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Abstract It has been recently reported that, after a liquid

drop contacts the bottom of a roughness groove, liquid

may not completely fill this roughness groove if the

groove is covered with nanostructures. Otherwise, liquid

may fill the entire groove. In this work, we explore the

reasons behind these phenomena for the case of circular

micropillars and derive an angle inequality. We show that

if the local contact angles satisfy the angle inequality, a

locally stable intermediate wetting state may exist. In this

intermediate state, liquid does not completely fill the

roughness groove, and air pockets still exist in its bottom

corners. When roughness grooves have smooth surfaces,

the local contact angles are usually less than 135�, vio-

lating the angle inequality. However, the incorporation of

nanostructures on the grooves may make local contact

angles become above 135�, resulting in the satisfaction of

the angle inequality. Therefore, the filling phenomena may

be different when the grooves are covered with nano-

structures or not. In addition to existing experimental

results, the derived angle inequality is also validated by

in situ observation of water drops in the pressing tests on

circular micropillars with and without the coverage of

ZnO wires.
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1 Introduction

As a liquid drop is placed on a rough surface, the wetting

may be either in Wenzel (1936) or Cassie and Baxter

(1944) state. In the Wenzel state, the drop completely fills

roughness grooves, while this is not the case in the Cassie–

Baxter state. In the latter state, the drop sits on top of

roughness structures. The Wenzel state favors, for exam-

ple, the creation of a super-wetting surface (McHale et al.

2004; Extrand et al. 2007). In contrast, the Cassie–Baxter

state is preferred when a liquid-repellent surface is desired

(Neinhuis and Barthlott 1997; Ou et al. 2004). In com-

parison with Wenzel state, this wetting state reduces the

pinning effect on a liquid drop, making the drop much

easier to move down from the corresponding surface

(Neinhuis and Barthlott 1997; Jung and Bhushan 2008).

A drop may contact the base of a roughness groove due

to a large deflection of the drop bottom surface or the

depinning of this bottom surface from top edges of rough

structures. When this contact occurs, mainly based on

experimental observation, it is often considered that the

liquid should immediately fill the roughness groove (Ex-

trand 2004; Patankar 2004; Jung and Bhushan 2008;

Reyssat et al. 2008; Kusumaatmaja et al. 2008). Subse-

quently, Cassie–Baxter state is transitioned to that of

Wenzel. Accordingly, whether the contact has occurred is

employed as a criterion to judge the transition between the

two wetting states (Neinhuis and Barthlott 1997; Ou et al.

2004; Extrand 2004; Patankar 2004; Jung and Bhushan

2008; Luo et al. 2011). For simplicity, this transition cri-

terion is called ‘‘contact criterion’’ thereafter. The afore-

mentioned roughness grooves have smooth surfaces. On

the other hand, it has been recently reported that, when

roughness grooves are covered by nanostructures, such as

ZnO wires (Luo et al. 2012; Luo and Xiang 2012) and
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silicone nanofilaments (Verho et al. 2012), after water

drops contact the corresponding groove bottoms, Cassie–

Baxter state does not change to that of Wenzel. Instead,

another wetting state may be formed, which is subse-

quently referred to as ‘‘intermediate state.’’ In the inter-

mediate wetting state, water does not completely fill the

roughness groove, and air pockets still exist in its bottom

corners. Thus, it is interesting to understand why different

wetting states may be generated when groove surfaces are

covered with and without nanostructures.

Micropillars and microchannels are commonly

employed to enhance surface hydrophobicity (Wenzel

1936; Cassie and Baxter 1944; Bico et al. 1999, 2001;

Lafuma and Quere 2003; Marmur 2003; He et al. 2003;

Extrand 2004; Patankar 2004; Nosonovsky and Bhushan

2007; Jung and Bhushan 2008; Reyssat et al. 2008; Ku-

sumaatmaja et al. 2008; Liu and Luo 2010; Extrand and

Moon 2010; Luo et al. 2011; Verho et al. 2012; Qiao et al.

2012). These microstructures normally have vertical side-

walls, instead of inclined ones, since ultra-violet lithogra-

phy, the most commonly used approach to fabricate

micropatterns, employs vertical radiation exposure to

transfer patterns. In a previous work (Luo et al. 2012), we

explored the applicability of the contact criterion to the

case of microchannels. We found that, once an angle

inequality is met due to the incorporation of ZnO wires on

the inner surfaces of the microchannels, Cassie–Baxter

state may be transitioned to intermediate state, instead of

that of Wenzel. Also, the intermediate wetting state is

locally stable in the sense that its energy state is lower than

that of the Wenzel model.

In a follow-up work (Luo and Xiang 2012), we further

considered the case of polygonal and circular pillars, and

also derived an angle inequality, which is identical to the

one derived in the case of microchannels (Luo et al. 2012).

In the case of pillars, this angle inequality is a necessary

condition that local contact angles and the inclined degree

of the pillars should meet for the existence of an interme-

diate state. As in the case of microchannels, once this

inequality is violated, there should not exist any interme-

diate state, and the contact criterion is also applicable to the

case of micropillars. On the other hand, different from that

in the case of microchannels, the satisfaction of this

inequality does not guarantee the existence of a stable

intermediate state for the case of micropillars. For the

existence of a stable intermediate state, two conditions

should be satisfied. First, there exists an equilibrium state

after the contact. Second, there is an energy barrier

between this equilibrium state and that of Wenzel. The

consideration of these two conditions may give precise

bounds of local contact angles and inclined degrees of

pillar sidewalls for the existence of a stable intermediate

state, which could also be used to identify the exact range

that the contact criterion is applicable. We did so for the

case of microchannels (Luo et al. 2012), since the corre-

sponding air/liquid interfaces have simple shapes. How-

ever, we did not consider the two conditions in the case of

micropillars due to lack of analytical expression of the

related air/liquid interfaces (Luo and Xiang 2012).

Accordingly, although the derived inequality is identical to

the one for the case of channels, it may not give a precise

range that the contact criterion is valid.

In this work, using a new approach, we consider the

aforementioned two conditions for the case of circular pillars

with vertical sidewalls, while the case that circular pillars

have concave sidewalls has been reported elsewhere (Luo

and Xiang 2013). This approach does not rely on the explicit

expression of the interface profile, making it feasible to

explore the applicability of the contact criterion. Subse-

quently, we apply the derived theoretical results to interpret

some experimental results shown in both of our previous

work (Luo and Xiang 2012) and Verho et al. (2012).

2 Existence of an equilibrium state inside grooves

Assume that there exists an equilibrium state after a liquid

drop contacts the base of grooves, which are located between

circular micropillars with vertical sidewalls, in a quasi-static

manner (Fig. 1). Also assume that the drop profile around the

bottom corner of a circular micropillar has an axisymmetric

shape. As observed from Fig. 1a, liquid is always considered

to be continuous, while the air gaps around pillars may be

isolated. Accordingly, the air/liquid interface around a pillar

may be isolated. Let a1b1 and a2b2 represent two of the

profile’s meridian curves (Fig. 1a). a1 and a2 are the triple-

phase contact points at the base of the grooves, while b1 and

b2 are those on the pillar sidewall. Without loss of general-

ization, only a1b1 is considered in the following analysis, and

the same analysis also applies to a2b2. Set r0 to be the radius

of the pillar. Furthermore, use h0 to denote the height of the

pillar. As already demonstrated before (Luo and Xiang

2012), if h0 is less than the capillary length of liquid (it is

2.7 mm for water), which is actually the case of this work,

then the gravity effect on the drop bottom can be neglected.

Accordingly, by Young–Laplace equation (Adamson 1990),

liquid pressure inside the bottom portion of a drop is uni-

form, and

pw � pa ¼ 2cb; ð1aÞ
pw ¼ pwt þ qgh; ð1bÞ
1

R1

þ 1

R2

¼ 2b; ð1cÞ

where pw and pa denote liquid pressure and air pressure at a

point of a1b1, respectively, c is surface tension of liquid,

540 Microfluid Nanofluid (2014) 17:539–548

123



pwt represents the liquid pressure at the drop apex, q is

mass density of liquid, g denotes gravitational acceleration,

h is the height of the drop, R1 and R2 are radii of the

maximal and minimal curvatures at this point, respectively,

and b represents mean curvature at the point and is constant

on the bottom surface of the drop. R1 and R2 are considered

positive if their associated curves on the liquid surface

bend toward air. Further, assume that the drop cap has a

convex shape. Then, as also demonstrated before (Luo and

Xiang 2012), it follows from Eq. (1c) that b is a positive

constant.

Set up an x-y rectangular coordinate system. x and y axes

are along horizontal and vertical directions, respectively,

and the origin is located at a1 (Fig. 1a). Set s to be the arc

length from a1 to a point on a1b1. Let h denote the angle

formed by the tangent to a1b1 and the horizontal direction

at a point on this curve. Set h1 and h2 to be the values of h
at a1 and b1, respectively. Equilibrium contact angles on

the sidewalls of a micropillar are considered to be the

same, while they may be different from the one on the

bottom of the micropillar. Let h01 and h02 be equilibrium

contact angles on the pillar sidewalls and groove bottoms,

respectively. If the micropillar sidewalls and groove bot-

toms are smooth, then h01 and h02 are intrinsic contact

angles. Otherwise, they are apparent contact angles. Fur-

thermore, by geometric analysis, at a1 and b1, we have,

respectively,

h1 ¼ 180
� � h01; ð2aÞ

h2 ¼ h02 � 90
�
: ð2bÞ

Both h01 and h02 are considered to be greater than 90�, i.e.,

the surfaces of the micropillars and grooves are lyophobic.

Subsequently, it follows from Eqs. (2a) and (2b) that

0
�
\h1\90

�
; ð3aÞ

0
�
\h2\90

�
: ð3bÞ

In the case of circular micropillars, Eq. (1b) can be

rewritten in terms of h and s as

dh
ds
� sin h

w� x
¼ 2b; ð4Þ

where w denotes the distance between a1 and the central

axis of the micropillar (Fig. 1a). Equations (2a) and (2b)

are also two boundary conditions for Eq. (4). In summary,

in order to have an equilibrium state, i.e., to make a1 sta-

tionary, there should exist a solution to Eqs. (4) and (2)

under the condition that b [ 0.

Equation (4) can be further rewritten as

d½ðw� xÞ sin h�
dx

¼ 2bðw� xÞ; ð5Þ

where dx

ds
¼ cos h was used in deriving this equation from

Eq. (4). With the aid of Eq. (2b), it follows from Eq. (5)

that

sin h ¼ c

ðw� xÞ � bðw� xÞ; ð6Þ

where c is a constant and has the following expression:

c ¼ r0 sin h2 þ br2
0: ð7Þ

With the assistance of Eqs. (2a) and (7), it follows from

Eq. (6) that

b ¼ r0 sin h2 � w sin h1

w2 � r2
0

: ð8Þ

By Eqs. (8), (2a), and (2b), the requirement that b [ 0

results in

sin h2 [
w

r0

sin h1: ð9Þ

Given that Ineq. (9) is met, it follows from Eq. (8) that w

is related to r0, h1, h2, and b by

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 h1 þ 4r0b sin h2 þ 4r2
0b2

q

� sin h1

2b
: ð10Þ

In addition, since

dy

dx
¼ tan h; ð11Þ
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Fig. 1 a Cross-sectional profile of the air/liquid interface around the

bottom corner of a circular micropillar in a possible intermediate state

when a liquid drop contacts the bottoms of the grooves between the

micropillars, and b perspective view of the air/liquid interface
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with the assistance of Eq. (6), it follows from Eq. (11) that

dy

dx
¼ c� bðw� xÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bc
2

� �

ðw� xÞ2 � ½b2ðw� xÞ4 þ c2�
q : ð12Þ

Let xp and yp represent x and y coordinates of a

representative point p on a1b1, where xp ranges from 0 to

(w - r0). In view of Eq. (12), yp is given below:

ypðxpÞ ¼
Z

xp

0

c� bðw� xÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bc
2

� �

ðw� xÞ2 � ½b2ðw� xÞ4 þ c2�
q dx:

ð13Þ

This equation gives a solution to Eqs. (4) and (2). Its right-

hand side is an elliptical integral, which can be numerically

integrated. Once h1, h2, w, and r0 are given, Eq. (8) gives a

unique value to b. Subsequently, a unique value of yp can

be obtained from Eq. (13). Thus, Eq. (13) is also a unique

solution to Eqs. (4) and (2). The value of h can also be

determined by solving Eq. (13). It equals the value of yp

when xp = w-r0 and is considered to be less than h0.

According to the above consideration, for given h1, h2,

w, and r0, Ineq. (9) is both sufficient and necessary condi-

tions for having a solution to Eqs. (4) and (2). Next, as done

in our previous work (Luo and Xiang 2012), we also derive

another necessary condition that only involves h1 and h2.

Substitution of Eq. (6) into Eq. (4) leads to

dh
ds
¼ bþ c

ðw� xÞ2
: ð14Þ

Since both c and b are positive by Eq. (14), we have

dh
ds

[ 0: ð15Þ

This inequality implies that h increases with increasing s.

Hence, we have

h2 [ h1; ð16Þ

which is a necessary condition for the existence of a

solution to Eqs. (4) and (2) and which is also identical to

the one derived in our previous work for the case of

polygonal and circular pillars (Luo and Xiang 2012).

3 Local stability of the intermediate state

In order to make the constructed equilibrium state locally

stable, it should be separated from the Wenzel state by an

energy barrier. Otherwise, liquid continues to spread on the

groove base until the bottom corners of micropillars are

completely filled. Subsequently, the wetting state is chan-

ged to that of Wenzel, which is the case of our previous

report (Luo et al. 2011).

Next, we consider the local stability of the constructed

equilibrium state. Differentiation of Eq. (10) with respect

to b leads to

dw

db
¼ sin h1

2b2
1�

sin h1 þ 2r0b sin h2

sin h1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 h1 þ 4r0b sin h2 þ 4r2
0b2

q

0

B

@

1

C

A

:

ð17Þ

It can be readily shown that if Ineq. (16) holds true, then

dw

db
\0; ð18Þ

and vice versa. This inequality indicates that w decreases

with the increasing b. Furthermore, based on Leibniz rule

(Greenberg 1998), it follows from Eq. (13) that dh

dw
[ 0.

This implies that h also decreases with the increasing b. As

demonstrated below, in addition to the two end points,

other points on a1b1 should also move toward the bottom

corner of the pillar with the increase in b (Fig. 2a). Let wI

and wII denote the corresponding values of w when b is

increased from bI to bII. Accordingly, we have wI [ wII.

Use sI and sII to represent a1b1 in these two cases,

respectively. Set hI and hII to be the heights of sI and sII,

separately. Suppose sI and sII have some intersecting

points. According to geometric analysis, under the condi-

tions that wI [ wII and hI [ hII, sI and sII should intersect at

least at two points (Fig. 2b). Let q represent one of these

intersecting points. Use d to denote the distance between

q and the central axis of the pillar. Let hqI stand for the

angle formed by the tangent to sI and the horizontal

direction at q. Set hqII to be the one subtended by the

tangent to sII and the horizontal direction at the same point.

Subsequently, according to geometric analysis, we have

hqI \ hqII (Fig. 2b). On the other hand, by Eq. (6), we have

sin hqI ¼ r0 sin h2þbIðr2
0
�d2Þ

d
and sin hqII ¼ r0 sin h2þbIIðr2

0
�d2Þ

d
. Since

bI \ bII and d [ r0, we get sin hqI [ sin hqII: Accordingly,

hqI [ hqII, which contradicts with the previous result that

hqI \ hqII. Therefore, there is no intersecting point between

sI and sII. These results imply (1) the air gap around the

(b)

q 

(a) 

SII

SI hII

wI

wII 

Liquid 

hI SII
SI Air d 

2θ

2θ

1θ
1θ

1θ
1θ

2θ

2θ

qIIθ
qIθ

Fig. 2 Schematics of a reduction in air gap around the bottom corner

of a pillar with the increase in liquid pressure and b a possible

configuration that SI intersects with SII
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bottom corner of a micropillar decreases with the increase

in liquid pressure, and (2) an additional force is needed to

increase liquid pressure for reducing this air gap. Thus, if

Ineq. (16) is met, then the intermediate state should be

separated from that of Wenzel by an energy barrier and

vice versa. In this sense, Ineq. (16) is both sufficient and

necessary conditions to make the intermediate state locally

stable.

4 An inequality to meet

According to the consideration in the previous two sec-

tions, for the existence of a locally stable intermediate

state, Ineqs. (9) and (16) should both be met. With the aid

of Ineqs. (3a) and (3b), it is readily shown that once Ineq.

(9) is satisfied, Ineq. (16) is met. On the other hand, when

Ineq. (16) holds true, there always exists a w1, which sat-

isfies the following relation:

sin h2

sin h1

[
w1

r0

[ 1: ð19Þ

This result ensures that if w falls between r0 and w1, then

Ineq. (9) is also met, implying that there always exists a

region close to the bottom corner of the pillar, in which

there exists a locally stable intermediate state.

The air gap around the bottom of a pillar may still be

connected to the outside environment, for instance, through

the gaps between nanostructures that may be coated on the

micropillars. In such a case, the pressure inside the air gap

still equals the atmospheric pressure. In case the air gap

around the bottom of a pillar is completely isolated from

the outside, the pressure in the air gap may increase when

the air gap around a pillar is compressed by the liquid drop,

while the air pressure on the drop top remains the same. By

Eq. (1a), this means that actually a higher liquid pressure is

needed to further compress the air drop. This also implies

that air pressures around the liquid drop may be different.

Subsequently, for a small drop, whose half size is less than

the capillary length of the liquid and thus whose gravity

effect is neglected, by Eq. (1a) again, the mean curvature

around this drop may vary, since the liquid pressure inside

the drop is uniform. Therefore, for a liquid drop to be

stationary (i.e., at equilibrium), instead of examining the

mean curvature, our concern is whether the liquid pressure

is balanced inside this drop.

Two points related to the balance of liquid pressure

inside a drop can be obtained based on the stability con-

sideration in the previous section. First, for a given w in

this region, the corresponding value of b is determined

using Eq. (8). When pw, calculated using Eq. (1a) and this

value of b, is larger than the one calculated employing

Eq. (1b), which is the liquid pressure at the bottom portion

of the drop, to maintain the pressure balance inside the

drop, a1 moves back toward the center of the groove or the

liquid drop loses contact with the bottom of the groove.

Second, if the former value of pw is less than the latter one,

then a1 continues to move toward the corner of the pillar

until the two values of pw are equal. In summary, the sat-

isfaction of Ineq. (16) guarantees the existence of a locally

stable intermediate state after a liquid drop contacts the

base of grooves.

With the aid of Eq. (2a) and (2b), Ineq. (16) can be

rewritten in terms of h01 and h02 as

ðh01 þ h02Þ[ 270
�
: ð20Þ

This inequality is identical to the one derived in our pre-

vious work for the case that circular pillars have vertical

sidewalls (Luo and Xiang 2012). Ineq. (20) was derived in

the previous work as a necessary condition for the existence

of an intermediate state, while it is also a sufficient condi-

tion as shown in this work. Consequently, we have arrived

at an angle criterion: once h01 and h02 of circular micro-

pillars with vertical sidewalls satisfy Ineq. (20), there exists

a locally stable intermediate wetting state after a liquid drop

contacts the base of grooves in a quasi-static manner. This

angle criterion is similar to the one that we have previously

derived for the case of microchannels (Luo et al. 2012).

A set of values of h01 and h02 may be experimentally

measured, depending on the volume of a liquid drop (de

Gennes et al. 2004; Marmur 2009). These sets of values

vary between receding and advancing angles. Accordingly,

the minimum requirement in designing circular pillars for

having a locally stable intermediate state is that the

advancing angles on the pillar sidewalls and groove bottom

should meet Ineq. (20). For the sake of security, it is better

to have the receding angles, which are the minimum pos-

sible values of h01 and h02 that satisfy this inequality.

5 Experimental validation

5.1 Existing results

In our previous work (Luo and Xiang 2012), we did the

pressing tests on six kinds of SU-8 circular micropillars,

which all have approximately vertical sidewalls while vary

in the pitches or in the local contact angles. On three kinds

of these micropillars, groove surfaces were smooth. On a

smooth surface, contact angle is normally less than 120�
even if this surface is coated with highly water-repellant

materials (Lafuma and Quere 2003), such as Teflon. Hence,

Ineq. (20) was violated, and water drops collapsed after

their contact with the grooves. However, on another three

kinds of micropillars, Ineq. (20) was met, since the surfaces

of the grooves located between the micropillars were
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covered with ZnO wires, which made both h01 and h02

above 135�. Consequently, intermediate states were found.

In Verho et al. (2012), two sets of Si circular micro-

pillars with identical dimensions (diameter 10 lm, height

5 or 10 lm, and pitch 20 lm) were examined. The first set

was coated with a hydrophobic fluoroalkylsilane mono-

layer, which had advancing and receding angles of

118� ± 2� and 102� ± 2�, respectively, on flat surfaces.

The second set of micropillars was covered with silicone

nanofilaments, which made advancing and receding angles

become 170� ± 2� and 145� ± 2�, separately, on flat

surfaces. Accordingly, Ineq. (20) was violated on the first

set of micropillars, while it was met on the second set.

Hence, intermediate states existed on the second set of

micropillars, while only Wenzel states existed on the first

set when water contacted the base of grooves, which were

actually the experimental results reported in Verho et al.

(2012).

130 µm

150 µm

600 µm

500 µm 100 µm

100 µm 2 µm

(a) (b)

(c1) (c2)

(c3)

ZnO wires

3 µm

Fig. 3 a Perspective views of

SU-8 micropillars.

Representative first and second

kinds of circular pillars, which

were covered with b Teflon and

c1 ZnO wires, respectively. c2
Close-up and c3 side views of

ZnO wires. All are scanning

electron microscopy (SEM)

images
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5.2 New tests

Experiments are also done in this work to have in situ

observation of how a1 moves on the bottom of a groove

when water pressure is increased or decreased. In other

words, we desire to examine whether, as predicted in Sect.

4, a1 moves toward or away from the bottom corner of a

pillar with the increase or decrease in the water pressure

when Ineq. (20) is met. For this purpose, two of the six

kinds of SU-8 circular micropillars, which have been pre-

viously examined in Luo and Xiang (2012), are adopted in

this work (Fig. 3). These two kinds have the largest pitch

of 600 lm, which makes it relatively easy to observe the

movement of a1 on the bottom of the gap. They also have

the same radii of 130 lm. On the other hand, to enhance

hydrophobicity, the first kind of micropillar is coated with

Teflon (Fig. 3b), while the second kind is covered with

ZnO wires, which have hexagonal cross-sections with an

average height of 2.8 lm and diameters of 0.15–0.36 lm

(Fig. 3c). The advancing angles are adopted as the values

of h01 and h02. In the case of the first kind of micropillars,

the values of h01 and h02 are both 119� ± 2� , while they

are both 169� ± 2� for the second kind of micropillars.

Accordingly, the values of h01 and h02 for the first kind of

micropillars do not meet Ineq. (20), while those for the

second kind satisfy this inequality.

Through only side views, due to block of water, it was

not clear whether water completely filled the middle

grooves after the drops had contacted the bottoms of these

grooves (Luo and Xiang 2012). To solve this problem,

similar to what was done in Verho et al. (2012), we also

take top views of the pressed water drops in this work.

Thus, two types of pressing tests are conducted on each

kind of SU-8 micropillars. In the first type (Fig. 4a), an

optical microscope (mm001300m of Metallurgical micro-

scope Company) is rotated by 90� to have a side view of

air/water interfaces between micropillars, and a poly-

dimethylsiloxane (PDMS) plate (5 9 5 9 10 mm3) is put

on the top of a water drop to slowly press it against mi-

cropillars. The vertical movements of this plate are con-

trolled by a micromanipulator (M3301R of World

Precision Instruments) with a precision of 100 lm. In the

second type of pressing tests (Fig. 4b), a Teflon-coated

glass slide (25 9 25 9 1 mm3) is placed on a water drop,

(a) 

(b) 

Microscope lens
Micromanipulator

PDMS

Drop 

Micropillar sample 

Microscope lens

Drop
Glass slide

Supporting glass 

Micropillar sample

Fig. 4 Setups for a first and b second types of pressing tests to obtain

side and top views of pressing results, respectively

Side view Top view

Water drop Micropillars 

Micropillars 

(a1)

(a2) (b2)

(a3) (b3) Water drop residue 
on sample 

Sample  

Water covered 
roughness 
grooves 

Light reflection 

Light reflection 

Water drop residue 
on sample 

(b1)
Fig. 5 Pressing test results on

the first kind of micropillars. In

order to get a better

understanding of these results,

a side and b top views are

placed together, while they were

taken in the first and second

pressing tests, respectively. The

corresponding area of top views

is boxed in a1. a1, b1 Before

and a2, b2 after the contact of

water with the base of grooves.

a3, b3 Water residue on the

sample after the pressing slide

has been removed. The scale

bars represent 420 lm
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and the optical microscope is used to observe the air/water

interface from the top. Thinner glass slides (25 9 25 9

0.2 mm3) are stacked together to serve as the supporters of

the Teflon-coated glass slide. This glass slide can be low-

ered down or lifted up with a precision of 200 lm (which is

the thickness of a thinner glass slide) to increase or

decrease the applied pressure on the water drop by

removing or adding thinner glass slides in the supporters.

Small water drops are used in the pressing tests, and their

volumes range from 6 to 9 ll. Such a drop has a spherical

cap after it is placed on the substrate.

An important point was observed through pressing tests

on the first kind of micropillars (Fig. 5). After water drop

had contacted the bottom of a groove, it collapsed, and

water completely covered the bottom corners of the outside

pillars underneath this water drop. Also, the increase or

decrease in the applied pressure caused the increase or

decrease in the number of the pillars covered by the water

drop. The air gaps surrounding middle pillars could be

clearly identified through top views according to the light

reflection (see, for example, Figs. 5b1, 6b). The bottom

corners of the outside pillars underneath the drop were

Side view Top view
Water drop 

Micropillars 

Micropillars 

Air pocket 
after contact 

 Further 
reduced air 
pocket 

 Increased 
air pocket 

 No air pocket 
after further 
reduction of 
applied pressure 

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

(a5) (b5)

Air pocket right 
after contact 

 Further 
reduced air 
pocket 

Re-appearance of 
CB state after 
reduction of  
pressure 

(a6) (b6)

No water residue 
left on the substrate 

Fig. 6 a, b Side and top views

of pressing test results on the

second kind of micropillars. The

corresponding area of top views

is boxed in a1. a1–a4 and b1–b4
increase, and a5–a7 and b5–b7
reduce applied pressure. The

scale bars represent 420 lm
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completely covered by water according to the side view

(Fig. 5a2), while the bottom corners of the middle pillars

were completely covered by water based on the top view

(Fig. 5b2). In addition, part of the water drop was left on

the substrate when the pressing plate was removed

(Fig. 5a3, b3), implying that Wenzel state was not com-

pletely transited back to that of Cassie–Baxter.

On the other hand, different results were observed on the

second kind of micropillars (Fig. 6). After water had con-

tact with the base of a few grooves, the air pockets could be

observed around the outside micropillars through side

views (Fig. 6a2–a4). Furthermore, through top views, we

could clearly see that air pockets around the middle pillars

increased or decreased the sizes with the decrease or

increase in water pressure (Fig. 6b2–b4), which were

invisible in the side views due to the block of water.

Eventually, the water drop recovered its Cassie–Baxter

wetting state after much reduction in the applied pressure

(Fig. 6a5, b5). Finally, this water drop was removed from

its substrate by the pressing plate or slide, and no water

residue was observed on the substrate (Fig. 6a6, b6). In

addition, as marked in Fig. 6b, during the processes of

increasing and reducing the applied pressure, the air pocket

had an approximately circular contact area with the base of

grooves, partially supporting our previous assumption that

the liquid/air profile has an axisymmetric shape.

Two points can be summarized from the pressing results

on the two kinds of micropillars. First, as predicted using

Ineq. (20), intermediate states exist on the second kind of

micropillars, but not on the first kind. Second, the experi-

mental results on the second kind of micropillars clearly

demonstrate that, as predicted in Sect. 4, a1 moves toward

or away from the bottom corner of a pillar with the increase

or decrease in the water pressure when Ineq. (20) is met.

Due to lack of simple expression of the air/liquid

interface, we do not estimate the energy barrier that sepa-

rates the intermediate state and the Wenzel model. On the

other hand, as commented in Luo and Xiang (2012), when

the applied pressure is high enough to make water pene-

trate and fill the valleys between the coated ZnO wires on

the second kind of micropillars, the corresponding values

of h01 and h02 may be reduced, leading to the violation of

Ineq (20) and causing the transition from the intermediate

state to that of Wenzel.

6 Summary and conclusions

In this work, we derive an angle inequality, which is Ineq.

(20), to examine whether the contact criterion is applicable

to the case of circular micropillars and also to understand

why the coverage of nanostructures on the corresponding

groove surfaces may result in an intermediate wetting state

after a liquid drop contacts the groove bottom. We directly

observed the evolution of air/water interfaces around mi-

cropillars through the front and top views when applying

pressure on the water drop. By considering the existence

and stability of an equilibrium state, we demonstrate (1)

when this angle inequality is met due to the increase of

local contact angles by, for example, nanostructures, there

exists a locally stable intermediate state after a water drop

contacts the base of grooves in a quasi-static manner and

the contact criterion does not hold for the corresponding

micropillars, and (2) if the inequality is violated, then such

an intermediate state does not exist and the contact crite-

rion holds true.
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