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Abstract A theoretical analysis of the capillary-driven

imbibitions of non-Newtonian fluids in conical capillaries

is presented. More precisely, the consequences of the

variation in the fluid viscosity with the shear rate are

investigated by using the inelastic power law model. Novel

fluid dynamic behaviors are predicted, notably the asym-

metry of filling times measured from different ends of the

conical tube. The effect is due to the anisotropy of the flow

domain and takes place with simple Newtonian fluids

indeed. It is quantitatively described how shear-thinning

fluids increase the asymmetry, and shear-thickening fluids

decrease it. Relevant applications in microfluidic rheome-

try are envisaged. In addition, these results are of interest in

active fields of research such as passive micropumping and

microflow rectification, where the geometric design of

microchannels is the key to control fluidic operations.

Keywords Capillary filling � Conical capillaries �
Asymmetric filling � Power law fluids � Microfluidic

rheometry

1 Introduction

The phenomenon of capillary filling, which has been

mathematically described almost a century ago (Lucas 1918;

Washburn 1921), is now finding a number of applications in

microfluidic devices (Delamarche et al. 2005; Zimmermann

et al. 2007; Martinez et al. 2008; Li et al. 2011; Safavieh and

Juncker 2013). In these systems, the flow rate of liquids is

determined by both the wetting properties of solid/liquid

interfaces and the geometry of microchannels, valves and

micropumps. Thus, liquid handling is encoded in the geo-

metric design of each component of the fluidic circuits.

Controlling the capillary-driven flow in such confine-

ments becomes critical in the case of non-Newtonian fluids,

such as blood, saliva, protein and DNA solutions, which

are ubiquitous in lab-on-a-chip devices for biomedical

applications. On the other hand, polymeric liquids are

employed in microfabrication processes that make use of

capillary action, for instance injection molding (Kim et al.

1995) and flip-chip encapsulation (Young 2011). There-

fore, modeling the filling dynamics of non-Newtonian

liquids is of interest to attain a better understanding of

physical basis and to assist the design and manipulation of

microfluidic devices. The works on the subject found in the

literature are scarce; notable exceptions are the studies of

capillary filling of power law (PL) fluids in rectangular

microchannels (Srivastava and Burns 2006; Girardo et al.

2007) and cylindrical capillaries (Digilov 2008; Cito et al.

2012).

In this context, the objective of the present work is to

discuss the capillary filling of non-Newtonian fluids in

tubes with nonuniform cross section. The nonuniformity

consists in a slight variation in the tube radius, whereas the

inner wall is supposed to be chemically homogeneous and

locally flat. It is worth noting that roughness and surface

patterning influence the filling dynamics (Kusumaatmaja

et al. 2008; Girardo et al. 2012); hence, these effects should

be taken into account if present. More precisely, this work

deals with conical capillaries with smooth surfaces, which

exhibit a marked asymmetry of filling times even for
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simple Newtonian fluids (Urteaga et al. 2013). Focus is

made on the effect of the variation in the fluid viscosity g
with the shear rate _c, independently of elasticity. The

asymmetric filling is of special interest for the design of

fluidic diodes that facilitate the transport of liquids in one

direction only (Chen et al. 2012; Feng and Rothstein 2013).

Also, relevant applications in microfluidic rheometry are

envisaged.

The paper is organized as follows: next section presents

the theoretical basis and the equations to describe capillary

flow of PL fluids in conical channels. Then, the results are

presented and discussed in comparison with simple New-

tonian fluids. Finally, the main conclusions are outlined.

2 Theoretical modeling

The analysis here is restricted to the domain of continuum

fluid mechanics, and thus, potential effects associated with

the discreetness of the fluid microstructure are disregarded

(see for instance Holloway et al. 2011). The approximation

is valid when the average size of particles/macromolecules

constituting the complex fluid is small comparing to the

capillary radius. To predict the capillary filling dynamics,

first step consists in the selection of a constitutive model

for the fluid viscosity. A simple function gð _cÞ that rea-

sonably describes the non-Newtonian viscosity of inelastic

fluids is the PL model of Oswald–de Waele, gð _cÞ ¼ k _cn�1,

where n is the flow behavior index and k is the consistency

parameter (de Waele 1923; Ostwald 1925). Values of

n \ 1 represent shear-thinning or pseudoplastic fluids,

while n [ 1 represent shear-thickening or dilatants fluids.

When n = 1, the Newton model is recovered, k being equal

to the viscosity coefficient l.

The flow rate Q of PL fluids in capillaries of circular

cross section is readily obtained for steady state, fully

developed, and unidirectional flows (Bird et al. 1977):

Q ¼ pR3

ð3þ 1=nÞ
R

2k

dp

dx

�
�
�
�

�
�
�
�

� �1=n

; ð1Þ

where R is the tube radius and dp/dx is the pressure gra-

dient along the axial direction x. For slight variations in the

tube cross section, one may introduce R(x) as the axially

dependent channel radius. As Q is constant for incom-

pressible fluids, Eq. 1 can be integrated to calculate the

pressure drop Dp across the filled section of the tube,

ð3þ 1=nÞQ
p

� �n

2k

Zx

0

dx0

Rðx0Þ3nþ1
¼ Dp: ð2Þ

If gravity effects are disregarded, the right-hand side of

Eq. 2 corresponds to Laplace pressure, Dp ¼ 2r cos h=R,

where r is the surface tension of the fluid, and h is the

contact angle of the meniscus at the liquid–gas interface.

Our analysis involves the fluid dynamic regime where the

filling kinematics is controlled by viscous dissipation (Fries

and Dreyer 2008). Therefore, the axial velocity of the

meniscus can be written dx=dt ¼ Q=ðpR2Þ, and Eq. 2 is

converted into the following expression,

dx

dt

� �n

¼ c

ð3þ 1=nÞn RðxÞ2nþ1 R x

0
Rðx0Þ�ð3nþ1Þ

dx0
; ð3Þ

where c ¼ r cos h=k. Equation 3 governs the filling

dynamics of PL fluids in tubes of nonuniform cross section.

As gravity is not included here, the results of Eq. 3 apply to

horizontal capillaries, or in systems where gravitational

forces are relatively small (Das and Mitra 2013). The

reader is referred to the work of Digilov (2008) for a dis-

cussion of capillary rise of PL fluids in cylindrical tubes.

In the trivial case of tubes with uniform radius, the

integration of Eq. 3 yields,

xð1þnÞ=n ¼ ðnþ 1ÞRc1=nt

ð3nþ 1Þ ; ð4Þ

in agreement with previous analysis of PL fluids in cylin-

drical capillaries (Girardo et al. 2007; Cito et al. 2012). In

particular, if n = 1, Eq. 4 results x2 = Rct/2, which is the

classical Lucas–Washburn equation for simple fluids

(Lucas 1918; Washburn 1921). Also from Eq. 4, the

characteristic filling time for PL fluids is defined as the

time at which the meniscus reaches the tube length L,

tF;n ¼
ð3nþ 1ÞL1=nþ1

ðnþ 1ÞRc1=n
: ð5Þ

In what follows, we use Eq. 3 to derive the kinematics

of fluid imbibition in nonuniform capillaries. Let us con-

sider axisymmetric conical capillaries with the smallest

radius R0 at the inlet (x = 0) and the largest radius RL at

the outlet (x = L). The cone angle a � ðRL � R0Þ=L must

be very small, so that the assumption of unidirectional flow

is accurate. Thus, the radius changes along the channel as

RðxÞ ¼ R0 þ ax. Introducing R
_

¼ RðxÞ=R0 and dR
_

¼
adx=R0 into Eq. 3, integrating the time derivative yields

Z1þax=R0

1

R
_2nþ1

� R
_1�n

� �1=n

dR
_

¼ ð3nac=R0Þ1=nat

ð3þ 1=nÞ : ð6aÞ

On the other hand, if the fluid enters through the largest

end and flows toward the smallest end, the channel radius

varies in the flow direction as RðxÞ ¼ RL � ax. Introducing

R
^

¼ RðxÞ=RL and dR
^

¼ �adx=RL into Eq. 3, integrating

the time derivative results
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�
Z1�ax=RL

1

�R
^2nþ1

þ R
^1�n

� �1=n

dR
^

¼ ð3nac=RLÞ1=nat

ð3þ 1=nÞ :

ð6bÞ

Equation 6a, 6b cannot be solved analytically for arbi-

trary values of n. Useful exceptions are the cases of n = 1

and n = 1/2. We outline these solutions below to be used

later in the analysis of the filling dynamics of shear-thin-

ning fluids, in comparison with Newtonian fluids. In fact,

solving Eq. 6a, 6b for n = 1 leads to the following

expressions for the capillary filling of opening and closing

cones, respectively,

1

6
b2�x4 þ 2

3
b�x3 þ �x2 ¼ t

tF;nðR0Þ
; ð7aÞ

1

6

b
1þ b

� �2

�x4 � 2

3

b
1þ b

� �

�x3 þ �x2 ¼ t

tF;nðRLÞ
; ð7bÞ

where �x ¼ x=L and b ¼ ðRL � R0Þ=R0. Also in these

equations, tF,n(R0) and tF,n(RL) represent the filling times of

capillaries with uniform radius R0 and RL, respectively

(Eq. 5, n = 1). In addition, solving Eq. 6a, 6b for n = 1/2

yields the following expressions for opening and closing

cones, respectively,

4

15
1þ b�xð Þ5� 16

21
1þ b�xð Þ7=2þ 2

3
1þ b�xð Þ2� 6

35
¼ b3t

tF;nðR0Þ
;

ð8aÞ

� 4

15
1� b�x

bþ 1

� �5

þ 16

21
1� b�x

bþ 1

� �7=2

� 2

3
1� b�x

bþ 1

� �2

þ 6

35
¼ b

bþ 1

� �3
t

tF;nðRLÞ
; ð8bÞ

where the corresponding filling times tF,n now involve

n = 1/2. Equation 8a, 8b may have practical interest as

well, taking into account that shear-thinning behaviors with

flow index n * 1/2 are typical in colloids and polymer

solutions.

3 Results and discussions

3.1 PL fluids in cylindrical capillaries

Firstly, the capillary filling of PL fluids in cylindrical tubes

is revised, in order to analyze the impact of the shear rate

dependence of fluid viscosity, independently of geometric

effects. The prediction of Eq. 4 is illustrated in Fig. 1. It is

relevant to point out that the filling response of PL fluids in

uniform capillaries has been experimentally validated in

previous works: Girardo et al. (2007) used phenyl glycidyl

ether (n = 0.41) in rectangular microchannels, and Digilov

(2008) used aqueous solutions of carboxymethyl cellulose

(n = 0.73–0.78) in cylindrical capillaries.

A relevant feature in Fig. 1 is the variation in the slope of

the curve x versus t1/2 during the filling process, as com-

pared to the case of Newtonian fluids. To better understand

these results, one needs to consider the shear rate at channel

walls, which is _cw ¼ Qð3þ 1=nÞ=ðpR3Þ (Bird et al. 1977).

Introducing Q ¼ pR2dx=dt, the above expression results

_cw ¼ ðc=xÞ1=n
(see also Girardo et al. 2007; Digilov 2008).

The shear rate decreases with x, irrespective of the flow

index n, because the fluid velocity always decreases during

capillary imbibition. For non-Newtonian fluids, however,

this means a variation in fluid viscosity in time. In fact,

considering the above expression of _cw, the apparent vis-

cosity results g � kðc=xÞ1�1=n
. Therefore, while the fluid

advances into the capillary, the apparent viscosity varies as

x1=n�1 and accordingly as tð1�nÞ=ð1þnÞ. Thus, the fluid vis-

cosity increases in time for n \ 1 and decreases for n [ 1,

which explains the variation in curve slopes in Fig. 1. Of

course, the viscosity is constant for n = 1 and Lucas–

Washburn regime is recovered (straight line x vs. t1/2).

It is worth mentioning that the time variation in the

viscosity discussed here is just a consequence of the vari-

ation in _c with x, while the meniscus advances into the

capillary in pseudo-steady-state. Actually, the PL model

cannot describe time-dependent responses nor viscoelastic

phenomena. These effects take relevance when _c�1 is on

the order of the characteristic relaxation time of the fluid,

and may arise at the early stages of the filling process,

where _c virtually diverges.

Fig. 1 Square root of the relative time as a function of the relative

meniscus position, according to Eq. 4, for different values of the flow

index n. Calculations are thus independent of R, L, and c
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Another drawback of the PL model to describe capil-

lary-driven flow is the loss of reliability at the beginning of

the imbibition, because the extremely large shear rates

developed in capillaries may induce artificial viscosity

values. For example, if one considers a polymer solution

that satisfies the PL model for, say, 1\ _c\103 s�1, at

x � L the model could predict fluid viscosities lower than

that of the solvent, which is evidently unphysical. A more

realistic model including a high-shear rate-limiting vis-

cosity must be included to better describe the fluid imbi-

bition at short distances/times, for instance the Carreau

model (Bird et al. 1977). In this case, however, no explicit

expression of dx/dt for capillary imbibitions could be

obtained.

Another relevant aspect related to high shear rates in

micro- and nanochannels is the violation of the no-slip

condition at channel walls (Lauga et al. 2007), which is

implicit in the derivation of Eq. 1. Furthermore, in com-

plex fluids, an apparent hydrodynamic slip may also take

place due to depletion of particles/polymer molecules at the

solid liquid interface (Nghe et al. 2011; Berli 2013). For

these cases, incorporating the typical slip condition (fluid

velocity at the wall is not zero but a value proportional to

_cw) do not modify the PL scaling of Q with Dp; hence, the

final x(t) functionality is not significantly changed.

3.2 Newtonian fluids in conical capillaries

Now, we discuss the filling dynamics of simple fluids in

conical capillaries, in order to analyze the influence of the

geometry independently of non-Newtonian effects. The

predictions of Eq. 7a, 7b are illustrated in Fig. 2. In

capillaries of uniform cross section, the filling time is

inversely proportional to the tube radius, as seen in Eq. (5).

In a conical capillary, however, as the radius diverges from

R0 to 2R0 (in the flow direction), the filling time becomes

larger than that corresponding to a cylinder with radius

R \ R0. In other words, if one regards the cone as an

equivalent cylinder, the equivalent cylinder radius is not

between R0 and 2R0, but it is smaller than R0. And the

opposite happens in converging capillaries. This rather

counterintuitive behavior is due to the fact that, as the

meniscus advances into the conical geometry, the viscous

force varies as R(x)-2 while capillary force varies as

R(x)-1. Further details on this feature are given in a pre-

vious work (Urteaga et al. 2013).

The drawings in Fig. 2, as well as those in Figs. 3 and 4

below, are out of scale. One should remind that the analysis

here is valid for fully developed, unidirectional flows,

which requires capillaries with both very large aspect ratios

(R0 � L) and very small cone angles (a � 1).

3.3 PL fluids in conical capillaries

The filling dynamics of shear-thinning fluids in conical

capillaries is illustrated in Fig. 3, according to Eq. 8a, 8b.

The geometric effect discussed above is now emphasized

by the _c-dependence of the viscosity, and predictions are

quite more striking: the filling time of a conical capillary

that opens from R0 to 2R0 is larger than that corresponding

to a cylinder with radius R \ R0/2. To rationalize these

results, one has to take into account that, in a diverging

capillary, there is an additional decrease in the shear rate

along the tube due to the gradual enlargement of the flow

Fig. 2 Square root of the relative time as a function of the relative

meniscus position for Newtonian fluids in conical tubes (Eq. 7a, 7b,

b = 1), in comparison with cylindrical capillaries (Eq. 4, n = 1). The

drawings on the right are, from bottom to top, in the sequence of the

filling times of the corresponding curves

Fig. 3 Square root of the relative time as a function of the relative

meniscus position for PL fluids with n = 1/2 in conical tubes (Eq. 8a,

8b, b = 1), in comparison with cylindrical capillaries (Eq. 4, n = 1/2).

The drawings on the right are, from bottom to top, in the sequence of the

filling times of the corresponding curves
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domain. This variation in _c with x induces a relative

increase in the fluid viscosity, hence the filling time, in

comparison with a Newtonian fluid in the same cone. The

opposite effect takes place in the case of converging

channels: as seen in Fig. 3, the meniscus velocity firstly

decreases and then increases in the second half of the tube.

This is because of the relative variation in fluid viscosity,

as _c decreases slowly when the flow domain shrinks.

3.4 Asymmetric capillary filling

The overall result is a strong asymmetry of the filling

times, when measured from different sides of the same

conical capillary. In fact, taking the ratio of Eq. 6a, 6b with

x = L (complete filling) yields the following expression,

tO

tC

¼ RL

R0

� �1=n
R RL=R0

1
ðR
_

2n�1 � R
_

1�nÞ1=n
dR
_

R 1

R0=RL
ðR
^

1�n � R
^

2nþ1Þ1=n
dR
^ ; ð9Þ

where the left-hand side is the ratio between the time

required to fill the capillary in the opening cone direction,

tO, and that in the closing cone direction, tC. Equation 9

indicates that tO/tC is completely defined by the ratio RL/R0

and the flow index n. The filling time asymmetry of conical

capillaries is illustrated in Fig. 4, after numerical solution

of Eq. 9.

It is worth noting that the asymmetric filling is in

principle due to the nonuniform character of the capillary,

as evidenced by the curve for simple fluids (n = 1). Fig-

ure 4 shows how shear-dependent viscosities modify the

asymmetry: shear-thinning fluids enhance the effect, while

shear-thickening fluids reduce it. In any case, Fig. 4

exhibits the diodic character of the capillary-driven flow in

conical channels, which is of great interest to handle pas-

sive transport in microfluidics.

A straightforward analysis of curves in Fig. 4 reveals a

power relationship between tO/tC and R0/RL, with a power

exponent f(n) that depends on n only. In fact, for RL/R0

around 1 (more precisely, in the range plotted), one may

accurately write,

tO

tC

¼ RL

R0

� �f ðnÞ
: ð10Þ

Besides, we found that the function f(n) = 7/3 ?

(1/n - 1) represents reasonably well the curves of Fig. 4:

the error is less than 3 % for flow indexes in the range

1/2 B n B 3/2. The fact that the Newtonian curve satisfies

tO/tC & (R0/RL)7/3 had been demonstrated by theory and

experiments in our previous work (Urteaga et al. 2013).

These last results open the possibility of new applica-

tions in the field of microfluidic rheometry: measuring tO
and tC in a conical capillary would constitute a simple and

reliable method to find the flow index n of a given fluid,

irrespective of other properties like viscosity and surface

tension, and using a small droplet of sample. Furthermore,

the ratio RL/R0 of the cone may be estimated by a similar

measurement with any Newtonian fluid (calibration).

4 Concluding remarks

We have theoretically investigated the capillary-driven

imbibition of conical capillaries with inelastic non-New-

tonian fluids. Even if the simple constitutive model used

has several limitations, it allows one to figure out the

influence of viscosity variations on the capillary filling

dynamics. Remarkable fluid dynamic behaviors were

quantitatively predicted, notably the asymmetry of filling

times. Apart from the theoretical aspects in microfluidics of

complex fluids, these novel results open new potential

applications in active fields of research such as passive

micropumping and microflow rectification, where the

geometric design of microchannels is crucial to control

fluidic operations. Further, the application of these pre-

dictions to design simple microfluidic rheometers is cur-

rently under research in our laboratory. It is worth to add

that microfluidic systems microfabricated through the

standard processes involve microchannels with trapezoidal

cross sections, where sharp corners pose several troubles to

the mathematical description of capillary-driven transport.

In any case, provided one can handle these difficulties in

modeling, our calculations still apply to lab-on-a-chip

devices.

Fig. 4 Ratio of the filling times in the opening and closing cone

directions, as a function of the ratio between the smallest and the

largest cone radius, for different values of n, according to Eq. 9
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