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Abstract We present a quasi-continuum self-diffusion

theory that can capture the ordering effects and the density

variations that are predicted by non-equilibrium molecular

dynamics (NEMD) in nanochannel flows. A number of

properties that affect fluid ordering in NEMD simulations

are extracted and compared with the quasi-continuum

predictions. The proposed diffusion equation requires the

classic diffusion coefficient D and a micro structural

internal length g that relates directly to the shape of the

molecular potential of the NEMD calculations. The quasi-

continuum self-diffusion theory comes as an alternative to

atomistic simulation, bridging the gap between continuum

and atomistic behavior with classical hydrodynamic rela-

tions and reduces the computational burden as compared

with fully atomistic simulations.

Keywords Quasi-continuum theory � Molecular

dynamics � Self-diffusion equation � Nanochannel flows �
Fluid ordering � Density profile oscillations

List of symbols

A1–4 Constants determined by BC

A, B Constants for inhomogeneous diffusion

Ai, Bi Airy functions

c Concentration

c1–3 Real constants

D Bulk diffusion coefficient

Dap Apparent diffusion coefficient

F Diffusion functional

Fap Apparent diffusion functional

1F1 Hypergeometric function

Fext Magnitude of external driving force

g Wavelength

G Gibbs free energy

G0 Gibbs free energy at equilibrium

h Boundary value for concentration

H Hermitian polyomial

hch Channel height

J Diffusional flux

K Gradient energy coefficient

K* Spring constant

Lx Length of the computational domain in the

x-direction

Ly Length of the computational domain in the

y-direction

Lz Length of the computational domain in the

z-direction

M Diffusional mobility

n Integer number, n = 0, 1, 2…
p Pressure

q Boundary value for the non-classic flux term

req Position of a wall atom on fcc lattice site

ri Position vector of atom i

rij Distance vector between ith and jth atom

T Temperature

S Area

u(rij) LJ potential of atom i with atom j

V Volume

w Boundary condition for the normal flux

z* Normalized distances in the z-direction

Greek letters

e Energy parameter in the LJ potential

l Local chemical potential
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q Fluid density

r Length parameter in the LJ potential

1 Introduction

Nanofluidics has emerged as an important subfield of

nanotechnology with important applications in biomedical

science where minute amount of fluids move through

microtubules. Drug delivery investigations stand to profit

enormously from studies of nanochannel flows. For such

flows, non-equilibrium molecular dynamics (NEMD)

offers an effective simulation method, as has been recently

undertaken by many researchers (Binder et al. 2004;

Hartkamp et al. 2012; Sofos et al. 2009a, b; Li and Liu

2012). Within this framework, simulation of planar

Poiseuille flow in a channel offers the best way of estab-

lishing the range of applicability of continuum-based the-

ories. Density profiles reveal strong oscillations in the

number of fluid atoms at layers adjacent to the walls. This

inhomogeneity in the fluid concentration in the channel

cannot be explained by the classical diffusion theory.

Nanofluidics is not the only field where ordering of the

mater takes place. Magnetization, martensitic transforma-

tion and dislocations also show ordering of mater (Stanley

1971).

Somers and Davis (1991) presented an early full ana-

lysis of density profiles for channel widths from 0.6 to

2.35 nm. They observed that fluid atoms are ordered in

distinct layers, symmetrical with respect to the midplane

of the channel. These layers are not affected by the

magnitude of the external driving force (Nagayama and

Cheng 2004). The fluid density peak values decreases as

temperature increases. The stiffness of the walls affects

the fluid ordering for channels of very small widths (Pri-

ezjev 2007). Average fluid density also affects fluid

ordering in a significant way. Iwai et al. (1996) performed

Monte Carlo calculations and showed variation in the

radial distribution function of supercritical carbon dioxide

around OH groups of xylenol isomers at 308.15 K and

13 MPa.

In the present paper, we will develop a new quasi-con-

tinuum self-diffusion theory that can capture the ordering

effects and the density variations that are predicted by non-

equilibrium molecular dynamics (NEMD) in nanochannel

flows from Sofos et al. (2009a). A new diffusion equation

is proposed, together with new boundary conditions. The

solution of the new diffusion equation provides a better

approximation to the density variations. The flux consti-

tutive equation requires the classic self-diffusion coeffi-

cient, D, and, in addition, a micro structural internal length,

g, that relates directly to the shape of the molecular

potential that is used in the NEMD calculations. There are

several benefits for choosing a quasi-continuum self-dif-

fusion theory instead of NEMD. Aside from the smaller

computational cost, the quasi-continuum theory can easily

describe complex two and three dimensional domains,

include various boundary conditions and incorporate con-

vective terms, if combined with other classic hydrody-

namic numerical schemes.

1.1 A quasi-continuum theory of diffusion in fluids

Diffusional flux J is spontaneous and leads to the decrease

in the Gibbs free energy G of a non-reacting fluid. Note

that we use G in case of constant temperature, as in the

examples that we will study. Our analysis has some simi-

larities with the spinodal decomposition of a binary solid

system (Cahn and Hilliard 1958); however, the present

theory is not the same.

The basic constitutive equation concerns the driving

force for diffusion and is taken as the gradient of the local

chemical potential l (Darken 1948):

J ¼ �Mrl ð1Þ

where M is the diffusional mobility and is positive. The

above relation implies isotropy (true for most fluids) and

reminds Ohm’s law of electric conductivity. Eq. (1) implies

that we will ignore the effect of the Brownian motion.

Cook (1970) included the influence of the thermal fluctu-

ations, adding the gradient of a fluctuating field.

In the absence of an external field (e.g., gravity), the

local chemical potential is related to the free energy density

as1

l ¼ oG

oc
ð2Þ

at constant pressure (p = const) and temperature

(T = const). G is the free energy per unit molecule volume,

and we can express it as (Cahn and Hilliard 1959)

G ¼ GoðcÞ þ KðrcÞ2 ð3Þ

where c is the concentration (c = c(x, t) is a function of

position x and time t,[c] = [molecules/m3]) and K is the

gradient energy coefficient (K [ 0). The energy term

K(rc)2 is a measure of the increase in energy due to the

non-uniform environment of atoms in a concentration

gradient and implies a surface tension due to the gradient of

the concentration. The constant K is approximately inde-

pendent of composition and temperature. K depends on the

number of molecules per unit volume, the critical tem-

perature and the square of the intermolecular distance.

Note that Eq. (3) implies that G changes from point to point

1 If a gravitational field / is present, we replace l with lþ m/ (m is

the mass per mole). For / ¼ const, the present results will still hold

true.

1012 Microfluid Nanofluid (2014) 17:1011–1023

123



in the control volume of a fluid in thermodynamic equi-

librium. In the equations, r2 is the Laplacian operator

(r2 = q2/qx1
2 ? q2/qx2

2 ? q2/qx3
2, for Cartesian coordi-

nates) and r is the gradient vector (r = {q/qx1, q/qx2,

q/qx3}, for Cartesian coordinates).

Combining Eqs. (2) and (3), we obtain

l ¼ oGo

oc
þ 2Kr2c ð4Þ

Then, the Fick’s 2nd law can be found from Eqs. (1) and

(4)

J ¼ �M
o2Go

oc2
rcþ 2Kr r2c

� �
� �

ð5Þ

Define as the bulk diffusion D the positive quantity

D ¼ M
o2Go

oc2
ð6Þ

Note that, if D is a fluid constant parameter, Eq. (6) implies

that o2Go

oc2 is a positive constant. Therefore,

J ¼ �D rcþ 2MK

D
rðr2cÞ

� �
ð7Þ

is the new 1st Fick’s law. In the case where r2c & const,

or for K & 0, we obtain the classic Fick’s law

Jclassic ¼ �Drc ð8Þ

Taking the conservation of mass, in the absence of

convective (flow) and source (reactions, radiation, etc.)

terms:

oc

ot
¼ �rJ ð9Þ

Combining Eqs. (7) and (9), we obtain the augmented 2nd

Fick’s law

oc

ot
¼ Dr2cþ 2MKr4c ð10Þ

Note that the constant

g2 ¼ 2KM

D
ð11Þ

has dimensions [g2] = [L2]. This will provide a dominant

wave length of order g and a wave number 2p/g. Therefore,

for t C 0,

oc

ot
¼ D r2cþ g2r4c

� �
ð12Þ

We again observe that in case r2c & const or K & 0, we

obtain the classic 2nd Fick’s law

oc

ot

����
classic

¼ Dr2c ð13Þ

Equation 12 describes a quasi-continuum theory of self-

diffusion and can be solved provided we describe appro-

priate initial and boundary condition.

The Cahn–Hilliard spinodal decomposition diffusion

law (Cahn 1961) uses the integral form of Eq. (3) as a total

free energy functional, leading to a negative diffusion

coefficient D and a similar form with Eq. (12).

1.2 Initial and boundary conditions

In order to solve Eq. (12) with respect to the concentration

c as a function of the coordinates z and the time t, we need

to establish initial conditions at a certain time t = t*

c�ðzÞ ¼ cðz; t�Þ ð14Þ

To establish boundary conditions, we formulate the steady

state version of Eq. (12)

D r2c� g2r4c
� �

¼ 0 ð15Þ

We construct a functional F of the form

Fðr2cÞ ¼ D

2

ZZZ

V

r2c
� �

ðr2cþ g2r4cÞdV ð16Þ

With the volume integral covering the volume V of the

fluid that diffusion takes place. Using Green’s theorem

(Courant and Hilbert 1953)

2

D
Fðr2cÞ ¼

ZZZ

V

ðr2cÞ2 � g2rðr2cÞ � rðr2cÞ
n o

dV

þ g2

ZZ

ov

r2c
� �

rðr2cÞ � n
� �

dS ð17Þ

where n is the outer unit normal vector to the boundary

surface oV of the volume V. We can then immediately

observe the boundary condition (BC):

g2rðr2cÞ � n ¼ q on oV ð18Þ

The functions F and q will be considered as known func-

tions of z 2 oV (surface coordinates) and of t C to (time).

From the BC (18) and the variation of F(r2c) with

respect to r2c, we obtain the Euler–Lagrange equation

which is exactly as the steady state Eq. (15). In order to

have minimum for F(r2c), we must have the additional

Legendre condition

ðr2cÞ2 � g2rðr2cÞ � rðr2cÞ� 0 ð19Þ

In addition to the non-classic BC (18), we have the classic

BC:

c ¼ h or rc � n ¼ f on oV ð20Þ

From Eq. (20), we also combine the non-classic BC in the

form that is physically meaningful
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n � Jðz; tÞ ¼ �D rcþ g2rðr2cÞ
� �

� n ¼ �Dðf þ q) ¼ w

on oV ð21Þ

where h and w are known functions of z 2 oV (surface

points) and of time t C to.

Note that the BC (21) reflects directly to the chemical

potential at the boundary (Eq. (1)), which also relates to the

roughness of the boundary walls (Priezjev 2007) and to the

hydrophilic/hydrophobic wall–fluid interaction (Voronov

et al. 2006). Wetting condition could correspond to

rc�n = 0, so q = 0 in Eq. (18). Local conservation of

mass supposes that w = 0 and combined with q = 0 gives

f = 0.

Suppose that an apparent diffusion coefficient Dap can

be related to the classic diffusion equation as

oc

ot
¼ Dapr2c ð22Þ

and the corresponding steady state equation

Dapr2c ¼ 0 ð23Þ

We can construct a functional Fap

Fapðr2cÞ ¼ Dap

2

ZZZ

V

ðr2cÞ2dV ð24Þ

The minimization of Fap leads to Eq. (23) (Crank 1975).

In this case, we can use the BC from Eq. (20).

Using the enclosure theorem (Courant and Hilbert 1953)

and the condition of Eq. (19), we have

minFðr2cÞ�minFapðr2cÞ ð25Þ

Using the minimization function r2c for both F(r2c)

and Fap(r2c), we obtain

Dap

D
� 1� g2

RR
V
rðr2cÞ � rðr2cÞdV
RR

V
ðr2cÞ2dV

� 1 ð26Þ

This result states that the apparent diffusion constant Dap is

less than the ‘‘true’’ (intrinsic) bulk diffusion constant D.

Note that F(r2c) can be thought of as an evolutionary

criterion toward the steady state, since the transient

solution r2c (without convection) is an admissible func-

tion for the minimum of F(r2c) (Prigogine and Glan-

sdorff 1965).

Let us formulate a restricted variational principle:

Define the local potential

Fðr2c;r2coÞ

¼
Z t

0

ZZZ

V

D

2
ðr2cÞ2 � g2rðr2cÞ � rðr2cÞ
h i� �

�r2c
oco

ot

�
dV dt ð27Þ

with known additional initial condition r2c(z, t = 0) = 0.

We seek to make the local potential (Eq. 27) stationary

with respect to variations inr2c, holding co constant. After

the variation, we set c = co (c is the true solution) and we

obtain

Dðr2cþ g2r4cÞ � oc

ot
¼ 0 ð28Þ

and

g2rðr2cÞ � n ¼ 0 ð29Þ

Clearly, Eq. (28) is the dynamic form of Fick’s 2nd law

and Eq. (28) provides the new boundary condition for the

problem.

1.3 The 1D steady state example

It is instructive to solve the 1D steady state problem:

d2c

dz2
þ g2 d4c

dz4
¼ 0 ð30Þ

The solution of Eq. (30) is detailed in Appendix 1. We

have

c

co

¼
�c

co
� 2g

hch
sin hch

2g

1� 2g
hch

sin hch

2g

þ
1� �c

co

1� 2g
hch

sin hch

2g

cos
hch

2
� z

g

 !

ð31Þ

Note that for hch C 2 g, c(z) is positive for all z, provided

that �c=co� 1.

If g
h
! 0, A1 ! �c. For c C 0, for all z, c

co
! �c

co
! 1 and

this is the classic solution ðc ¼ �c ¼ coÞ. In other words, as

the channel becomes large compared to g, the classic

solution is recovered. The result of Eq. (31) was found to

be in agreement with the molecular dynamics results of

Sofos et al. (2009a) with a dominant wavelength g & 0.9r,

where r is the basic length that controls the Lennard-Jones

potential (r = 0.3405 nm for the Ar liquid used in our

molecular dynamics computations).

2 The case of inhomogeneous diffusion mobility

In Sect. 2, we treated the diffusion D as a positive constant.

However, this may not be true in cases of confinement of

the fluid in thin channels or other devices. The solid walls

usually decrease the diffusion close to the walls, but can

under certain circumstances increase it:

D ¼ DðzÞ[ 0 z 2 V ð32Þ
maxDðzÞ or minDðzÞ z 2 oV ð33Þ

In this case, Eq. (11) describes a length that depends on z

g ¼ gðzÞ ð34Þ
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To fix ideas [as indicated by the molecular dynamics cal-

culation in Sofos et al. (2009b)], let us take the steady state

case in one dimension with the symmetric inhomogeneous

diffusion distribution (-hch/2 B z B hch/2)

D ¼ D0 1� A2z2
� �

ð35Þ

where D0 the bulk diffusion and A constant with 1 C A2hch
2 /

4. Molecular dynamics results confirm the above distribu-

tion for channels that have symmetric wall conditions. In

Fig. 1, for an hch = 18.58r (hch = 6.4 nm) channel, we

divide the channel in five layers (L1–L5), each one of

width about 3.7r and calculate the local average diffusion

coefficient, in each layer. These results are then used to

draw the 2nd order polynomial fit shown in Fig. 1. We

observe a good agreement of calculated data to the pro-

posed fit and, moreover, calculated local diffusion coeffi-

cient values seem to be in agreement with values obtained

using Eq. (35). All the necessary diffusion coefficient

values are taken from the molecular dynamics simulation

results of Sofos et al. (2009b).

The particular form of Eq. (35) can be explained by a

potential that incorporates the wall interactions to include

wetting conditions (Marko 1993; Lipowsky and Fisher

1986; Lipowsky and Huse 1986).

Note that both A and D0 depend on the channel size,

where -hch/2 B z B hch/2. Clearly, as we approach the

channel walls (z = ± hch/2), diffusion decreases.

Then

g2 ¼ 2KM

Do 1� A2z2ð Þ ¼
g2

o

1� A2z2
ð36Þ

It must be recalled that go \ hch/2. The diffusion Eq. (30)

becomes

d4c

dz4
þ 1� A2z2

g2
o

d2c

dz2
¼ 0 ð37Þ

The solution of Eq. (37) is shown in Appendix 2. In a

more general case, we can use the approximate method of

Wentzel, Kramers and Brillouin (WKB) for solving the

stationary Schrodinger’s equation that resembles up to a

sign Eq. (37). We can write

g2 ¼ g2
o=P2ðzÞ ð38Þ

Then the approximate solution of Eq. (37) becomes

d2c

dz2
� c1ffiffiffi

P
p sin

1

go

Z
PðzÞdzþ c2


 �
ð39Þ

For P(z) = (1 - A2z2)1/2

Z
PðzÞdz ¼ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2z2

p
þ arcsinðAzÞ

2A
ð40Þ

A ‘‘quantum’’ condition can be stated by observing that an

increase in phase 1
go

R
Pdzþ c2 in a complete rotation

would have to be an integer multiple of 2p. Let the

boundaries z = ± hch/2 be the two turning points. Then

Zhch=2

�hch=2

PðzÞdz ¼ 2np go; n ¼ 0; 1; 2; . . . ð41Þ

In the present example, Eq. (40) gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A2
hch

2


 �2
s

þ arcsin A hch=2ð Þ
A hch=2

0

@

1

A ¼ 2p
2go

hch

n ð42Þ

If we know any two of hch, go and A, we can estimate the

third one, provided we can estimate the integer n (A = 0 in

this case).

For the case of asymmetric wall conditions, refer to

Appendix 3.

3 Molecular system modeling

3.1 System details

The flow system simulated by non-equilibrium molecular

dynamics (NEMD) is consisted of two infinite plates with

argon flowing between them (equivalent to Poiseuille

flow), as shown in Fig. 2. The LJ potential is used here:

uLJðrij ¼ 4e r=rij

� �1=2� r=rij

� �6
� 

ð43Þ

where, for liquid argon, we employ r = 0.3405 nm, efluid/

kB = 119.8 K, cutoff radius for the potential rc = 2.5r,

Fig. 1 Comparison of diffusion coefficient calculated from Eq. (35)

with MD results, for an hch = 6.4 nm channel. MD values shown are

taken from Sofos et al. (2009b) at T = 150 K and are fitted to a 2nd

order polynomial
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constant mean fluid density (q = 1,078 kg/m3, or

q* = 0.642r-3).

MD simulation is performed in a simulation window of

(Lx 9 Ly 9 Lz) dimensions. Periodic boundary conditions

are used along the x- and y-directions, while the distance

between the two plates in the z-direction corresponds to the

channel width, hch. In this way, we construct a Poiseuille

flow system, with two infinite plates in the xy-plane, sep-

arated by a distance hch. Based on the fundamental for-

mulation of MD (e.g., Allen and Tildesley 1987), due to

periodic boundary conditions, each particle that exits the

simulation window on the right enters the channel form the

left, while particles approaching the walls are bounced

back toward the interior of the channel.

An external force Fext is applied to the x-direction to

every fluid particle to drive the flow. Wall atoms are kept

bound around their original fcc lattice positions by an

elastic string force F ¼ �K�ðrðtÞ � reqÞ, where rðtÞ is the

position vector of an atom at time t, req is its initial lattice

position vector, and K* = 57.15(e/r2) is the spring

constant.

Wall atoms absorb the increase in kinetic energy of the

fluid atoms, which is caused by the application of the

external force, and Nose–Hoover thermostats are applied at

the thermal walls in order to keep the system’s temperature

constant (Sofos et al. 2009a; Evans and Holian 1985; Ho-

lian and Voter 1995). We employ two independent ther-

mostats one for the upper wall and another for the lower

wall in order to achieve better thermalization of the wall

atoms (see Appendix 4 for details). More details on system

parameters can be found in Sofos et al. (2009b).

The NEMD computed self-diffusion coefficient for

liquid argon compares with the macroscopic measurements

as suggested by the present approach. For T = 100 K,

Sofos et al. (2009b) computed a self-diffusion coefficient

D = 5 9 10-5 cm2/s. Experiments of Gini-Constagnoli

and Ricci (1960) give D = 1.53 9 10-5 cm2/s for

T = 84.56 K. Using molecular dynamics, Thomas and

McGaughey (2007) report D = 4.03 9 10-5 cm2/s for

T = 90 K.

3.2 Density profiles

In order to calculate values that consist the density profile,

the nanochannel was partitioned in m computational

domains (bins) along the z-direction, each of volume

Vbin ¼ LxLyhbin, where hbin = hch/m. At each time instant,

the density of the liquid N*(z) is the number of atoms

located inside each bin. The number of atoms is calculated

during the whole time of the calculations and the average is

NðzÞ ¼ Nbinðz; zþ hbinÞh i
Nf

ð44Þ

To check the molecular dynamic model (LJ potential), the

cutoff radius rc was allowed to take the values 2.5r, 3r and

3.5r. Minor influence was observed to the results (an

increase in rc reduces slightly the peaks of the calculated

density distributions).

We examine the effect of temperature, T, on the density

profile presented in Fig. 3a. For hch = 2.65r (or,

hch = 0.9 nm), we observe that fluid atoms are ordered in

two distinct layers, symmetrical with respect to the channel

mid-plane. The fluid density peak value decreases as

temperature increases. Similar ordering in the fluid has

been reported in Somers and Davis (1991) for hch = 2.5r
and 2.75r. Although the peaks magnitude decreases, there

is a clear periodicity for their appearance at about 0.9r, as

shown in Fig. 3a. This trend remains in all density profiles

presented in this study, for all channel widths. The effect of

the magnitude of the external applied force, Fext, to density

profiles is negligible, at least in the range examined here

(Fig. 3b). This is in agreement with the results reported in

Nagayama and Cheng (2004). We remind that the force

range studied here does not result in system non-linearities

(Binder et al. 2004).

In Fig. 3c we investigate the effect of channel width,

hch, on the density profile. In small channels (2r B hch

B 8r) the strong influence of the walls extends over all or

most of the fluid atoms and this fact results in oscillations

on the density profile. It is clear that as hch increases

(10r B hch B 20r) homogeneity is induced in the interior

of the channel, while there is always a region of fluid non-

homogeneity region becomes non-significant, i.e., for

hch & 20r the non-homogeneity region is less than 10 %

of the available channel width.

The wall spring constant K* is an indication of wall

atoms stiffness (Asproulis and Drikakis 2011), i.e., the

walls become stiffer when K* value is greater. In the dia-

gram of Fig. 3d, we observe that density peaks are broader

and of smaller amplitude as K* decreases, as also found in

Priezjev (2007), and we attribute this to the fact that, for

smaller K* values, wall atoms oscillate more and fluid

atoms are more possible to localize closer to the walls.

Fig. 2 The MD system under examination
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Fig. 3 Density profiles extracted from MD model, shown from

channel middlepoint to the wall (symmetric channels) a for various

T (hch = 7.9r), b for various magnitudes of Fext (hch = 7.9r), c for

various channel widths, d for various K* values (hch = 4.42r), e for

various wall–fluid interaction values (hch = 2.65r) and f various

average fluid densities (hch = 2.65r). For presentation reasons, since

we refer to channels of various width, we normalized z-direction to

0 B z* B 1
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We examine the effect of various wall–fluid interactions

ew/ef on density profile in Fig. 3e. As the ratio ew/ef increa-

ses, fluid atoms are attracted to the walls and wall surface

becomes hydrophilic, while as ew/ef decreases, fluid atoms

are less attracted to the walls and wall surface becomes

hydrophilic (Voronov et al. 2006). This approach was also

used in Sofos et al. (2012), where potential energy contours

near the walls show that a large ew/ef ratio leads in increased

fluid atom presence near the walls (hydrophilic wall), while

a small ew/ef ratio leads in decreased fluid atom presence

near the walls (hydrophobic wall). Wall wettability depends

on the fluid contact angle on the surface, which, in turn,

depends on the ew/ef ratio (Voronov et al. 2006).

Average fluid density, q* also affects fluid ordering in a

significant way (Fig. 3f). We observe that as average fluid

density decreases, the amplitudes of two peaks at the density

profile increase significantly and fluid atoms are ordered near

the walls, while strong inhomogeneity is induced.

Having studied all parameters (T, Fext, K*, ewall/efluid and

q*) for every channel width hch (we have examined all

cases, but we do not present all diagrams here), we come to

the conclusion that every parameter has a different impact

on the density profile.

To sum up with results shown here, we first note that as

system temperature increases, fluid ordering near the walls is

decreased. This is attributed to increased fluid particle mobility

in higher temperatures. As a result, an increase in system

temperature leads to smoother density profiles. The flow is

driven by a body force acting on all fluid particles equivalent to

a pressure difference in Poiseuille flow. By changing the

magnitude of the external force, we obtain no significant effect

on fluid ordering near the walls. When the average fluid density

decreases in the channels studied here, an increase of fluid

inhomogeneity is observed. This can be attributed to the fact

that for low density flows, particles are attracted by the wall

atoms and tend to ‘‘stick’’ close to the walls, as they do not

encounter strong attractive forces from other fluid atoms. For

denser fluids, there is a significant number of fluid atoms in the

channel that interact with each other and this fact helps them

spread over the whole extend of the channel.

On the other hand, two properties that characterize the

wall behavior, i.e., the wall spring constant K* and the ratio

ewall/efluid, affect only channels of smaller widths (h B 10r).

For hch C 10r, the effect of these two parameters extends

only in a small region close to the walls (about 1–1.5r) and

is negligible in the remaining of the channel.

4 Comparison of the quasi-continuum theory with MD

simulations

The molecular dynamics results (Sofos et al. 2009a) sug-

gest that the parameter A in Eq. (35) is almost invariant

with temperature T, but decreases to zero as the channel

width hch increases. From the density profiles shown in

Fig. 3a–f, it is clear that an oscillatory density profile

appears that is exponentially decreasing from the walls to

the interior of the channel. In all cases studied, a high

density peak appears near the wall and consecutive peaks

of smaller height appear as the profile approaches the

middle of the channel. The exponential decay weakens as

the channel width increases and saturates to constant fluid

density at widths about hch [ 10r.

Fig. 4 Calculation of d2c/dz2 from Eq. (48). The values of Ago were

fitted to minimize the difference with the molecular dynamic results

of Fig. 3. The coordinate z scales with 0.2go(go = 0.3 nm). a

Ago = 0.12, n = 1 (c00

c2
� z

0:2go
) and h = 0.9 nm b Ag0 = 0.045,

n = 1 c00
c2
� z

0:2go

� 
and h = 1.5 nm c Ag0 = 0.024, n = 1 (c00

c2
� z

0:2go
)

and h = 2.7 nm
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It is also of great interest to keep in mind that the

oscillation periodicity gives an almost constant wavelength

of about 0.9r (&0.3 nm in the argon case), as shown in

Fig. 3a. This wavelength is constant, no matter what

property is altered, e.g., temperature, external force,

channels width, etc. Even when the density peaks weaken

to nearly constant, this wavelength does not change.

The above results can be captured very well by the

quasi-continuum model. Excluding the results for the very

small density (q* = 0.321), one can identify by go & 0.9r
the wave length of the quasi-continuum theory. By fitting

the d2c/dz2 as predicted by Eq. (56) (see Appendix 2) to

MD calculations, we obtain the values of Ago for different

channel widths, as shown in Fig. 4.

Figure 4a corresponds to the smallest channel studied

(hch = 0.9 nm), Fig. 4b to hch = 1.5 nm and Fig. 4c to

hch = 2.7 nm. In all cases, we have n = 1. Equation (42)

can now be used in order to extract the go value for the

quasi-continuum model. We mentioned before that if we

know any two of hch, go and A, we can estimate the third

one, provided we can estimate the integer n. The results are

shown in Table 1, and the accuracy of the quasi-continuum

model seems to be very good.

Numerical integration of d2c/dz2 and symmetry condi-

tion give

cðzÞ ¼ cðz ¼ 0Þ þ c2

Z

1F1dz: ð45Þ

Now, we can plot the results for c(z) in Fig. 5a–c. Fig-

ure 5a is analogous to the MD extracted density profile for

the hch = 0.9 nm channel. Calculations for the

hch = 1.5 nm channel are presented in Fig. 5b. Here, the

density peak oscillation is not so obvious, but still this is

close to the respective MD extracted profile. Interesting

results come from the hch = 2.7 nm channel, where the

similarity with MD simulation density profile is clear.

One could observe that the variation of D along the

channel width plays the most important role in explaining

the uneven peaks observed by the NEMD calculations.

Strong curvatures of the D(z) result in high local peaks of

c(z).

5 Conclusions

We have presented a quasi-continuum self-diffusion

approach which is able to reproduce results from non-

equilibrium molecular dynamics simulations of planar

Table 1 Analysis of the molecular dynamic calculations by the

quasi-continuum model

hch(nm) Molecular dynamics Quasi-continuum

go(nm) A(nm-1) Ahch/2 go(nm), Eq. (53)

0.9 0.3 0.6667 0.3000 0.141

1.5 0.3 0.2500 0.1875 0.237

2.7 0.3 0.1333 0.1800 0.427

Fig. 5 Numerical integration of d2c/dz2 shown in Fig. 4. The results

scale with the density profile at z* = 0.5 (middle of the channel)

found by molecular dynamics of Fig. 3. The coordinate scales with

0.2 go (go = 0.3 nm). a Ago = 0.12 and hch = 0.9 nm, 0:025þ 0:045
2F

(average = 0.0385), b Ago = 0.045 and hch = 1.5 nm, 0:025þ 0:035
2:1F

(average = 0.0420) and c Ago = 0.024 and hch = 2.7 nm, 0:0384þ
0:00375

6:2F
(average = 0.0428)
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Poiseuille liquid argon nanoflow. If diffusion coefficient

values are known, in addition with a micro structural

internal length, g, the model can predict the ordering

effects caused by atomic-scale flow conditions. In nano-

flows, the effect of system temperature, applied driving

force, wall spring constant, wall–fluid interaction ratio and

average fluid density on the distribution of fluid density

becomes important, leading to behavior different than

expected from classical continuum theory.

MD simulations reveal strong fluid ordering through

number density profiles for hch B 2 nm, while for hch

C 2 nm profiles are uniform in most of the core channel

area but ordering persists very close to the wall. Fluid

ordering near the wall increases when system temperature

decreases, the spring constant (wall stiffness) increases,

wall hydrophilicity increases, and average fluid density

decreases, while external forces do not affect number

density profiles significantly.

To capture the MD calculated fluid distribution densities,

we constructed a quasi-continuum model for the self-dif-

fusion equation. This model was based on the concept of the

spinodal decomposition of solid diffusion. A characteristic

length g appeared in the new differential equation that gives

rise to oscillations in the steady state distribution of the fluid

atoms. Furthermore, a wave number g/hch can be con-

structed using the channel width hch. It is found that the

inhomogeneity of the diffusion coefficient plays a signifi-

cant role in the details of the fluid density distribution by

exponentially decreasing the peaks of the density oscilla-

tions close to the channel boundaries. In this way, the fluid–

wall interaction is fully introduced in the quasi-continuum

approach. The resulting quasi-continuum equation is of

Schrodinger type and a ‘‘quantum’’ condition can be for-

mulated, connecting g, hch and q2D/qz2.

Either the atomistic model or the quasi-continuum

model presented in this work seems capable of reproducing

the Poiseuille nanoflow characteristics regarding the

ordering of the fluid in the channel. Of particular, impor-

tance is the inhomogeneity of the diffusion coefficient in

capturing the density profiles with the quasi-continuum

theory. The variation of the diffusion coefficient across the

channel width (decreasing toward the channel walls) is

related to wall smoothness.

The only shortcoming of the present scheme is that it

necessitates an MD simulation realization in order to

extract fluid parameters (diffusion coefficient variation

and characteristic length g). However, if one has to

simulate a complex flow domain, consisting of various

channel parts to be simulated by fully atomistic MD

methods, it would require extensive computational

resources. In the frame of the proposed scheme, all parts

could be modeled using the quasi-continuum model. We

emphasize that the same equations can be employed in a

multi-scale problem covering length scales from nano to

macro.
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Appendix 1: ODE solution for the 1D state problem

The general solution of Eq. (30) is

cðzÞ ¼ A1 þ A2zþ A3 sin
z

g
þ A4 cos

z

g
ð46Þ

where A1, …A4 are constants to be determined by BC. The

first two terms are similar to the classic solution. The other

two terms are the non-classic part of the solution. Taking

the region 0 B z B hch, (hch is the channel width), we

impose the following BCs that are compatible with the

Poiseuille flow in the normal to z-direction.

J ¼ �D
dc

dz
þ g2 d3c

dz3


 �
ð47Þ

At z = 0 and hch, J = 0, that is no flux at the walls, which

gives

A2 ¼ 0 ð48Þ

At z = hch/2, c = co a datum point at the middle of the

channel (can be thought of as a constant that increases with

temperature), which gives

A1 ¼ co � A3 sin
hch

2g
� A4 cos

hch

2g
; co� 0 ð49Þ

Symmetry of the concentration implies dc/dz = 0 at

z = hch/2, which gives
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A3 cos
hch

2g
¼ A4 sin

hch

2g
ð50Þ

This condition implies that J = 0 at z = hch, as expected. It

can be shown that J = 0 for all z, 0 B z B hch.

Mass conservation implies

Zhch=2

0

cðzÞdz ¼ �c
hch

2
; �c [ 0 ð51Þ

which gives

A1 þ A4

2g

hch

sin
hch

2g
þ A3

2g

hch

1� cos
hch

2g


 �
¼ �c ð52Þ

Solving Eqs. (49), (50) and (52), we obtain

A4 ¼ ðco � A1Þ cos
hch

2g
ð53Þ

A3 ¼ ðco � A1Þ sin
hch

2g
ð54Þ

A1 ¼ co

�c
co
� 2g

hch
sin hch

2g

1� 2g
hch

sin hch

2g

ð55Þ

For �c ¼ co, we obtain the classic relation c = co.

Appendix 2: Asymptotic analysis

The solution of Eq. (37) can be written as combinations of

hypergeometric function 1F1 and the Hermitian polynomial

H:

d2c

dz2
¼ e

�Az2

2g0 c1H
1� Ago

2Ago

;

ffiffiffi
A
p

z
ffiffiffiffiffi
go
p


 �
þ c2 1F1

�1þ Ago

4Ago

;
1

2
;
Az2

go


 �� �

ð56Þ

where c1 and c2 are real constants. Note that only the

hypergeometric function 1F1 is symmetric with respect to

z. Therefore, symmetric cases are accepted only if c1 = 0.

An interesting expansion of the solution around z = 0

(middle of the channel) is given below. In some cases in

the field of heat transfer, the variational iteration method is

utilized as an approximate analytical method to overcome

some inherent limitations arising as uncontrollability to the

nonzero endpoint boundary conditions (see, for example,

Fouladi et al. 2010).

It is of interest to expand the symmetric solution

(c1 = 0) around point z = 0 (the middle of the channel

width).

d2c

dz2
¼ e�

Az2

2go c21F1

�1þ Ago

24go

;
1

2
;
Az2

go


 �

� c2 1� z2

2g2
o

þ 1

24g4
o

þ A2

12g2
o


 �
z4

�

� 1

720g6
o

þ 7A2

360g2
o


 �
z6 þ 0 z8

� ��
ð57Þ

Note that the expansion (57) involves only even powers

of z. Taking the conditions dc/dz = 0 and c = co at z = 0,

and retaining the first two terms of (57), we obtain

dc

dx
� c2 z� z3

6g2
o


 �
þ 0 z5
� �

ð58Þ

and

c � co þ c2

z2

2
� z4

24g2
o


 �
þ 0 z6
� �

ð59Þ

Assuming that (59) should provide c C 0 for all values of

co C 0, we conclude that c2 C 0. In other words, dc2/

dz2 C 0 at z = 0, a result that is verified by the NEMD

calculations!

Appendix 3: Diffusion for asymmetric wall conditions

The case of asymmetric wall conditions can be studied by a

diffusion inhomogeneous distribution of the type

D ¼ Doð1� Bz=goÞ ð60Þ

The diffusion equation becomes

d4c

dz4
þ ð1� Bz=goÞ

g2
o

d2c

dz2
¼ 0 ð61Þ

The solution of Eq. (61) can be put in closed form.

d2c

dz2
¼ c2Ai

�1þ Bz=go

B2=3

� �
þ c3Bi

�1þ Bz=go

B2=3

� �
ð62Þ

where Ai and Bi are Airy functions and c2, c3 are constants.

The full solution of Eq. (62) is given by

cðzÞ ¼ co þ c1zþ c2CAðzÞ þ c3CBðzÞ ð63Þ

where co, c1, c2, c3 are constants.

The general form of the functions CA(z) and CB(z)are

pFq is the generalized hypergeometric function, I is the

modified Bessel function of the first kind, C is the Gamma

function, and B is a parameter of the problem.

We believe that the chemical affinity between the walls

and the fluid, as well as the roughness of the walls, influ-

ence the diffusion coefficient distribution and this, in turn,

affects the steady state concentration profiles.
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Appendix 4: Temperature profile

Temperature is calculated in each bin across the channel

using

Tbin ¼
mAr

3NbinkB

XNbin

n�1

X3

i�1

vn;i � �vi

� �2 ð66Þ

where Nbin is the number of fluid atoms in the bin exam-

ined, i = 1, 2, 3, … denotes the x, y, z component of the

atomic velocity vn�1, �vi is the ith component of the mean

macroflow velocity, kB is the Boltzman constant, and mAr is

argon atom mass.

In Fig. 6a, the calculated fluid temperature distribution

for hch = 6.3 nm is presented. We can see that for each

system temperature (the temperature value imposed at the

wall’s thermostats, 100, 120, or 150 K), the temperature

profile is approximately flat at this temperature value. We

obtain similar flat behavior when we vary system param-

eters such as channel width hch, the wall atoms spring

constant K*, the wall–fluid interaction ratio ewall/efluid an the
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Fig. 6 Temperature profiles a for system temperature T = 100, 120 and 150 K, and hch = 6.3 nm b for various magnitudes of the Fext

(normalized), T = 120 K and hch ¼ 17:1 nm
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average fluid density q*. However, in Fig. 6b, for

hch = 17.1 nm and external forces above 0.036 pN, tem-

perature profiles are not uniform and show a rise in the

middle of the channel and near the solid walls. Similar

behavior is reported on Nagayama and Cheng (2004) when

the external force that drives the flow becomes large. We

attribute this behavior to the fact that at large channel

widths, in combination with external forces of large mag-

nitude, strain rates inside the nanochannel increase, and the

system has non-linear response.
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