1

2
mð2Þab qaz �

ma

mb
qbz

� �

;

Bab ¼ ðcab � mð3Þab Þpaxz þ mð4Þab pbxz;

Dab ¼ ðcab � mð5Þab Þqaz þ mð6Þab

mb

ma

� �1=2

qbz �
5

4
mð2Þab ðuaz � ubzÞ;

ð10Þ

where cab, mðkÞab are the collision frequencies. The relevant

macroscopic moments, the dimensionless axial velocity,

shear stress, and axial heat flux are defined by

uaz ¼
m

ma

� �1=2

p�3=2

Z

hacaze
�c2

adca; ð11Þ

paxz ¼ p�3=2

Z

hacaxcaze
�c2

adca; ð12Þ

qaz ¼
m

ma

� �1=2

p�3=2

Z

hacaz c2
a �

5

2

� �

e�c2
adca: ð13Þ

It is emphasized that Eq. (8) represents a system of three

equations, a ¼ 1; 2; 3. Each equation is for one of the three

components. The driving term Xa is a three-component

vector. Each component of Xa stands for the dimensionless

density gradient of the corresponding gaseous species. At

the tube wall, the diffuse reflection boundary condition is

assumed for the reflected molecules haðca; 1Þ ¼ 0 for

cax\0.

The dimensionless kinetic coefficients can be deduced

as

Lab ¼ 4

Z1

0

uazðrÞrdr ð14Þ

with the driving force Xg ¼ �Egb, where g ¼ ½1; 2; 3� and

Egb is the eigenmatrix. As indicated, the determination of

the kinetic coefficients requires three different calculations,

each one with different Xg ¼ �Egb. On the basis of the

outcome of these calculations, the macroscopic quantities

for an arbitrary driving term Xb can also be deduced by the

following linear decomposition

uaz¼�
X3

b¼1

uðbÞaz Xb; paxz¼�
X3

b¼1

pðbÞaxzXb; qaz¼�
X3

b¼1

qðbÞaz Xb;

ð15Þ

where u
ðbÞ
az , p

ðbÞ
axz and q

ðbÞ
az are the macroscopic quantities for

Xg ¼ �Egb. It is noted that u
ðbÞ
az ; p

ðbÞ
axz; q

ðbÞ
az formally are the

macroscopic quantities for the perturbation functions h
ðbÞ
a

defined by the decomposition ha ¼
P3

b¼1 h
ðbÞ
a Xb. However,

the introduction of h
ðbÞ
a is not needed in the present for-

malism since u
ðbÞ
az ; p

ðbÞ
axz; q

ðbÞ
az are defined by setting

Xg ¼ �Egb.

For the free molecular limit, d ¼ 0, an explicit analytical

expression for the dimensionless kinetic coefficients can be

obtained. In this situation, there is no exchange of moments

among the species. For pressure-driven flows, the free

molecular flow rates for single gases and binary mixtures

have been determined by many authors (see, e.g., Sharipov

and Kalempa 2002). For the present ternary mixture, the

kinetic coefficients in the free molecular limit are given by

Laa ¼
8

3
ffiffiffi
p
p

ffiffiffiffiffiffi
m

ma

r

ð16Þ

and Lab ¼ 0 for a 6¼ b.

3.2 Viscosity function

In order to define the model, the collision frequencies and

the quantity xa are to be determined. The collision fre-

quencies mðkÞab can be deduced by assuming a particular

interaction among the molecules. They are the functions of

the Chapman–Cowling integrals. The explicit expression of
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mðkÞab can be found in Szalmas (2010) for example. Typically,

mðkÞab are calculated in an arbitrary unit. Hence, after the

collision frequencies are set, xa is to be deduced in order to

obtain the proper normalization and connect the collision

frequencies to the rarefaction parameter.

To find xa, the viscosity of the model is calculated. This

is not a trivial task for a three-component mixture, but for

the McCormack model the mixture viscosity can be

determined exactly. Let us assume a plane shear flow along

the axial direction. For a while, imagine that the flow varies

only in the coordinate direction x0. On the basis of the

global shear flow, the viscosity is defined by

Pxz ¼ �
PH

dHv0

ou0z
ox0
¼ �l

ou0z
ox0

; ð17Þ

where Pxz is the dimensional shear stress, u0z is the axial

velocity of the mixture, H is the characteristic length, and

dH is the rarefaction parameter on the basis of H. The shear

stress can be expressed as Pxz ¼ 2P
P

a Capaxz. Hence, the

viscosity can be obtained by

l
ou0z
ox0
¼ �2P

X3

a¼1

Capaxz: ð18Þ

For the uniform shear flow, the McCormack model with

three components is analytically solvable. In this case, the

second derivative on the left-hand side of Eq. (8) is omit-

ted, Xa ¼ 0 and R ¼ H. The solution yields that the vis-

cosity can be written by

l ¼ P
X3

a¼1

Cal̂a; ð19Þ

where l̂a is the solution of the following system of linear

equations with three unknowns

Ual̂a � mð4Þab l̂b � mð4Þag l̂g ¼ 1 ð20Þ

with Ua ¼ mð3Þaa þ mð3Þab þ mð3Þag � mð4Þaa and a; b; g ¼ ½1; 2; 3�,
a 6¼ b 6¼ g 6¼ a. Equation (20) is analytically solved to

obtain l̂a.

In the kinetic equation, the quantity cab appears in the

combination ca :¼ caa þ cab þ cag, which is chosen in

order to cover the correct relaxation for a single gas

ca ¼ 1=l̂a. Finally, xa is defined such that

xa ¼ d
ma

m

� �1=2X3

a¼1

Cal̂a: ð21Þ

3.3 Numerical scheme

The description of the problem can be simplified by

introducing the following reduced distribution function

Y ðkÞa ðcax; cay; rÞ ¼ p�1=2 m

ma

� �1=2 Zþ1

�1

haðca; rÞ/ðkÞðcazÞe�c2
az dcaz

ð22Þ

for k ¼ 1; 2, where /ð1Þ ¼ caz and /ð2Þ ¼ c2
az � 3=2. In

terms of the new function, the kinetic equation reads

cax

oY
ðkÞ
a

or
� cay

r

oY
ðkÞ
a

ou
¼ xa

X3

b¼1

Q
ðkÞ
ab � wðkÞ

m

ma

� �1=2
Xa

2
;

ð23Þ

where

Q
ð1Þ
ab ¼ �cabY ð1Þa þ Aab þ 2

m

ma

� �1=2

Babcax þ
2

5
Dabðc2

aT � 1Þ

ð24Þ

and

Q
ð2Þ
ab ¼ �cabYð2Þa þ

3

5
Dab: ð25Þ

In this description, c2
aT ¼ c2

ax þ c2
ay and wð1Þ ¼ 1, wð2Þ ¼ 0.

The macroscopic moments are calculated according to

uaz ¼ p�1

Zþ1

�1

Zþ1

�1

Y ð1Þa e�c2
aT dcaxdcay; ð26Þ

paxz ¼ p�1 ma

m

� �1=2
Zþ1

�1

Zþ1

�1

Y ð1Þa caxe�c2
aT dcaxdcay; ð27Þ

qaz ¼ p�1

Zþ1

�1

Zþ1

�1

Yð1Þa ðc2
aT � 1Þ þ Yð2Þa

h i
e�c2

aT dcaxdcay:

ð28Þ

The boundary condition for the reduced distribution func-

tion at the tube wall can be written by Y
ðkÞ
a ðcax; cay; 1Þ ¼ 0

for k ¼ 1; 2 and cax\0.

Equations (23) and (26)–(28) are solved by the discrete

velocity method. The radial coordinate of the velocity

space is represented by a Gauss–Legendre quadrature

ca ¼ ni, 1� i�K. The polar coordinate of the same space

is discretized by u ¼ uj ¼ ðj� 0:5Þp=Lþ p, 1� j� L.

Finally, the radial coordinate is discretized as

r ¼ rk ¼ ðk � 1Þ=ðM � 1Þ, 1� k�M. The spatial deriva-

tives in Eq. (23) are approximated by finite differences,

and the integrals in Eqs. (26)–(28) are calculated by the

quadrature. The kinetic equation is solved by an iterative

manner. At a given iteration step, by assuming the mac-

roscopic moments at the right-hand side of Eq. (23), this

equation is integrated along the particle trajectories in order
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to yield the reduced distribution function. By using these

functions, the macroscopic moments in the next iteration

stage are calculated on the basis of Eqs. (26)–(28). The

new moments are inserted into Eq. (23) again, and the

whole iteration is repeated until a desirable convergence is

not reached. A convergence parameter � is defined as the

maximum of the sum of the absolute relative differences in

the velocities of the three species between two subsequent

iteration stages. The iteration is terminated when �\1e�7.

The complete solution method for the tube geometry is

described in Szalmas (2013b). That treatment has been

adjusted for the present three-component mixture. Inter-

ested reader may consult with that paper for more detail

about the numerical approach.

3.4 Pressure-driven flow in a tube

As an application of the approach, the flow of the ternary

mixture subject to a global pressure difference in a long

tube is calculated. In this context, the goal is to deduce the

flow rates of the species and the distributions of the mole

fractions and the pressure along the axis of the tube. This

calculation can be done by the consideration of the mass

conservation for each component. However, unlike previ-

ous approaches in the present work, the more general time-

dependent diffusion problem is solved to deduce the above-

mentioned quantities. The time-dependent treatment is

found to be more powerful numerically than the steady

calculation.

It is supposed that the flow is through the tube between

two large reservoirs having constant inlet (A) and outlet

(B) mole fractions and pressures as CA
a ;C

B
a and PA;PB. The

dimensionless flow rates are introduced according to

Ja ¼ J0a
2L

nAv0AR
; ð29Þ

where nA is the total number density at the inlet of the tube.

By using the dimensionless kinetic coefficients, the

dimensionless flow rate can be written by

Ja ¼ �
X3

b¼1

Lab
na

nA

onb

oẑ

1

nb
; ð30Þ

where ẑ ¼ z0=L is the non-dimensional coordinate along the

axis of the tube. If the flow is quasi-steady, i.e., the time-

scale of the macroscopic processes is much larger than that

of the microscopic ones, one can write that

ona

ot0
A ¼ � oJ0a

oz0
; ð31Þ

where t0 is the time variable. This equation by using Eq.

(30) can be rewritten in dimensionless form as

ofa

ot
¼ 1

2

X3

b¼1

o

oẑ
Lab

fa

fb

� �
ofb

oẑ
þ Lab

fa

fb

o2fb

oẑ2

" #

; ð32Þ

where fa ¼ faðt; ẑÞ ¼ naðt; ẑÞ=nA and t ¼ t0v0R=L2 are the

normalized density and the dimensionless time. The goal is

to obtain a solution for the steady-state problem. Equa-

tion (32) is supplemented with the following boundary

condition

faðt; 0Þ ¼ CA
a ; faðt; 1Þ ¼ CB

a
PB

PA
: ð33Þ

Equation (32) is solved by the finite difference method. The

temporal and spatial coordinates are discretized by t ¼ iDt,

i� 0 and ẑ ¼ ðj� 1ÞDẑ, Dẑ ¼ 1=ðN � 1Þ, 1� j�N. Here,

Dt and Dẑ denote the time and space steps. The dimensionless

density and kinetic coefficients are represented by faðt; ẑÞ ¼
fa½i; j� and Labðt; ẑÞ ¼ Lab½i; j�. The stable solution of diffu-

sion equations requires implicit treatments. In the present

work, the following implicit scheme is used

fa½iþ 1; j� 1þ Dt

Dẑ2

X3

b¼1

Lab½i; j�
" #

¼ fa½i; j� þ
Dt

8Dẑ2

X3

b¼1

�

Lab½i; jþ 1� fa½i; jþ 1�
fb½i; jþ 1�

�

�Lab½i; j� 1� fa½i; j� 1�
fb½i; j� 1�

�

� ðfb½i; jþ 1� � fb½i; j� 1�Þ

þ 4Lab½i; j�
fa½i; j�
fb½i; j�

ðfb½i; jþ 1� þ fb½i; j� 1�Þ
�

: ð34Þ

It is noted that Lab½i; j� depends on the local mole fractions

and the pressure, which can be deduced from fa½i; j�. For

this reason, the correct viscosity as an input parameter as

defined in Sect. 3.2 is used. Equation (34) is subject to the

boundary conditions of Eq. (33). By assuming an initial

state when fa½0; j� is taken to be a linear function between

the inlet and outlet values, Eq. (34) is iteratively solved for

obtaining the final steady state. The simulation is consid-

ered converged if the maximum of the relative difference

in the local flow rates between two subsequent iteration

steps is less than ð1e�10Þ=Dt.

A separate code to obtain steady-state results for the

pressure-driven flow of the ternary mixture on the basis of the

treatment in Szalmas and Valougeorgis (2010) has also been

developed. The steady-state results provided by the two

codes have been compared to each other at inlet rarefaction

parameter dA ¼ 1 for a test composition of He–Ar–Xe. The

results agree with four-figure accuracy and plus–minus one

in the fifth figure in terms of the dimensionless flow rates.

Such an agreement validates the present method.
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4 Results

4.1 Local flow problem

The kinetic coefficients are calculated for He–Ar–Xe

mixture at various values of the local rarefaction parameter

and mole fractions. The species of the mixture are num-

bered in the same order. Therefore, He, Ar, Xe are the first,

second, and third components. The mass ratios of these

gases are m1=m2 ¼ 4:0026=39:948 and m1=m3 ¼ 4:0026=

131:29. The collision frequencies have been calculated on

the basis of either the realistic potential (Exp) at temper-

ature T ¼ 300 K (Kestin et al. 1984) or the hard-sphere gas

(HS). In this latter case, the diameter ratios are

d2=d1 ¼ 1:665, d3=d1 ¼ 2:226, and the used expressions of

the Chapman–Cowling integrals are given in Naris et al.

(2004b) for example. Since there are three components of

the mixture, the whole set of collision frequencies are

deduced from the binary pair collision frequencies. Since

there are only binary interactions in the gas, this treatment

is sufficient. It is noted that all results presented in Sect. 4

are computed with the realistic potential, expect Table 4,

which shows results for the hard-sphere gas. Nevertheless,

it is expected that the realistic potential provides more

reliable data than the hard-sphere interaction. In the dis-

crete velocity solution, the following parameters are used

K ¼ ½16; 80� for d[ 2; d� 2, respectively, and L ¼ 160,

M ¼ 301. Before doing the actual calculation, the present

McCormack solver has been validated for binary He–Ar

and He–Xe mixtures at C1 ¼ 0:5 and d ¼ ½0:1; 1; 10� with

hard-sphere interaction. The corresponding kinetic coeffi-

cients of the present approach and those calculated by the

discrete velocity method of Szalmas (2013b) agree with

five-figure accuracy and plus–minus one in the sixth figure.

In addition, the flow rates for pressure-driven single gas

flows have been calculated by setting X1 ¼ 1;X2 ¼ X3 ¼ 0

and C1 ¼ 1;C2 ¼ C3 ¼ 0 at d ¼ ½0:1; 1; 10; 20; 40�. In this

case, the McCormack equation results into the Shakov (S)

model. L11 is compared to the corresponding flow rates

calculated by the method in Szalmas (2013b) and those

results ðQPÞ given in Sharipov (1996). In the former case,

the flow rates agree with five-figure accuracy, while in the

latter case, the absolute relative difference between L11 and

QP is less than 8e�4.

Table 1 shows the scaled dimensionless kinetic coeffi-

cients CaLab for He–Ar–Xe in the whole range of gaseous

rarefaction at mole fractions C1 ¼ 0:5 and C2 ¼ 0:2. For this

scaled coefficient, the Onsager relation is also hold; hence,

only six elements of the coefficient are shown. It is noted that

the Onsager relation is found true for six-figure accuracy in

the numerical simulation in all cases. The scaled dimen-

sionless kinetic coefficients provide the dimensionless flow

rate for the three driving terms, whereas Lab describes the

mean value of the velocity of the components. As it can be

seen in the table, the main coefficients CaLaa show the

Knudsen minimum in terms of the rarefaction parameter.

They start to decrease in the hydrodynamic region as

approaching the transition region, where they take a mini-

mum, and increase as the rarefaction approaches the free

molecular limit. These coefficients describe the flow rate of

those components that are accelerated. In the hydrodynamic

limit, C1L11 [ C3L33 [ C2L22 since C1 [ C3 [ C2. How-

ever, as the rarefaction is increased, the relation of C3L33 and

C2L22 changes: C3L33\C2L22 for d� 0:6. This can be

explained by the fact that as the rarefaction is increased, the

components become more independent and the lighter spe-

cies tends to travel faster than the heavier one. The cross

coefficients CaLab, a 6¼ b decrease with increasing rarefac-

tion. In the hydrodynamic limit, there are more frequent

intermolecular collisions resulting into finite cross coeffi-

cients, which might be in the same order as CaLaa. However,

as the rarefaction is increased, there are fewer molecular

collisions; hence, the cross coefficients tend to zero as

d! 0. The last row of the table shows the global kinetic

coefficient LPP for a pressure-driven flow

X1 ¼ X2 ¼ X3 ¼ �1. For the ternary gas, it is defined as

LPP ¼
P

a CaLaa. This coefficient provides the dimension-

less total flow rate for a pressure-driven flow. As it can be

seen, LPP exhibits the Knudsen minimum as all CaLaa do so.

It takes its minimum in the transition region at d ¼ 5 in the

table. Finally, it is mentioned that for all cases in Table 1, the

free molecular kinetic coefficients have also been calculated.

These values agree with the corresponding analytical results,

Eq. (16), with five-figure accuracy.

Tables 2 and 3 present the scaled kinetic coefficients for

He–Ar–Xe versus C1 and C2, respectively, but with a fixed

another mole fraction at rarefaction parameter d ¼ 1 in

order to examine the influence of the mole fractions. In

Table 2, C1L11 and C1L12 monotonically increase, but

C3L33 and C2L23 monotonically decrease, with increasing

C1 due to the increasing amount of He compared to Xe. In

the limiting cases, C1L11 ¼ C1L12 ¼ 0 at C1 ¼ 0 and

C3L33 ¼ C2L23 ¼ 0 at C1 ¼ 0:8. C1L13 is zero in these two

limiting cases, but it has a maximum at C1 ¼ 0:4. This can

be explained by the fact that if C1 ¼ 0, there is no He and

C1L13 ¼ 0; on the other hand, if C1 ¼ 0:8, there is no Xe

and L13 ¼ 0. Since the kinetic coefficients are positive, a

maximum for C1L13 is presented at a middle value of C1.

C2L22 monotonically decreases with increasing C1. This

latter behavior is caused by the dependence of the viscosity

on the mole fractions. Since the viscosity of Xe is larger

than those of He and Ar, if the amount of Xe is increased,

then the total pressure should be lowered to simulate the

same rarefaction parameter d ¼ 1. As a consequence, the
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experiment shifts toward the free molecular region if C1 is

decreased; hence, a larger L22 is obtained. Table 3 shows

the dependence of CaLab on C2. C2L22 and C1L12 mono-

tonically increase, but C3L33 and C1L13 monotonically

decrease, if C2 is increased due to the increasing fraction of

Ar compared to Xe. On the other hand, C2L23 is zero at the

limiting values C2 ¼ ½0; 0:5�, but it has a maximum at

C2 ¼ 0:2. Finally, it can be seen that C1L11 monotonically

decreases with increasing C2. These phenomena can be

explained by the same way as for Table 2 but with inter-

changing species 1; 2.

Table 4 shows the scaled kinetic coefficients calculated

by the hard-sphere model versus the rarefaction parameter

for He–Ar–Xe at C1 ¼ 0:5 and C2 ¼ 0:2. This table is

Table 1 Scaled dimensionless

kinetic coefficients CaLab for

He–Ar–Xe mixture at C1 ¼ 0:5
and C2 ¼ 0:2 versus rarefaction

parameter

d C1L11 C2L22 C3L33 C1L12 C1L13 C2L23 LPP

0.05 2.483 3.099e-1 2.604e-1 6.400e-3 7.216e-3 4.521e-3 3.053

0.1 2.388 2.956e-1 2.523e-1 1.197e-2 1.364e-2 8.366e-3 2.936

0.2 2.252 2.752e-1 2.423e-1 2.177e-2 2.528e-2 1.500e-2 2.769

0.4 2.063 2.482e-1 2.312e-1 3.827e-2 4.586e-2 2.593e-2 2.542

0.6 1.926 2.295e-1 2.251e-1 5.230e-2 6.431e-2 3.504e-2 2.380

0.8 1.817 2.153e-1 2.215e-1 6.474e-2 8.134e-2 4.301e-2 2.254

1 1.728 2.041e-1 2.194e-1 7.603e-2 9.728e-2 5.016e-2 2.152

1.5 1.560 1.843e-1 2.182e-1 1.008e-1 1.336e-1 6.560e-2 1.962

2 1.442 1.717e-1 2.205e-1 1.223e-1 1.662e-1 7.872e-2 1.834

2.5 1.357 1.636e-1 2.249e-1 1.417e-1 1.960e-1 9.038e-2 1.745

3 1.295 1.585e-1 2.307e-1 1.596e-1 2.239e-1 1.011e-1 1.684

4 1.218 1.537e-1 2.450e-1 1.926e-1 2.752e-1 1.205e-1 1.617

5 1.182 1.536e-1 2.616e-1 2.231e-1 3.226e-1 1.385e-1 1.597

7 1.176 1.607e-1 2.987e-1 2.802e-1 4.107e-1 1.720e-1 1.636

10 1.253 1.799e-1 3.593e-1 3.611e-1 5.344e-1 2.197e-1 1.792

15 1.469 2.208e-1 4.657e-1 4.909e-1 7.313e-1 2.968e-1 2.156

20 1.731 2.660e-1 5.749e-1 6.185e-1 9.238e-1 3.728e-1 2.572

30 2.303 3.610e-1 7.963e-1 8.710e-1 1.304 5.239e-1 3.461

40 2.901 4.585e-1 1.020 1.122 1.681 6.744e-1 4.379

Table 2 Scaled dimensionless

kinetic coefficients CaLab for

He–Ar–Xe mixture at C2 ¼ 0:2
and d ¼ 1 versus C1

C1 C1L11 C2L22 C3L33 C1L12 C1L13 C2L23

0 0.0 2.737e-1 1.025 0.0 0.0 1.211e-1

0.1 4.418e-1 2.625e-1 8.295e-1 1.389e-2 4.192e-2 1.081e-1

0.2 8.436e-1 2.503e-1 6.498e-1 2.841e-2 7.332e-2 9.455e-2

0.3 1.199 2.368e-1 4.872e-1 4.362e-2 9.358e-2 8.047e-2

0.4 1.498 2.216e-1 3.432e-1 5.953e-2 1.019e-1 6.571e-2

0.5 1.728 2.041e-1 2.194e-1 7.603e-2 9.728e-2 5.016e-2

0.6 1.865 1.831e-1 1.183e-1 9.259e-2 7.869e-2 3.376e-2

0.7 1.862 1.560e-1 4.337e-2 1.074e-1 4.545e-2 1.665e-2

0.8 1.583 1.151e-1 0.0 1.138e-1 0.0 0.0

Table 3 Scaled dimensionless

kinetic coefficients CaLab for

He–Ar–Xe mixture at C1 ¼ 0:5
and d ¼ 1 versus C2

C2 C1L11 C2L22 C3L33 C1L12 C1L13 C2L23

0 2.034 0.0 4.897e-1 0.0 1.603e-1 0.0

0.1 1.887 1.010e-1 3.431e-1 3.789e-2 1.292e-1 3.351e-2

0.2 1.728 2.041e-1 2.194e--1 7.603e-2 9.728e-2 5.016e-2

0.3 1.555 3.062e-1 1.200e-1 1.136e-1 6.467e-2 4.969e-2

0.4 1.361 4.018e-1 4.628e-2 1.492e-1 3.190e-2 3.241e-2

0.5 1.137 4.794e-1 0.0 1.801e-1 0.0 0.0
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given in the same scenario as Table 1. In Table 4, the

influence of the intermolecular interaction can be seen. The

main coefficients CaLaa are nearly the same as those in

Table 1 in the hydrodynamic and free molecular limits. In

the former case, the diffusion is negligible; hence, the

single gas assumption gives a good approximation of the

flow. Since the hard-sphere diameters are determined on

the basis of the viscosity, the result is not sensitive to the

intermolecular potential. The same can be said about the

free molecular limit, where there are no collisions. The

highest absolute relative difference, jLðHSÞ
aa =L

ðExpÞ
aa � 1j, is

5:1 %, which occurs at d ¼ 2 for L11. However, the cross

Table 4 Scaled dimensionless

kinetic coefficients CaLab

computed with hard-sphere

potential for He–Ar–Xe mixture

at C1 ¼ 0:5 and C2 ¼ 0:2 versus

rarefaction parameter

d C1L11 C2L22 C3L33 C1L12 C1L13 C2L23 LPP

0.05 2.473 3.101e-1 2.599e-1 6.887e-3 8.631e-3 4.460e-3 3.043

0.1 2.372 2.959e-1 2.516e-1 1.288e-2 1.622e-2 8.276e-3 2.919

0.4 2.019 2.481e-1 2.289e-1 4.094e-2 5.310e-2 2.587e-2 2.496

1 1.661 2.032e-1 2.158e-1 8.042e-2 1.086e-1 5.032e-2 2.080

2 1.368 1.701e-1 2.163e-1 1.275e-1 1.788e-1 7.899e-2 1.755

5 1.126 1.521e-1 2.580e-1 2.274e-1 3.325e-1 1.386e-1 1.536

10 1.218 1.788e-1 3.568e-1 3.638e-1 5.405e-1 2.197e-1 1.754

40 2.891 4.581e-1 1.019 1.123 1.683 6.742e-1 4.367
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coefficients Lab; a 6¼ b, which describe diffusion, are more

sensitive to the intermolecular interactions. The maximum

of the absolute relative difference in the cross coefficients

between the two approaches is 20 % for L31 at d ¼ 0:05.

The results indicate that when diffusion effects play an

important role, care must be taken to chose the intermo-

lecular potential well.

In Fig. 1, the dimensionless velocity profile is plotted

for He–Ar–Xe at C1 ¼ 0:5, C2 ¼ 0:2 and d ¼ ½1; 10� for

the three types of flow when one of the components of Xa is

taken to be minus one and the another two components are

zero. It can be seen that the velocity profile is parabolic-

like in all cases. uaz is the largest for that component, which

is accelerated, and the another two uaz are smaller. The

difference between the largest velocity and the another two

ones increases with increasing rarefaction since the dif-

ferent species become more and more independent if the

rarefaction is increased. It can also be seen that the velocity

profiles of those species, which are not accelerated, are

relatively close to each other.

4.2 Global pressure-driven flow

The flows of He–Ar–Xe mixture driven by pressure dif-

ference through a long tube are examined. The inlet and

outlet mole fractions are fixed at CA
1 ¼ CB

1 ¼ 0:5 and

CA
2 ¼ CB

2 ¼ 0:2. The dimensionless flow rates and the

distributions of the pressure and the mole fractions are

calculated at different inlet rarefaction parameter dA and

pressure ratio P ¼ PA=PB by using the methodology of

Sect. 3.4. The numerical parameters are N ¼ 200 and

Dt ¼ 1. The scope of the simulations is to obtain steady-

state results. The larger time step, which can only be used

in implicit schemes, provides faster convergence. The

kinetic coefficients Lab are precomputed in a wide range of

gaseous rarefaction and at numerous values of the mole

fractions to form a database. Then, the integration in

Eq. (34) is carried out. The local values of the kinetic

coefficients in Eq. (34) are deduced by using a linear

interpolation of the values in the database.

Table 5 presents the dimensionless flow rates of the

components Ja. As it can be seen, they increase with

increasing pressure ratio, and the relation J1 [ J3 [ J2 is

Table 5 Dimensionless flow

rates for pressure-driven flow of

He–Ar–Xe mixture versus

pressure ratio for dA ¼ 1 (top)

and dA ¼ 10 (bottom)

P J1 J2 J3 J1a J2a J3a

2 9.948e-1 1.614e-1 1.720e-1 9.547e-1 1.647e-1 1.821e-1

3 1.354 2.146e-1 2.257e-1 1.275 2.194e-1 2.422e-1

4 1.544 2.415e-1 2.524e-1 1.435 2.467e-1 2.722e-1

5 1.661 2.579e-1 2.685e-1 1.531 2.631e-1 2.901e-1

6 1.741 2.690e-1 2.794e-1 1.595 2.740e-1 3.020e-1

7 1.799 2.771e-1 2.872e-1 1.641 2.818e-1 3.106e-1

2 9.385e-1 3.234e-1 4.733e-1 1.061 3.741e-1 5.470e-1

3 1.192 4.096e-1 5.995e-1 1.410 4.961e-1 7.251e-1

4 1.310 4.497e-1 6.583e-1 1.583 5.566e-1 8.133e-1

5 1.379 4.732e-1 6.927e-1 1.686 5.927e-1 8.660e-1

6 1.425 4.887e-1 7.154e-1 1.755 6.167e-1 9.010e-1

7 1.457 4.998e-1 7.316e-1 1.804 6.338e-1 9.260e-1
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hold in all cases. It is worth determining the ratio Ja=J, where

J ¼
P

a Ja. On the basis of the results, it can be deduced that

Ja=J deviates from the ideal value of CA
a , which would be

present in the strict hydrodynamic limit. This indicates that

the mixture cannot be modeled as a single gas at finite rar-

efaction. The flow rate Jaa computed with a constant mean

rarefaction parameter d0 ¼ ðdA þ dBÞ=2 and inlet mole

fractions CA
a in the dimensionless kinetic coefficients Lab is

also shown. Jaa can significantly differ from Ja. The maxi-

mum absolute relative difference jJaa=Ja � 1j is 8:8 % and

27 % for dA ¼ 1 and 10, respectively.

Figures 2 and 3 show the distributions of the normalized

mole fractions and pressure, respectively, for the mixture at

dA ¼ ½1; 10� and various values of the pressure ratio. In

Fig. 2, it can be seen that the mole fractions are non-uniform.

In the case of He, the mole fraction decreases in the first part

of the channel, takes a minimum somewhere in the second

part, and starts to increase to reach the outlet value. In the

case of Ar and Xe, a mirrored behavior is shown. The results

indicate that the gas separates in the tube. The non-unifor-

mity of the mole fraction increases with increasing pressure

ratio, and it is larger for dA ¼ 10 than 1. Generally, the mole

fraction of Ar, of which mass is most close to the mean mass

of the mixture, is most uniform. Figure 3 shows that the

pressure monotonically decreases along the axis of the

channel. At dA ¼ 1, the pressure profile is more linear than at

dA ¼ 10. The complete linear pressure distribution refers to

the free molecular limit, while the pressure profile is more

nonlinear as approaching the hydrodynamic limit.

5 Conclusion

In this paper, a methodology has been presented to compute

isothermal flows of rarefied three-component gaseous mix-

tures in long tubes. The mixture is described by the Mc-

Cormack linearized kinetic model, which is solved by the

discrete velocity method. An additional method has also

been developed to determine the flow of the mixture subject

to a global pressure difference through the tube. The local

flow problem has been solved for He–Ar–Xe mixture in a

wide range of the gaseous rarefaction and various values of

the mole fractions. The kinetic coefficients are tabulated for

these cases, and demonstrative velocity profiles are shown.

Pressure-driven flows of He–Ar–Xe mixture in a long tube

have also been calculated. The flow rates and the distribu-

tions of the mole fractions and the pressure are presented.

The ternary mixture exhibits the gaseous separation. The

distributions of the mole fractions are non-uniform. The

developed methodology can be useful in the proper deter-

mination of the flow of three-component gaseous mixtures in

a wide range of gaseous rarefaction.
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