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Abstract Since the adoption of digital video cameras

and cross-correlation methods for particle image veloci-

metry (PIV), the use of color images has largely been

abandoned. Recently, however, with the re-emergence of

color-based stereo and volumetric techniques, and the

extensive use of color microscopy, color imaging for PIV

has again become relevant. In this work, we explore the

potential advantages of color PIV processing by devel-

oping and proposing new methods for handling multi-

color images. The first method uses cross-correlation of

every color channel independently to build a color vector

cross-correlation plane. The vector cross-correlation can

then be searched for one or more peaks corresponding to

either the average displacement of several flow compo-

nents using a color ensemble operation, or for the indi-

vidual motion of colored particles, each with a different

behavior. In the latter case, linear unmixing is used on the

correlation plane to separate each known particle type as

captured by the different color channels. The second

method introduces the use of quaternions to encode the

color data, and the cross-correlation is carried out simul-

taneously on all colors. The resulting correlation plane can

be searched either for a single peak, corresponding to the

mean flow or for multiple peaks, with velocity phase

separation to determine which velocity corresponds to

which particle type. Each of these methods was tested

using synthetic images simulating the color recording of

noisy particle fields both with and without the use of a

Bayer filter and demosaicing operation. It was determined

that for single-phase flow, both color methods decreased

random errors by approximately a factor of two due to the

noise signal being uncorrelated between color channels,

while maintaining similar bias errors as compared to tra-

ditional monochrome PIV processing. In multi-component

flows, the color vector correlation technique was able to

successfully resolve displacements of two distinct yet

coupled flow components with errors similar to traditional

grayscale PIV processing of a single phase. It should be

noted that traditional PIV processing is bound to fail

entirely under such processing conditions. In contrast, the

quaternion methods frequently failed to properly identify

the correct velocity and phase and showed significant

cross talk in the measurements between particle types.

Finally, the color vector method was applied to experi-

mental color images of a microchannel designed for

contactless dielectrophoresis particle separation, and good

results were obtained for both instantaneous and ensemble

PIV processing. However, in both the synthetic color

images that were generated using a Bayer filter and the

experimental data, a significant peak-locking effect with a

period of two pixels was observed. This effect is attributed

to the inherent architecture of the Bayer filter. In order to

mitigate this detrimental artifact, it is suggested that

improved image interpolation or demosaicing algorithms

tuned for use in PIV be developed and applied on the

color images before processing, or that cameras that do

not use a Bayer filter and therefore do not require a de-

mosaicing algorithm be used for color PIV.
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1 Introduction

Particle image velocimetry (PIV) typically uses mono-

chrome images of a displacing particle image pattern to

evaluate a velocity field. As a result, the full-color infor-

mation from a scene is compressed into a single intensity

channel. Only by using color filters can the original wave-

length of the incident light be resolved. Typically this is not a

problem, as current PIV algorithms only work with a single

channel of intensity data at a time. This is often sufficient

since particle images are typically illuminated with a single-

wavelength laser beam, and the particles either scatter or

fluoresce within a narrow band of wavelengths. If multiple

color particles are used, separate cameras with tuned wave-

length filters are needed to image each one. For color images,

the images must first be converted into a single scalar value,

or each color channel must be isolated for processing.

Early PIV systems, before the advent of digital video

recording and cross-correlation (Willert and Gharib (1991),

used photographic film to capture particle images. In these

systems, recordings were typically made with multiple

exposures on a single frame, and the particle images were

autocorrelated to yield the displacement information (Ke-

ane and Adrian 1990, 1991; Adrian and Westerweel 2011),

leaving the user with a directional ambiguity. One solution

was to exploit the color sampling properties of the photo-

graphic film and record two light pulses of different colors

(Adrian 1986; Goss et al. 1991). The color recordings were

then digitized using matching optical filters to scan and

process the developed photographic negative. This resulted

in a pair of images, each with only a single-particle

exposure, which could then be matched using particle

tracking or image correlation. Using this method, color

information enabled successful PIV measurements, but in

the final analysis, each image was still handled by the

algorithms as a monochromatic intensity field. However, as

digital video cameras and cross-correlation PIV matured,

such approaches were abandoned due to the increased

benefits provided by all digital systems.

There is also a long history of using color spatial vari-

ation to determine the out-of-plane velocity component.

Early approaches used a pair of overlapping and differently

colored laser beams (Cenedese and Paglialunga 1989;

Brücker 1996) to recover the out-of-plane component.

More recently, these techniques have been extended to

multiple light sheets, in which in-plane velocities are

tracked by separating the color images into multiple

channels and the out-of-plane components are recovered

from standard two-camera stereo methods (Pick and Leh-

mann 2009). An alternative approach uses color sheets,

overlapped (McGregor et al. 2007) or continuous across the

volume, (Watamura et al. 2013) so that velocity can be

estimated by the color (and thus the depth) of each particle.

Overall, most of the existing work has treated color

simply as a way to sort the various particle images into

different categories and has ignored its potential for

increasing the information content of PIV recordings and

thus the signal-to-noise ratio. In this work, we preserve the

information from all color components throughout the

cross-correlation analysis rather than simplifying to a

composite intensity channel or examining only a single

correlation between two pre-defined channels. Addition-

ally, this work proposes two methods that have not been

previously applied to PIV processing of color images to

simultaneously sort and measure the velocities of two or

more types of particles in a flow. Although color images

have been previously used for measurements in multiphase

flows, these methods typically rely on a series of multiple

filters, light sources, or cameras, as well as complex data

reduction schemes (Towers et al. 1999). In contrast, the

approach presented here is more straightforward and can be

performed with the simple introduction of a color camera

into a standard digital PIV setup.

These techniques are based on two distinct approaches

to handling the color information. The first is the correla-

tion of all available color channels as separate planes and

the assembly of those correlations into a color vector cross-

correlation plane. This plane can then be searched for the

peak value in an average sense, if only a single velocity

component is desired, or for peaks matching the individual

colors of the particles which were imaged. It is not nec-

essary, as has been done previously, to carefully choose

particles whose colors fall very nearly into a single color

channel on the camera sensor (typically a particular

wavelength of red, green, or blue).

The method for identifying a signal of a particular color

in a mix of multispectral sources is implemented using

linear unmixing (Zimmermann 2005) which originated

with work on hyper spectral data analysis in the satellite

imaging community (Landgrebe 2002) and has recently

been adopted by the biological imaging community for

identifying cells stained with or expressing various fluo-

rescent pigments (Tsurui et al. 2000; Lansford et al. 2001).

It is designed to separate features most closely matching a

set of reference colors from data containing a mixture of

recorded wavelengths. However, it is important to note that

for this work, instead of applying unmixing on the recorded

images, unmixing will be applied to the color vector cor-

relation planes.

The second approach is the encoding of the three-

component color information into a type of complex

number known as a quaternion and then processing the

images simultaneously across the entire recorded color

space in a single operation. Quaternions are a type of

hypercomplex number first proposed by Hamilton in 1843

(Hamilton 1866), which encode four dimensions of real
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scalar data into a real part (w) and three imaginary parts (a,

b, and c), e.g. q = w ? ai ? bj ? ck where i, j, and k are

orthogonal, imaginary components such that ii = jj =

kk = - 1 and ij = k, jk = i, ki = j. In the case of color

image data, it is common to decompose the perceived color

of a given light source at each location in an image into

three components, e.g., the RGB (red, green, blue) color-

space. Thus, for RGB images, it is natural to encode this

color data as the i, j, k components of a pure quaternion 2D

matrix.

I ðx; yÞ ¼ R ðx; yÞi þ G ðx; yÞj þ B ðx; yÞk ð1Þ

Once color vector data have been encoded into a matrix of

quaternion values, standard Fourier transforms (FT) in both

discrete and continuous forms can be extended to apply to

quaternion fields. Sangwine et al. (2001), Ell and Sangwine

(2007) have shown that the single forward and inverse FT

for real or complex numbers give rise to families of related

quaternions transforms. Using these transforms, a quater-

nion cross-correlation, C, between two signals f and g can

be efficiently implemented. See the above referenced work

for more details.

For simple motions, the correlation peak is scalar only

with no hypercomplex parts. However, if the image color

changes, a match will still occur and the rotation in color

space can be recovered from the quaternion magnitude and

direction (Moxey et al. 2003). This is not explored here,

but should allow the matching of patterns that changes

color over time.

In this work, we show how quaternion cross-correlation

can be applied to PIV image data to determine the dis-

placement of multispectral color images. For single phase,

single velocity component flows, only a single peak need to

be identified from the resulting quaternion correlation

plane. For multi-component flows, two (or more) peaks are

identified, corresponding to each of the different tracer

types used. Then, the identified displacement peaks are

used to decompose the images into subimages containing

only a single velocity component and flow tracer type and

these are sorted based on their average color. This tech-

nique was originally introduced by Alexiadis and Sergiadis

for use in machine vision motion estimation (Alexiadis and

Sergiadis 2009a, b) and will be referred to as velocity

phase separation in this paper.

Each of the proposed techniques is validated using

synthetic color and monochrome images of flow fields

undergoing uniform translations. Both single-phase and

multi-component flows are simulated with images con-

taining two to three distinct particle colors; furthermore,

the effect of the Bayer color filter common to digital color

cameras is simulated to determine its effect on the results.

Finally, the methods are tested on experimental images of a

microchannel flow experiment in which contactless

dielectrophoresis (cDEP) is used to separate out two dif-

ferent particle types from each other as they flow through

the device.

2 Methods

2.1 Color image correlation

Several new methods were tested that allowed using

information from three-color images. These methods

include encoding the RGB color data as quaternion num-

bers; using quaternion cross-correlation, color ensemble

cross-correlation in which the correlation planes of each

individual scalar color are summed, and individual color

correlation in combination with linear demixing of the

RGB correlation plane. Their relationships are shown

schematically in Fig. 1 and described in more detail below.

In each case, the methods were adapted to allow the use of

a phase-only transform and the spectral energy filter of the

robust phase correlation (RPC) method (Eckstein et al.

2008; Eckstein and Vlachos 2009a, b).

2.1.1 Quaternion cross-correlation

For this approach, diagrammed in the lower left corner of

Fig. 1, each RGB color image was encoded as a 2D qua-

ternion matrix using Eq. (1). These quaternion images were

then cross-correlated using quaternion discrete FT. The

result of this operation is depicted as CQ in Fig. 1, with the

real part giving the magnitude of the correlation surface

and the vectors depicting the direction of the three hyper-

complex components of the quaternion field. The resulting

cross-correlation includes both real and hypercomplex

components. To define the maximum value for the peak

search and subpixel fit (here implemented with a standard

three-point Gaussian fit in each direction), either the

magnitude of the resulting quaternion or the absolute value

of the real part may be used. Based on preliminary testing

(results not shown), it was determined that the second

approach yields slightly better results and was therefore

used for the remainder of this work.

In the case of multiple displacements of different col-

ors, since a translation of matching color elements creates

a scalar peak regardless of the color of the translating

image components, an additional step is required to sort

out the source color of the particles that give rise to each

peak in the correlation plane. The procedure used for

this is described in Velocity Phase Separation section

below.

All quaternion math was carried out using version 1.9 of

the Quaternion Toolbox for MATLAB (qtfm), available on

SourceForge (Sangwine and Le Bihan 2011).
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2.1.2 Color vector cross-correlation

It is also possible to use traditional scalar methods on each

separate color component, yielding three separate correla-

tion fields, CR, CG, and CB, respectively, for the red, green,

and blue channels. These three correlation planes can then

be combined into a color image CRGB where the color of

each peak corresponds to the average color of the corre-

lating structures that gave rise to it. When a single color

channel visualizes each individual flow tracer, the dis-

placements can be determined by simply finding the peak in

each channel and applying a subpixel fit. For example, for

microPIV applications, this would require the use of fluo-

rescent probes with emission spectra matched to the camera

color filter with no overlap between filters. However, this is

not typical and each flow tracer is often visualized by all

three color channels, creating correlation peaks in all three

correlation planes (as shown in Fig. 1). This is in contrast to

quaternion cross-correlation, in which the peak is in the

scalar direction if the color of the object is the same in both

frames, regardless of the original color. This provides a

clear advantage for color vector cross-correlation if the

color of the flow tracers is known ahead of time.

To separate the contribution to the correlation plane of

each particle color, linear unmixing (described in detail

below) is applied to the CRGB correlation plane, resulting in

scalar correlation planes corresponding to each original

particle type (planes CP1, CP2, and CP3 in the lower right of

Fig. 1) with minimal cross talk from particles of different

colors. The peaks are then identified, and a standard Gaussian

three-point fit is used to find their subpixel locations.

2.1.3 Color ensemble cross-correlation

For the case in which all tracers have uniform motion, it is

not necessary to consider each color channel separately.

Traditionally, if color images were used to image such a

flow, these images would be converted to grayscale before

cross-correlation or only a single color channel would be

chosen. Here, it is proposed to keep the full-color infor-

mation until after the correlation step in order to preserve

the additional information from the original images. At this

point, the three-color correlation fields are averaged to

yield a scalar field, C(RGB), in which the peak could be

located using standard PIV techniques. This is most

appropriate where the group velocities of all tracer types

are approximately equal. For the case of different particle

colors with different motions, the source of the peaks is not

distinguishable based only on information in the correla-

tion plane, but techniques like velocity phase separation

could be used.

2.2 Linear unmixing of cross-correlation

Linear unmixing was performed by solving the following

inverse problem (Zimmermann 2005).

SðkjÞ
� �

¼ RiðkjÞ
� �

fAig ð2Þ

S represents the signal as a function of the sampled

wavelengths, kj, and R is a matrix of the linear response of

the sensor at each wavelength to the excitation of each of

Ai input types. In this case, our signal wavelengths are

limited to the red, green, and blue color channels of the

Fig. 1 Schematic of the three

proposed color cross-correlation

techniques. Color ensemble

correlation averages the scalar

correlation of each color

channel into a single field.

Linear demixing uses

knowledge about the color of

each source particle to separate

the full RGB correlation plane.

Quaternion cross-correlation

operates on RGB data stored as

hypercomplex numbers and is

then used to separate the source

images based on the velocity of

each particle, rather than the

color (mean RGB values of the

separated images are used to

sort the measured

displacements)
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image, though in a general case many more wavelengths

can be sampled using different filters. The input types Ai

correspond to different particle types used in the images.

The number of different source types must be less than or

equal to the number of signal channels for the problem to

be solvable. Given these restrictions, for the unmixing

problem studied here, Eq. (2) can be written as follows.

SR

SG

SB

8
<

:

9
=

;
¼

RP1ðRÞ RP2ðRÞ RP3ðRÞ
RP1ðGÞ RP2ðGÞ RP3ðGÞ
RP1ðBÞ RP2ðBÞ RP3ðBÞ

2

4

3

5
AP1

AP2

AP3

8
<

:

9
=

;
ð3Þ

In the presence of noise and other errors in the measured

signal, an exact solution was generally not available, and

instead the relative intensities of each component Ai were

solved for by a least squares inverse algorithm. When only

two source components were used to form the final images

(i.e., two particle types), the response matrix coefficients

corresponding to the third component were set to dummy

values, though tests revealed that they could be safely

removed without affecting the final results (changing the

inversion problem to an overdetermined system).

For tests with synthetic images, the response matrix was

determined based on the known input colors of each par-

ticle type. For experimental images, approximate values of

R were determined by manual inspection of the recorded

color images, but might also be recovered more accurately

using knowledge of the particle emission and camera filter

spectra.

2.3 Velocity phase separation of images

Due to the formulation of the quaternion cross-correlation,

which yields scalar peaks regardless of the color of the

matched patterns, an ambiguity exists regarding which

particle type created each of the identified peaks. To solve

this problem, we decomposed particle image patterns into

the sum of two or more subimages in the Fourier domain,

each with a unique associated velocity, using Eq. (4). This

approach was originally used in motion tracking for

machine vision (Alexiadis and Sergiadis 2009b).

FþLf�u; tg
FþLf�u; t þ Dtg

� �
¼ 1 1

e�luT v~1ðtÞ e�luT v~2ðtÞ

� �
CþL

1 f�u; tg
CþL

2 f�u; tg

� �

ð4Þ

The equation arises from the Fourier shift theorem, which

states that a shift in image coordinates is manifested by a

linearly varying complex phase in the Fourier domain with

a slope proportional to the shift. Given that F and the

displacement terms are known, inversion can be used to

determine the C terms one frequency component at a time.

Before the inversion is computed, the discriminant of the

shift matrix is calculated and any matrices that are too

close to singular have their source components C set to

zero for that frequency. In theory, it should be possible to

solve the entire system for all frequency components

simultaneously, but in testing, it was found that the

resulting system of equations was too stiff and frequently

failed to properly invert.

To apply this method to PIV data, we first divided each

flow field into smaller interrogation regions, which were

processed using quaternion cross-correlation, and subse-

quently identified the two largest peaks in the resulting

correlation plane. Then, each ROI was decomposed using

Eq. (4) into two subimages, each matching one of the

identified velocity peaks. As previously mentioned, each

subimage was sorted based on the average particle color,

and a final flow field was assembled for each tracer type.

For efficiency, Eq. (4) was implemented separately on each

color channel.

2.4 Synthetic image generation

Most digital cameras record color images in one of two

ways. In the first, incident light is split using filters into at

least three distinct wavelength bands and three or more

sensors image every color across the entire scene. These

sensors can either be stacked in alignment with the light

path (such as the Foveon X3) or split up with the light

being directed using prisms or mirrors (so-called ‘‘3CCD’’

or ‘‘3MOS’’ designs). Usually the colors correspond to the

red, green, and blue wavelengths typically used in storing

or transmitting RGB image data. The second, more com-

mon approach is to place a filter at each pixel on a single

sensor so that each pixel accepts light from only a single

color band, again usually corresponding to either red (R),

green (G), or blue (B) light. The most common pattern for

such a filter is known as a Bayer filter, and the colors are

arranged in a repeating 2 9 2 mosaic pattern with G and

R alternating in one row and B and G in the next. Under

this arrangement, there are twice as many green pixels as

either red or blue. Other arrangements of color filters are

possible, but are less common. The full-color image with

RGB data at each pixel must then be reconstructed using a

demosaicing algorithm, and often a secondary de-aliasing

filter is applied to minimize image color artifacts caused by

this approach, although this has the effect of reducing

resolution as well. Full-color images can also be recon-

structed by subsampling the original sensor data so that

each reconstructed pixel contains data from at least one

complete Bayer filter element, in which case interpolation

is not necessary. This reduces the possibility of color

artifacts, but reduces the maximum available spatial

resolution.

To analyze the performance of the new methods, color

synthetic images of PIV particle fields were generated to
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simulate the above camera imaging processes (see Fig. 2).

Because most color cameras use a Bayer filter to image

three-color data on a single CCD or CMOS sensor, it was

important to model the effect of this procedure on images.

Additionally, for the same particle fields, images recreating

the grayscale intensity field without color filtering as well

as full-color images without the use of a Bayer filter were

simulated. The full procedure for the image generation

process is detailed below.

Image generation began with the creation of one or more

pairs of particle image intensity fields (marked in Fig. 2 as

P1, P2, and P3). Following commonly accepted practice for

simulating PIV images, these fields contained Gaussian

particle images with a mean diameter of 3 pixels at the 1/e2

intensity level and a standard deviation on that diameter of

1.0 pixel. The recorded intensity for each particle was

integrated over a fill factor of 100 %, and intensities were

discretized to a dynamic range of 8 bits (intensity counts

from 0 to 255). Particles were uniformly distributed across

a Gaussian light sheet. Each of these particle image pairs

was then assigned an RGB color, the selected full-intensity

color was linearly scaled by the corresponding grayscale

intensity field, and the resulting fields were summed to

yield a three-color image (‘‘full-spectrum image, noise

free’’ in Fig. 2). Values exceeding the maximum intensity

were truncated. This image formed the baseline image

from which all the other versions were derived. Perspective

effects on the apparent motion and location of each particle

were not simulated.

To simulate intensity-only grayscale images, this full-

color image field was collapsed to a luminance-only field

using the RGB2GRAY() command in MATLAB. The

function calculates the luminance according to the fol-

lowing form.

L ¼ 0:2989 R þ 0:5870 G þ 0:1140 B ð5Þ

This form is the same as used to calculate the luminance

channel for a 3-channel NTSC luminance–chrominance

image. At this point, the data are assumed to be equivalent

as what the sensor would be imaging, and normally dis-

tributed noise with a standard deviation of 5 % of fullscale

and a mean of 5 % was added to the image (‘‘raw grayscale

with noise’’ in Fig. 2).

To simulate a full-spectrum image with noise (such as

might be acquired by a Foveon X3 camera), the same noise

field as used in the previous image was added to the green

channel and then rotated and flipped to create two addi-

tional noise fields that, for a given point in the image,

would not be locally correlated between color image

channels. These two fields were then added to the blue and

red channels so that all three color components have image

noise of equivalent statistical properties.

To generate Bayer-filtered color images, the noise-free

full-color images were subsampled according to a GRBG

Bayer filter to create a mosaic single-sensor intensity

image. At this point, the noise field used in the grayscale

images was added to the synthetic sensor data. The

resulting image field was then demosaiced using MAT-

LAB’s DEMOSAIC() command, which implements a

gradient-corrected linear interpolation (Malvar et al. 2004).

De-aliasing was not used in order to preserve the maximum

possible spatial resolution. This image was then used as is

[‘‘Bayer color with noise’’ in Fig. 2) or was further trun-

cated (again using RGB2GRAY())] to yield an image that

Fig. 2 Artificial color image

generation procedure. Full-

spectrum color images are

generated from images of single

color particle fields and full

spectrum, and native grayscale

images are recorded. For Bayer-

filtered images, the full-

spectrum image is subsampled,

noise is added, and then the

images are demosaiced and

saved as either color or

grayscale. Solid colored lines

indicate paths for data of that

color, while checkered lines

indicate Bayer-filtered data.

Dashed black lines indicate the

addition of noise to the signals
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might represent the output if a researcher was to average a

color image field for processing in a traditional PIV algo-

rithm that only deals with grayscale images (‘‘RGB to gray

with noise’’ in Fig. 2).

It can be seen qualitatively in Fig. 2 that the final images

which went through the Bayer filter/demosaicing steps

show increased color and intensity noise. As will be shown

later in the Results section, this has a significant impact on

the results of the PIV processing.

2.5 Artificial flow fields

The synthetic image generation procedure described above

was used to simulate recordings of several simple flow

fields. For each image pair and particle type, a flow field

was generated and particles were randomly seeded

throughout the image. The particle locations were then

displaced in accordance with the simulated velocity field to

yield an image in which the displacements were a function

of the particle type. In each case, it was assumed that the

simulated flow tracers would be independent of the motion

of any surrounding tracers.

For each flow field, RPC-based correlation was used

(Eckstein et al. 2008; Eckstein and Vlachos 2009b), and

each region of interest was 64 9 64 pixels in size and

windowed using a Gaussian function to an effective cir-

cular resolution of 32 pixels (Eckstein and Vlachos 2009a).

Images were 1,024 9 1,024 pixels in size for each case.

The flow field was sampled on a 32 9 32 pixel grid for

0 % overlap to maintain independent measurements, for a

total of 1,024 vectors per synthetic flow field. Only uniform

flow was simulated, under the assumption that the relative

effects of shear and rotation would be approximately

similar to previously tested PIV algorithms.

2.5.1 Uniform flow

The first image set was designed to test the effect of using

color correlation techniques on a flow field in which the

imaged particles were multiple colors but all traveling in the

same direction. The objective was to investigate whether

multispectral particle images could provide improved

accuracy and precision of PIV measurements compared to

grayscale images. Three different particles were simulated,

all with equal velocity. Multiple image pairs were gener-

ated, each with a single velocity for all particles in the field.

For the whole set, velocities ranged from 0 to 8 pixels/

frame in the x direction and were fixed at 0.3 pixels/frame

in the y direction. Particle 1 had at 100 % intensity a color

of (63,255,192), or mostly green/cyan in an RGB color

space. Particle 2 was mostly red with a little magenta,

(255,15,127). Particle 3 was mostly blue (15,95,255). These

colors were chosen based on preliminary experimental

images of microchannel flow with three different fluores-

cent particle types approximating red, green, and blue

emission spectra.

Due to the chosen colors, the green particles had the

highest intensity at 100 % brightness, followed by the red

and then, finally, the blue. Pure colors were intentionally

not chosen in order to allow for the effect of cross talk

between color channels, since in real images, it is almost

never possible to precisely match particle colors to camera

color channels. Particles were seeded into the flow at an

average density of 0.005 particles/pix2 for each color, or

0.015 particles/pix2 total. This yielded about 15 particles

per 32 9 32 interrogation region.

2.5.2 Two component flow

The second test condition examined the ability of the

multi-spectral methods to accurately distinguish the motion

of two independent velocity tracers. For these image sets,

only the particle 1 (green) and particle 2 (red) types were

used, and the seeding density was 0.01 particles/pix2 for

each, for a total density of 0.02 particles/pix2. It is

important to note that since we were trying to resolve each

group independently, it is the seeding density for each

particle type that controls the success of the PIV correla-

tion, not the total. For 32 9 32 pixel ROIs, only about 10

particles on average are visible per type, which is on the

lower end of the generally accepted optimal particle den-

sity (Adrian and Westerweel 2011). For each image pair,

all of the particles of a given color were assigned a single

displacement between 0 and 8 pixels/frame in the x direc-

tion. Displacement in the y direction was set to a uniform

0.3 pixels/frame for both particle fields. Multiple image

pairs were generated so that the set spanned every possible

combination of velocities for the two particle types.

2.6 Experimental flow in a microchannel

Contactless dielectrophoresis (cDEP) was selected as a

representative application. cDEP is a recently developed

technique for particle and cell manipulation and sorting. In

conventional DEP, an electric field applied between elec-

trodes inserted into a microfluidic device exerts a force on

dielectric particles in the fluid. The dielectrophoretic force

depends on the particle radius r, fluid permittivity em, and

electric field gradient D Ej j2, as well as the Clausius–Mossotti

factor fCM, which describes the relationship between the

dielectric constants of the particle and the fluid:

FDEP ¼ 2pemr3 Re½fCM�r Ej j2 ð6Þ

Because of the relationship between DEP force and particle

properties, DEP can be used to separate particles with different

Microfluid Nanofluid (2014) 17:729–743 735

123



size and electrical properties by tuning the frequency and

strength of the electric field. cDEP is a variant of DEP that uses

fluid electrode channels which are isolated from the main

microfluidic channel and thus enable sterile sorting. For fur-

ther information on cDEP and its applications, see (Shafiee

et al. 2009, 2010; Salmanzadeh et al. 2011).

This experiment was performed using the cDEP system

described in (Sano et al. 2011) (microfluidic device Design

3). Distilled water containing a mixture of two types of

polystyrene beads—1-lm diameter red fluorescent particles

and 10-lm diameter green fluorescent particles (Fluoro-Max

R0100 and Fluoro-Max G1000, Thermo Scientific)—was

perfused at a rate of 0.005 mL/h through the microfluidic

device using a syringe pump (PhD Ultra, Harvard Appara-

tus). The conductivity of the particle solution was measured

to be 25 ls/cm (SevenGo Pro Conductivity Meter, Mettler-

Toledo). The electric field was applied as a sinusoid with

50 kHz and 400 V RMS. Images were acquired at 19 Hz

with a color camera (Leica DFC420) mounted on a Leica

DMI 6000B microscope equipped with fluorescence illu-

mination and filters and had a size of 648 9 864 pixels at a

resolution of 0.83 lm/pix with 5X magnification. A repre-

sentative image is shown in Fig. 3.

Based on the acquired images, it was determined that the

green particles had an apparent size of about 16 pixels in

diameter and an average RGB color vector corresponding

to (75, 220, 255), almost pure cyan, while the red particles

were approximately 2–3 pixels in size and were almost

pure red with a color of (255, 68, 55).

3 Results

3.1 Effect of bayer-filtered images on PIV

The results of the error analysis of single component

velocity tests for uniform flow using three differently

colored particles are shown in Fig. 4. Both Bayer-filtered

and full-spectrum RGB images were tested, as well as

grayscale-converted Bayer filter images. Native grayscale

fields were also examined to provide a baseline for tradi-

tional scalar PIV methods for comparison to the new

methods.

From the results, it was apparent that every processing

type when used with image data that had been previously

Bayer filtered and demosaiced, whether RGB or grayscale-

converted images, demonstrated severe bias and random

error fluctuations as a function of displacement. This effect

was similar to classical peak locking, but instead had a

period of 2 pixels. This detrimental behavior is attributed

to the Bayer filter itself, which also has a period of 2 pixels.

Examination of the demosaiced images showed clear

checkerboard patterns in the particle image data (see for

instance Fig. 5), and it is likely that this was the root cause

of the periodic errors. Errors were lowest when the dis-

placements were an even multiple of two and were highest

when the displacement was mismatched with the Bayer

filter at a single pixel.

Although the magnitudes of the resultant errors

remained reasonable (below about 0.1 pixels/frame), they

were significantly higher than the correlations computed on

unfiltered images, which had bias errors that remained less

than 0.05 pixels/frame even for large displacements

(8 pixels in a 32 pixel window resolution) and random

errors between about 0.02 and 0.04 pixels/frame. It is

probable that more sophisticated post-processing of the

demosaiced images could alleviate this aliasing artifact in

the images. As it was not the intent of this work to evaluate

the performance of different image processing techniques,

for the remainder of this work, only color images created

without the use of the Bayer filter were analyzed. However,

these results highlight an important issue that needs to be

addressed if color PIV processing is performed and addi-

tional testing with experimental images and commercial

Fig. 3 a Example frame from the cDEP microfluidics experiment. b 64x64 pixel close-up of particle field
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software needs to be performed to quantify to what extent

this problem affects color images in practice.

Returning to the comparison of the different color image

processing algorithms versus a traditional grayscale

approach, there appears to be little effect on the bias errors

in either the x or y directions (Fig. 4a and c). However, the

random error dropped by about � in both directions, falling

from about 0.03 pixels/frame to less than 0.02 in

x (Fig. 4b) and from about 0.03 to about 0.015 pixels/

frame in y (Fig. 4d). This is consistent with the proposed

mechanism that uncorrelated noise between color channels

is suppressed by preserving the full-color information in

the cross-correlation. Additionally, the color ensemble

correlation performed slightly better than quaternion cross-

correlation, though the difference was marginal.

Linear unmixing of a color vector cross-correlation was

not tested on these images since it would have resulted in

three individual velocity fields each made on a particle

field having 1/3 the seeding density that the other methods

were testing, making it an unfair comparison.

Fig. 4 Error analysis images of multispectral particle fields. RPC

scalar cross-correlation, qRPC quaternion method, eRPC color

ensemble method. All measurements are in pixels per frame. a Bias

error in u-velocity. b Random error in u velocity. c Bias error in

v velocity. d Random error in v velocity

Fig. 5 Use of a Bayer filter can result in a checkerboard appearance in images of small particles. a Full-spectrum RGB data. b RGB data after

Bayer filter demosaicing. c Full-spectrum RGB data converted to grayscale. d Bayer-filtered image after conversion to grayscale
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3.2 Synthetic image tests of velocity separation

For the two component flow tests, both the quaternion

cross-correlation with velocity separation and the color

vector cross-correlation with linear unmixing of the cor-

relation plane were tested. Results of the error analysis for

each particle type (P1 and P2) for bias and random error in

both the x and y directions are plotted in Fig. 6 for all

combinations of x displacements between 0 and 8 pixels/

frame. For these results, only valid measurements (those

with an error less than 0.5 pixels/frame) were counted

toward the final statistics. Each point in a subplot indicates

the combined bias error, random error, or valid vector

count calculated for the 1,024 vectors in a single image pair

with a given combination of P1 and P2 u-velocities (rep-

resented by the position on the vertical or horizontal axis).

If the errors were uncorrelated, we would have expected

the error on each particle velocity to be independent of the

motion of the other particle type. In other words, the errors

on P1 motion should only vary along the vertical axis, and

the errors on P2 velocity should only vary along the hori-

zontal axis. However, as illustrated by the dramatic

diagonal stripes in many of the plots (in this region

UP1&UP2), both methods showed some cross talk for dis-

placements less than the average particle diameter of

3 pixels. For the quaternion cross-correlation, both particle

types showed approximately equal bias errors toward the

displacement of the other particle type for displacements

less than this threshold, with slightly higher random errors

for particle 2. Examination of the correlation planes

showed that once the particle displacements were too close

together, the peaks began to merge into one, distorting the

shape of both and biasing the subpixel peak location

toward the position of the other peak.

In contrast, the bias errors were lower for particle 1

using the color vector cross-correlation approach than for

particle 2. Additionally, for particle 1, the bias was toward

particle 2, while for particle 2 the bias was away from

particle 1. The cause for this seems to be that cross talk in

the linear unmixing led to a small amount of the correlation

peak energy of particle 2 being deposited in the unmixed

correlation planes for particle 1, biasing the result toward

particle 2. This process, on the other hand, led to missing

energy for particle 2 on the side of the correlation peak

Fig. 6 Error analysis of multi component velocity measurements of

color data using either quaternion correlation and velocity separation

(left column) or color scalar correlation with linear unmixing (right

column). a and d Bias and b and e random errors on u-displacement

measurements for particle 1 and particle 2. c and f valid vector

fraction for measurements (errors calculated only on valid

measurements)
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toward particle 1, biasing the peak detection algorithm

away from the other correlation peak. Although not tested

here, the exact amount and behavior of this error due to the

linear unmixing is likely dependent on the exact color

values chosen for each particle type, and this behavior will

not necessarily generalize to any particular choice of par-

ticle 1 and particle 2.

Overall, the errors for the quaternion cross-correlation

(left column, Fig. 6) were considerably worse than for the

color vector processing (right column, Fig. 6). Comparing

Fig. 6c to f, it can be seen that for the color vector cross-

correlation method, the valid vector percentage was very

near 100 % for the conditions tested. However, the qua-

ternion cross-correlation failed more than 50 % of the time

in many cases and often had nearly 0 % valid detection

probability. This was due to several factors. The first was

the previously mentioned merging of the correlation peaks.

Second, the selection of two valid peaks often proved

problematic, with the second true signal peak sometimes

being confused for noise peaks of similar height. Finally,

even if the peaks were correctly selected, the sorting

algorithm often had trouble automatically assigning each

decomposed subimage to the proper particle type. Even if

the last two problems could be addressed, the first is likely

insurmountable without significant new development of the

quaternion cross-correlation theory.

Figure 7 shows a close-up of the results for the color

vector cross-correlation method for 0 displacement in x for

particle 1, and 0–8 pixels displacement for particle 2.

These conditions correspond closely (albeit with different

seeding densities) to those used in generating the uniform

flow images for which results are plotted in Fig. 4.

Therefore, we can compare the results for traditional or

color PIV on a field with a single flow component to the

results for a flow with two velocity components.

For particle 1, which has 0 velocity in the x direction,

the u-bias error shown in Fig. 7a was very close to zero, as

could be expected from the single component v-bias errors

plotted in Fig. 4c. For particle 2, although the bias error did

climb to about 0.15 for displacements less than one particle

width by 3.5 pixels displacement, the trend has returned to

a very close match of the errors that could be expected if

particle 2 was the only flow tracer in the image. The ran-

dom errors shown in Fig. 7b are slightly increased, how-

ever, as compared to the single component uniform flow as

plotted in Fig. 4b. For particle 1, random errors peaked

near 0.045 pixels/frame before returning to the baseline

value near 0.03, while the errors for particle 2 climbed to

between 0.035 and 0.04 and remained there for the range of

displacements tested. This was in contrast to the random

errors reported for single component flow data processed

with full-color algorithms, which showed values around

0.02 pixels/frame, though it compared much more favor-

ably to the grayscale processing which had random errors

nearer to 0.03 pixels/frame.

3.3 MicroPIV in cDEP channel

The algorithm was tested on microPIV results of an

experiment featuring two particle types of different size

and color. cDEP was used to exert a horizontal force on the

larger green particles, sorting them from the red particles

which generally behaved as flow tracers as the cDEP force

was negligible due to their smaller volume. A field of view

Fig. 7 a Bias and b Random error on the color vector cross-

correlation measurement of the u-velocity of particle 1 (green) and 2

(red) versus increasing displacement of particle 2 for a fixed particle 1

displacement of UP1 = 0. Errors are higher in the regions that the

particle displacements differ by less than the width of the particles.

Values are the same as in Fig. 6d and e. Bias and random errors for

the same particle fields correlated with only particle 1 (solid black) or

particle 2 (dashed black) present are also shown for comparison
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near the end of the cDEP region featuring a symmetric

divergence was selected for analysis. At this point, the

degree of separation of the two types of particles was near

the maximum achieved for this geometry and field settings.

Since the quaternion cross-correlation proved to perform

poorly with synthetic images, results for this method on

these images are not presented here.

Images were processed using Gaussian windowing with

a resolution of 32 9 32 pixels on a 32 pixel grid (0 %

overlap) and correlated using single-pass RPC. No vali-

dation (other than the peak ratio filtering discussed below)

was performed on the resulting vector field. Instantaneous

results were favorable, but due to the low seeding density

for the green particles, especially on the right side of the

image, ensemble correlation of the three-color correlation

plane over the sequence of images was used to capture the

average velocity over a larger region. Additionally, since

no green particles ever appeared in some areas near the

right wall of the channel, the peak ratio was used to filter

out these regions. Based on examination of the results,

correlations with a peak ratio less than 12 were blanked out

of the displayed vector plots in Fig. 8a.

Although the cDEP procedure had a significant effect on

the particle distribution over the length of the microchan-

nel, due to the small magnitude of the forces involved, it

was not possible to isolate a slip velocity for the green

particles transverse to the mean direction of the smaller red

particles (Fig. 8b). However, the apparent slip velocity

between the two phases was readily apparent and only in

the region near the right wall did there appear to be con-

tamination of the velocity for green particles by light

emitted from the red particles. This was because few green

particles reached this region, whereas the red particles were

densely and uniformly present throughout the flow, so it

only took a small amount of leakage between the unmixed

correlation planes for the signal from the red to overpower

the small signal from the green. This can be seen in the

patchy areas of disorganized and low-velocity flow near the

wall and upper right of the image.

More concerning, however, was the blocky appearance

of the slip velocity vector field. This appeared to have the

typical characteristics of peak locking. Examination of the

raw x and y displacement fields for the red particles (P1)

showed this more clearly. Figure 9 contours these values

for the red particle field. Qualitatively, the measured dis-

placements appeared to be grouped around even integer

displacements, with sharp transitions between regions of

different velocities. Plotting a histogram of all measure-

ments (Fig. 10) helped to quantify the problem. For dis-

placements of the red P1 particle in either x or y, there were

almost no values near odd integers, and very large peaks

for even values. For the much larger (16 pixel diameter)

green particles, little periodic grouping is seen. The larger

particle size evidently helped to counteract this effect.

Although peak locking is a common problem for PIV

cross-correlation and ensemble averaging of the correlation

planes tends to exacerbate the error, it typically has a

period of one integer pixel, not two. This suggests the error

was introduced by the demosaicing software for features of

similar size to the Bayer filter, as was previously demon-

strated by the synthetic image testing (Fig. 4).

Despite the shortcomings introduced by the Bayer filter,

it is clear from these results that both velocity components

could be resolved, even under challenging microPIV con-

ditions. Additional work on image dealiasing and filtering

may provide a solution to the peak-locking problem created

by the Bayer filter.

4 Discussion and conclusions

Synthetic image tests on flows with only a single veloc-

ity component demonstrated an advantage for color

Fig. 8 a Time-averaged ensemble correlation of the experimental

images using the color vector method with linear unmixing. b Slip

velocity between the larger and slower green particles and the red

particles. The vector scale is the same for both plots
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correlation methods over traditional single channel images.

For the two methods tested (quaternion cross-correlation

and color ensemble cross-correlation), the bias errors were

similar to a traditional grayscale image processing, but the

random errors were reduced by almost a factor of one half

(Fig. 4), with the color ensemble method being slightly

better than the quaternion method. From examination of

the correlation planes and images, it is hypothesized that

the reason for this improvement is that noise tends to be

decorrelated between color channels, while the displace-

ment signal is the same. As such, the signal-to-noise ratio

of the resulting correlation plane is increased when multi-

spectral image data are used to find the displacements.

Using low noise, high-bit-depth cameras would reduce the

noise seen in both grayscale and color image results, but is

not expected to change the relative improvement assuming

a similar quality color sensor is available.

However, this was only for images that were generated

without the use of a Bayer filter to reconstruct the full-color

spectrum. The use of this 2 9 2 color mosaic pattern

introduced clear periodic patterns versus displacement with

a period of 2 pixels in both the bias and random errors.

Errors were increased in magnitude by 2x to 3x or more

versus images without this problem. These results send a

clear warning to any researcher using a color camera in

their work, because even software conversion of color

images back to grayscale is not sufficient to eliminate this

problem.

One potential limitation of this work is that only the

built-in MATLAB function for demosaicing images was

used in conjunction with our synthetic images, and no

additional de-aliasing or filtering steps were performed.

These filtering steps are nearly ubiquitous in commercial

camera software and hardware, though they often trade

spatial resolution to eliminate the so-called color moiré or

aliasing artifacts seen here. One potential problem with the

filtering schemes that might have been selected by manu-

facturers is that they were likely selected with the goal of

increasing the esthetic appeal of the final results, rather

than ensuring that no 2 9 2 patterned noise remains in the

image. However, it is difficult to make universal judgments

on whether any particular camera will suffer from these

problems since the exact schemes used are typically pro-

prietary and are not disclosed to the public. This means that

the user of any given camera would be wise to evaluate the

severity of this error under the exact acquisition settings

that will be used in their experiment before depending on

the images generated for sensitive research needs. Partial

validation for the possibility of this error occurring in

practice was demonstrated here in the microPIV experi-

ment performed. For the images acquired using this camera

(Leica DFC420), cross-correlation revealed a dramatic bias

Fig. 9 Raw particle displacements showed a bias toward even integer displacements. a Horizontal displacements for the red particle field.

b Vertical displacements for the red particles

Fig. 10 Histogram of the measured displacements in the x and

y direction for all vectors measured from both particle types. For the

smaller red particles, P1, there is a periodic pattern with peaks near

even integer values
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error that severely contaminated the resulting vector fields

(Figs. 8 and 10). Workarounds may include 2 9 2 sub-

sampling of the acquired images to avoid the need for

Bayer demosaicing, or use of cameras that directly measure

all three colors at every pixel.

Beyond the potential for enhancing the measurement

quality in single-component vector fields, the use of mul-

tiple flow tracers to sample multiple types of flow behavior

simultaneously is also possible using the methods descri-

bed here. Such situations are common in multiphase flows,

and the results show that it is possible to separate the

independent behavior of each particle type with minimum

cross talk between signals and with accuracy and precision

similar to that achievable by measuring each component of

the flow individually. Although quaternion cross-correla-

tion paired with velocity separation performed poorly

because of the inability of the quaternion cross-correlation

to differentiate closely spaced displacements, color vector

correlation did not suffer from the same problems and a

linear unmixing approach proved very successful in

resolving two simultaneous flow components (Fig. 6). This

type of measurement capability is not attainable using a

conventional grayscale PIV processing approach. Appli-

cation of the method to experimentally acquired microPIV

images showed that the method could successfully detect

the velocity signal from two different particle types in real

images using both instantaneous and time ensemble cor-

relations (Fig. 8). However, as previously discussed, severe

peak locking was observed in the time ensemble correla-

tion data, likely as a result of the use of a Bayer filter by the

camera as seen in the synthetic data tests. This compro-

mises the ability of the method to make accurate mea-

surements of velocity, even though the displacement peaks

are readily detectable.

In conclusion, this paper introduced and explored three

correlation methods for employing color data in PIV pro-

cessing. It was shown that for single-component flow data

seeded with particles of multiple colors, multispectral

image data could be used to reduce the random error of PIV

methods by about a factor of two as compared to grayscale

processing of the same images. Additionally, linear

unmixing and velocity phase separation were tested to

separate out the individual signals from two flow tracers of

differing velocities. Although quaternion cross-correlation

paired with velocity phase separation failed due to an

inability to distinguish displacements separated by less

than a single-particle diameter, color vector correlation

avoided this problem and linear unmixing of the resulting

correlation planes yielded results similar to measuring each

flow component independently. Finally, it was shown that

influence of the Bayer filter caused a severe peak-locking

error on PIV fields measured using color data for both

synthetic and experimental images. Whether this error is

common to all commercially available color camera sys-

tems is an issue that needs to be addressed before color

processing in PIV becomes routinely viable.

Acknowledgments The authors would like to thank Jaka Cemazar

for his help performing cDEP experiments. This work was partially

supported by the NSF IDBR 1152304 and NIH 5R21CA158454-02.

References

Adrian RJ (1986) Image shifting technique to resolve directional

ambiguity in double-pulsed velocimetry. Appl Opt 25(21):

3855–3858

Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cam-

bridge University Press, New York

Alexiadis DS, Sergiadis GD (2009a) Estimation of motions in color

image sequences using hypercomplex fourier transforms. IEEE

Trans Image Process 18(1):168–187

Alexiadis DS, Sergiadis GD (2009b) Motion estimation, segmentation

and separation, using hypercomplex phase correlation, clustering

techniques and graph-based optimization. Comput Vis Image

Underst 113(2):212–234
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