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Abstract We propose a modeling strategy to simulate

drop movement in a two-phase flow inside a 2-D diverg-

ing–converging microchannel. These are planar channels

that allow 2-D movement of drops. The increasing cross-

sectional area of the diverging section decelerates the drop,

and the decreasing cross-sectional area of the converging

section accelerates it. These drops as they slow down

approach each other and start to interact hydrodynamically

and form 2-D arrangements inside the microchannel. We

propose interacting drop-traffic models, that are phenom-

enological in nature, to characterize the different interac-

tions of a drop with the neighboring drops, continuous

phase and the channel walls. By incorporating these models

into a multi-agent simulation, that employs Newton’s

second law of motion along with the creeping flow

approximation, we are able to predict the positions and

velocities of all the drops inside the microchannel. The

time evolution of the dynamic 2-D patterns formed by the

drops inside the microchannel is investigated. We are able

to qualitatively understand the features in a microchannel

that aid the formation of the 2-D patterns. The simulation

strategy helps us to understand the layering phenomena

that results in the formation of the 2-D structures near the

diverging section and the breaking patterns of drops near

the converging section of the microchannel.

Keywords Phenomenological models � Drop movement �
Multi-agent approach � Diverging–converging

microchannels

1 Introduction

The drop-continuous two-phase flow in a microchannel

offers a lot of advantages. One can compartmentalize the

fluid of interest as a drop (Huebner et al. 2008; Kelly et al.

2007; Song et al. 2006), achieve convective apart from

diffusive mixing inside the drop (Bringer et al. 2004;

Kelley 2008) and design devices where there is very little

wastage of fluid of interest by wetting. Also, these drops

can be manipulated and processed inside the channel,

subject to different conditions according to the need

(Maddala et al. 2012; Niu et al. 2007, 2009). For design of

systems that employ drops, there is a need for mathemat-

ical models to explain the movement of these drops inside

the microchannel. This is typically a fluid mechanics

problem which can be solved using the Navier–Stokes

equation along with the continuity equation in both the

phases (Gupta et al. 2009; Jovanović et al. 2011; Taha and

Cui 2006). But the high computational costs of these CFD

simulations restrict their use in optimization and design,

encouraging simple models for drop movement in

microchannels.

Simple models have been used to investigate 1-D mi-

crochannels, notably the microfluidic loops (Jousse et al.

2005) where the authors propose a network model to

understand drop movement in the microchannels. Later

simple models were used to understand flow of drops in

simple and dual microfluidic networks and to study the

nonlinear and complex behavior of simple microfluidic

loops (Schindler and Ajdari 2008; Sessoms et al. 2009) as

Electronic supplementary material The online version of this
article (doi:10.1007/s10404-014-1336-8) contains supplementary
material, which is available to authorized users.

M. Danny Raj � R. Rengaswamy (&)

Department of Chemical Engineering, Indian Institute

of Technology Madras, 150, Mechanical Sciences Block,

Chennai 600036, India

e-mail: raghur@iitm.ac.in

123

Microfluid Nanofluid (2014) 17:527–537

DOI 10.1007/s10404-014-1336-8

http://dx.doi.org/10.1007/s10404-014-1336-8


seen in experiments (Fuerstman et al. 2007). The simplicity

of these models allowed its incorporation into a model

predictive control routine to study active manipulation of

drops inside the channel (Maddala et al. 2012).

In 2-D microchannels, like in the Hele-Shaw flow-

geometry, the drops are sandwiched between the upper and

lower boundaries but not constrained by the side walls,

which allow free movement in the available 2-D space.

Drops interact and self-organize to form patterns in these

microchannels (Jose and Cubaud 2012; Thorsen et al.

2001) and also show dynamic clustering behavior (Beatus

et al. 2009). This self-assembly is of interest to polymer

technology where complex micro-particles are made by

thermal fusing (Sung et al. 2008) and to emulsion science

(Chu et al. 2007; Hashimoto et al. 2007). Beatus and

coworkers have studied many body physics of drops in 1-D

and 2-D configurations. They consider a dipole-like

hydrodynamic interaction between drops and were able to

explain some interesting non-equilibrium phenomena

(Beatus et al. 2006, 2012). This work was followed up by

Uspal and Doyle (2012), extended by Desreumaux et al.

(2013) and applied to an ensemble of drops. Effect of drop

deformation on the collective dynamics was studied by

Janssen et al. (2012). The very low Reynolds number

associated with the flow result in the linear creeping flow

equations that describe the flow field in the microchannel.

Particle motion in the flow field in the Lagrangian

description can be expressed by _x~¼ vðx~Þ where v is non-

linear in space. Instances when the motions of the particles

becoming chaotic have been investigated (Aref 1983; Jones

et al. 1989). In our case, nonlinearity arises due to two

reasons. First is the nonlinear velocity field of the contin-

uous phase that will result in the motion of the drops inside

the microchannel, and the second reason is due to coupling

of the motion between the drop and the continuous phase.

There is lubrication flow between the drops when they

come close to each other. High-pressure fields are gener-

ated that prevent the approach of the drops. One will have

to resolve the time and spatial scales to capture this multi-

scale effect. This encourages the development of simpler

simulation strategies to investigate these systems. The

focus of this article is to introduce a simple modeling

framework to visualize drop movement in 2-D micro-

channels. We restrict our analysis to those microchannels

that are symmetric about their longitudinal axis.

2 System of interest

The microchannel system chosen for validation is a linearly

diverging–converging microchannel, symmetric about the

horizontal axis (Fig. 1). The dimensions of the microchannel

were kept the same as in the experiments (Jose and Cubaud

2012) (k = 0.5; W = 4.75 mm; H = 5 mm). When the

drops enter the channel at a very small rate, a single layer of

drops are formed inside the microchannel. As the rate of

entry of drops increase, the drops acquire a multilayer con-

formation. The entry frequency is manipulated in the

experiments by controlling the input velocity of drops and

the initial spacing between them. However, in the experi-

ments (Jose and Cubaud 2012), these two manipulated

variables were correlated as L0/2R = 0.45(Qcontinuous/Qdrop)

where L0 is the initial spacing between the drops, R is the

radius and Q is the flow rate, because of the dynamics of the

drop generator. For the purpose of validation, we used the

same correlation in our simulations.

For the simulation, all the geometrical parameters k, W,

H and operating parameters v0, R, L0 (Fig. 1) are kept the

same as the experiments of Jose and Cubaud (2012) and the

patterns formed are compared.

3 Modeling strategy

3.1 Multi-agent framework (MAS)

Multi-agent models are a class of models used to investi-

gate collective behavior of a group of interacting agents.

These agents follow simple rules for interacting with

themselves and the surroundings and result in complex

behavior. This approach has found applications in biology

to study the flocking of birds, fish schools, swarm model-

ing, etc. (Reynolds 1987), in economics and finance to

model the human interactions (Bonabeau 2002), in traffic

to simulate vehicle dynamics (Naiem et al. 2010) and in

many other areas.

The Multi-agent approach looks at drops as agents

inside the microchannel system. These drops (agents)

follow certain rules for interaction with other drops and

the surroundings. A similar approach has been used to

study complex behavior of drops in microfluidic loop

Fig. 1 Microchannel system chosen for validation of simulation

results. Geometry same as (Jose and Cubaud 2012) dotted part in the

microchannel is where the drop arrangement is seen; k = 0.5;

W = 4.75 mm; H = 5 mm; R = 0.125 mm
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devices (Smith and Gaver 2010). If one is able to char-

acterize the different forces acting on each drop, then it is

possible to determine its position and velocity by solving

the Newton’s second law of motion as shown in Eq. (1),

for all the drops simultaneously. The drops do not

undergo any significant deformation which allows us to

assume a circular shape. Hence, it is sufficient to track the

centers of these circular drops. Also, the 2-D nature of the

flow results in the center of masses of all the drops to lie

on the x–y plane.

Mi

dU~i

dt
¼
X

F~i ð1Þ

The very low Reynolds number (NRe \ 1) of the system

allows us to use the creeping flow approximation according

to which the inertial contribution of the system becomes

negligible simplifying Eq. (1) to give Eq. (2).

X
F~i ¼ 0 ð2Þ

3.2 Interacting drop-traffic models

Interacting drop-traffic models provide a simple descrip-

tion for the different forces acting on the drop inside the

microchannel. Three principle forces that act on the drop

are considered. The force due to the flow of the continuous

phase is a result of the pressure driven flow that forces the

drop to move. The converging–diverging microchannels

we are interested in are symmetric about the horizontal axis

and so is the flow of the continuous phase. The total

resistance to the flow is influenced by the y position of the

drops in the microchannel. Let us consider the case where

there is only one drop in the microchannel. The configu-

ration where the drop is at the line of symmetry results in

the least resistance for flow, which can be determined by

calculating the pressure drop as a function of the y position

of the drop. When the drop is at this position, the average

velocities on either side of the drop in the y direction

(above and below the drop) are the same because of the

symmetry.

Inspired by the solution to the classic problem of stokes

flow past a sphere, the x-component of the force is assumed

to be proportional to the relative velocity between the drop

and the continuous phase (Leal 2007). The first term of the

RHS of Eq. (3) explains the relative velocity between the

drop and the local average of the continuous phase veloc-

ity. One can also look at the x-component force as a

superposition of the forcing due to the flow of the contin-

uous phase kf va;i

� �
þ vb;i

� �
=2

� �
and the drag on the drop

due to its movement in the viscous continuous phase –(Kfb
Ui,x. The y-component force on the drop will be such that a

drop will move in a way that will reduce the difference in

the velocities above and below the drop, locally ensuring

least resistance for flow around the drop. Hence, it takes the

form kf k
0 va;i

� �
� vb;i

� �� �
. The force on the drop due to its

motion in the viscous continuous phase is –Kfb Ui,y. The

superposition of the two results in kf k0 va;i

� �
� vb;i

� �� ��

�b Ui;yÞ as explained by the second term in Eq. (3). If

va;i

� �
and vb;i

� �
are the average velocities of continuous

phase above and below drop ‘i’ which has a velocity

U~ i ¼ Ui;xe
_

x þ Ui;ye
_

y, then the force due to flow of con-

tinuous phase F~f ;i is characterized by Eq. (3) where b is the

ratio of the velocity of continuous phase at the drop

interface to the translational velocity of the drop.

F~f ;i ¼ kf

va;i

� �
þ vb;i

� �

2
� bUi;x

� �
êx

þ kf ðk0 va;i

� �
� vb;i

� �
Þ � bUi;y

� �
êy ð3Þ

Knowledge of the approximate velocity profiles of the

continuous phase fluid above and below the drop ma,i and

mb,i, respectively, is now essential to estimate the average

velocities. Similar to the solution to the pressure driven

flow through infinite parallel plates, we assume a parabolic

flow profile above and below the drop as shown in Eq. (4)

[chapter 3 (Leal 2007)].

va;i ¼ Aiy
2 þ Bi;ayþ Ci;a

vb;i ¼ Aiy
2 þ Bi;byþ Ci;b

ð4Þ

When only one drop is present in the microchannel at a

given area of cross section, ma,i represents the velocity

profile of the continuous phase bounded by the top wall and

drop boundary and mb,i represents the velocity profile

Fig. 2 a Boundary conditions to estimate the approximate flow

patterns around the drop; va;i

� �
is the average velocity above drop

i and similarly vb;i

� �
for average velocity below the drop. b Force

between drops due to lubrication flow of continuous phase between

the drops; the force is along the line joining the centers of the two

drops. c Force on the drop as it approaches the boundary (wall), due to

the lubrication flow of continuous phase between the drop and

boundary; Force is along the line joining the center to the closest point

in the channel boundary
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bounded by the drop boundary and the bottom wall (see

drop 1 in Fig. 2a). If there is a drop above the selected drop

as illustrated in Fig. 2a (see drop 3), then ma,i represents the

velocity profile of continuous phase bounded by drop 2 and

drop 3 and mb,i represents the velocity profile bounded by

the drop boundary and the bottom wall. This can be

extended similarly for the case where there are drops on

either side of drop ‘i’. The constants in Eq. (4) can be

calculated using the information available about the flow in

the problem such as the no-slip condition at the walls of the

microchannel ma,i = 0, continuity of velocities at the drop

interface ma,i = bUi as shown in Fig. 2a and the mass

conservation which is applied to the cross section of the

microchannel containing the center of mass of the drop ‘i’.

The term Ai in Eq. (4) is kept the same for a given cross

section because it approximately characterizes the pressure

gradient due to the resistance offered for the flow. One

should note that Ai is minimal when the drop is at the

center, in the single-drop case.

If we consider the motion of a single drop along the

center of the microchannel, the only force acting on the

drop would be the x-component of the force due to the flow

of the continuous phase Ff which results in drop velocity as

explained by Eq. (5).

Ui;x ¼
1

b

va;i

� �
þ vb;i

� �� �

2

� �
ð5Þ

Experimentally, it has been observed by Jose and Cubaud

(2012) that the velocity of the drop is proportional to the

superficial velocity of the fluid in the 1-D geometry. In the

network model, this information is explicitly used while

calculating the velocity of the drops (Schindler and Ajdari

2008; Smith and Gaver 2010). Sessoms et al. (2009) con-

sidered the effects of pressure drop on the continuous phase

and drop phase separately and were able to estimate the

velocity of the drop as a multiple of the superficial velocity.

In the drop-traffic models, we consider internal circulations

inside the drop, by stating that the velocity of the continuous

phase at the drop–fluid interface is bUd. In Eq. (5), va;i

� �
and

vb;i

� �
are functions of Ui. With boundary conditions and

mass conservation, it is possible to express the constants in

Eq. (4) analytically to get an expression for the velocity of the

drop Ui. On simplification, we get Eq. (6) where d represents

the depth in the direction perpendicular to the 2-D flow area

and H represents the width of the channel in the y direction

(perpendicular to the longitudinal direction).

Ui;x ¼
Qtotal

d � ð2Rð1� bÞ þ b� HÞ ð6Þ

In a 2-D microchannel, the large cross section, presence

of other drops and the complex flow fields complicate the

determination of b associated with the drop.

The drops experience a force F~
i;j

d that resists their rel-

ative motion when they come close to each other as shown

in Fig. 2b. This is explained by lubrication theory for the

asymptotic case of drops approaching each other (Davis

et al. 1989). The functional form of the force is given in

Eq. (7), which explains the force between drops in the

microchannel where d~i;j is the vector from drop ‘i’ to drop

‘j’. kd and c are tuning parameters. The force is unbounded

because of the denominator term in Eq. (7) which ensures

that the drops never touch each other. The interaction force

considered is different from that used by Beatus and

coworkers, which considers a dipole-like hydrodynamic

interaction between drops (Beatus et al. 2006). Because

coalescence dynamics is not considered, attractive forces

are not taken into account.

F~
i;j

d ¼
kd

_di;j

d~i;jk k�2R

� �
d̂j;i d~i;j

���
���[ cR; _di;j [ 0

0 else

8
<

:

where;

_di;j ¼ U~ i:d̂i;j þ U~ j:d̂j;i

ð7Þ

Force due to the converging boundary F~
i;b

b is computed

by an expression as shown in Eq. (8) where a1, a2 and kb

are tuning parameters. The asymptotic problem of sphere

moving toward a wall (Leal 2007) has a functional form as

in Eq. (8) which is similar to Eq. (7), where b~i;b is the

vector connecting the drop, to the closest point on the

boundary. However, only the y-component of this force is

considered when the drop is farther away from the

boundary, and along with Ff, this explains the motion of the

drop in the converging section of the channel as shown in

Fig. 2c.

F~
i;b

b ¼

kb
_bi;b

b~i;jk k�R

� �
b̂b;i b~i;b

���
���� a1R; _bi;b [ 0

kb
_bi;b b̂b;i:êyð Þ
b~i;jk k�R

� �
êy a1R\ b~i;b

���
���� a2R; _bi;b [ 0

0 else

8
>>>>><

>>>>>:

where;

_bi;b ¼ U~ i:b̂i;b; a1\a2

ð8Þ

This functional form ensures that the drop stays inside

the microchannel. Drops flowing parallel to the wall

experience no force due to the wall because the rate at

which they approach it _bi;b goes to zero. Because the drops

experience a force only when they are very close to each

other or the wall, the effect of these forces is neglected

when they are farther than cR and a2R from the neigh-

boring drop and boundary, respectively.
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3.3 Algorithm for simulating drop movement

In this section, we present a stepwise algorithm to imple-

ment the MAS with the interacting drop-traffic models to

simulate drop movement inside a microchannel.

Step 1 Guess x- and y- component of velocities of all n

drops. (A good guess would be to use the superficial

velocities of the continuous phase)

Step 2.1 Go to the position of drop i where i[{1,2,…,n}

and identify the number of drops in that area of cross

section of the microchannel. Let this number be m.

[Note: number of drops can be identified by solving the

line that represents the projection of the area of cross

section in 2-D space (x–y) with the equation of the circle

(center: position of each drop, radius: R).]

Step 2.2 Find the average continuous phase velocities

va;i

� �
and vb;i

� �
above and below each of the m drops. To

do so, one needs to estimate 2 m ? 3 parameters according

to Eq. (4).

Step 2.3 Uniquely determine the parameters by using the

2m conditions that arise out of the continuity of velocity

across each drop, two no-slip conditions and one mass

conservation equation across the cross-sectional area.

[Note: to find the force on drop ‘i’ due to the flow, it is

required to estimate the average velocities above and below

the drop ‘i’. But to do so, we would have to use the mass

conservation condition to estimate the constants. This

needs the information of the flow in the entire area of cross

section. This is why in step 2.3, we calculate the velocities

above and below all the drops in a given area of cross

section.]

Step 2.4 Repeat steps 2.1–2.3 to find the average veloc-

ities above and below all the drops in the microchannel.

Step 2.5 Estimate F~f ;i and F~
i;j

d for all the drops using Eqs.

(3) and (7), respectively.

Step 3.1 Estimate the point in the boundary closest to

drop i and estimate b~i;b.

Step 3.2 Calculate F~
i;b

b using Eq. (8) for every drop.

Step 4 Compute the total force on each drop
P

F~i.

Step 5 Check if Eq. (2) is satisfied. If not, update the

guess and repeat steps 2–4. If satisfied, go to step 6.

Step 6 Update the positions of the drops in the micro-

channel and go back to step 1.

It is possible to generate a movie from the simulation

result by plotting the positions of the drops at each instant

of time and capturing the image as a frame. All the frames

can be combined into a movie, which serves as a better

visual aid in analyzing drop movement inside the micro-

channel. This was done using MATLAB’s Videowriter.

[See supplementary information for movie results.]

4 Tuning

Because the models are not derived from first principles

and are approximate, the functional forms for the forces on

the drop contain tuning parameters kf, kd, kb, a1, a2, b, c that

have to be tuned to match the experiments. From Eq. (2),

because the sum of the forces is zero, one can infer that the

ratios of the k’s are important and not the absolute values.

The values used for the simulation are listed in Table 1.

Tuning was performed to make sure that the simulation

was able to predict the different layered configurations for

approximately similar operating conditions as in the

experiments (Jose and Cubaud 2012). The uncertainty in

the correlations provided by Jose and Cubaud (2012) that

relate the operating conditions (ref Sect. 2), made the

comparison of the experimental data with the simulation

results tedious. No rigorous algorithm was followed to tune

the models. Constants that accompanied the solution to the

asymptotic cases as explained in Sect. 3.2 are retained and

the integers multiplying these constants were manipulated

to tune the model. Tuning was done based on the visual

perception. The ease of tuning indicates the robustness of

the simulation strategy to changes in the tuning parameters.

One should note that once the tuning parameters are set,

only the operating parameters are varied to identify the

different structures formed inside the microchannel.

5 Dynamic pattern formation

5.1 One-layer configuration

The drops entering the microchannel decelerate in the

diverging section and accelerate in the converging section

due to the increasing and decreasing cross-sectional area

for flow. The distances between the drops decrease as they

Table 1 Tuned parameters
kf 6plR

kd 3 9 6plR2

kb 10 9 6plR2

c 2.4R

b 1

a1 2.4R

a2 10

k’ 1/4
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slow down and increase as they speed up in the micro-

channel. As the inlet spacing is reduced, the distance

between the drops in the microchannel reduces and they

start to interact hydrodynamically as explained by Eq. (7).

For an inlet spacing as large as L0 = 38R prior to the entry

into the microchannel, a single layer of drops is formed as

shown in Fig. 3. One should realize that all the forces, the

force on the drop due to the flow (Ff) and the hydrody-

namic drop–drop interactions (Fd), are constrained to the

x direction for the one-layer arrangement of drops. Absence

of a y-component of force would mean that the drops can

never escape the single-layer conformation. To capture the

effect of the y-component forces, the walls of the micro-

channel are modified with a practically infinitesimal

random roughness factor. This results in a nonzero

y-component of Ff [Eq. (3)] which continuously perturbs

the drops from their one-layer arrangement, mimicking

reality where disturbances are ubiquitous. As the drops

start to interact, the y-component of the force Fd, between

the drops as explained by Eq. (7), tries to push the drops to

the next layer while the y-component of the Ff tries to

preserve the one-layer configuration. We observed that a

competition between the drop–drop interaction forces and

the y-component of the force due to flow decided the stability

of the one-layer arrangement. For a given inlet spacing,

the simulation was carried out for different random rough-

ness in the wall. We observed that all the simulations were

identical.

5.2 Two-layer configuration: the phenomenon

of layering

When the initial spacing between the drops is reduced

further (L0 \ 35R), drops start to crowd in the diverging

section of the channel. The small disturbance present in the

system grows in time because of the drop–drop interac-

tions, resulting in the displacement of a drop from the one-

layer arrangement. Because the drop–drop interactions are

directed along the line joining the centers of two drops, the

displaced drop upsets its neighbors, and this process con-

tinues resulting in a chain reaction that propagates back-

ward in the microchannel (see Fig. 4a), offsetting the drops

from their initial arrangement, causing layering. The drops

as they come in arrange themselves in two layers (see

Fig. 4b). In the converging section of the channel, the

accelerating velocity field pulls the drops from the layered

structure to form a single layer before exiting the channel

(see converging section in Fig. 4c), because the size of

the exit channel is of the same order of magnitude of the

size of the drop (2R). Layering observed in the system

under consideration is similar to the zigzag instability,

observed by Beatus and coworkers. They observe this

instability near the drop formation area and attribute it to

the asymmetry in the microfluidic crystal (drop near the

channel entrance perturbed from the axis of symmetry)

(Beatus et al. 2006). In our simulations, the asymmetry in

the system stems from the roughness factor added to the

channel walls that result in the perturbation of drops in

the transverse direction.

5.3 Three-layer configuration

For even lower initial spacing of drops (L0 \ 16R), the

single layer of drops initially formed become unstable

(Fig. 5a) as explained in the previous section and the drops

temporarily assume a two-layer arrangement (Fig. 5b).

Unable to house the entering drops, the two-layer

arrangement eventually becomes unstable (Fig. 5c) and the

system drifts away to the next configuration where there

are three layers of drops (Fig. 5d, e). The breaking of the

two-layer arrangement is similar to that of the one-layer

arrangement where the drop that moves away from the

layered structure perturbs all of its neighbor drops desta-

bilizing both the layers. In the converging section of the

channel, the drop structure breaks down in a complex

manner to form a single layer of drops before exit. The

multi-agent simulation was able to capture these fine

qualitative details seen in the experimental videos like the

zigzag nature of the middle layer of drops in the three-layer

conformation (Fig. 5e, f). For even smaller inlet spacing

(L0 \ 11R), multiple layers ([3) are observed.

Fig. 3 (Enhanced online) One-layer configuration: a multi-agent

simulation ([500 ms) (L0 = 38R); b experiments (L0 & 30R) (Jose

and Cubaud 2012)[Enhanced online]

Fig. 4 (Enhanced online) Two-layer configuration: multi-agent sim-

ulation (L0 = 18R): a 140 ms, b 240 ms, c [500 ms; d Experiments

(L0 = 14R) (Jose and Cubaud 2012) [Enhanced online]
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5.4 Quantitative characterization

When the minimum distance between drops at a particular

fixed inlet feeding frequency in the microchannel is eval-

uated, it is found to be in good agreement with the

experimental results (Fig. 6a). A comparison of the

velocities of the drops inside the microchannel with the

experimental results is showed in Fig. 6b. The multi-agent

simulation was able to predict the trend in the velocity

profiles which was similar to the superficial velocity pro-

files for the channel geometry as experimentally observed

by Jose and Cubaud (2012). The fluctuations in the velocity

profiles can be attributed to the piecewise nature of the

functional forms Eqs. (7) and (8).

As the drops enter the microchannel, they start to form a

dynamic structure. The number of drops inside the mi-

crochannel increases steadily till the drop front reaches the

exit of the diverging–converging microchannel. The num-

ber of drops inside the channel stabilizes, and a steady

dynamic structure is formed (Fig. 7a). This is because the

rate at which the drops exit is equal to the rate at which

they enter. As the initial spacing is reduced, larger struc-

tures are formed and so the number of drops inside the

channel also increases (Fig. 7b).

6 Reasons for pattern formation

The multi-agent simulation helps us to understand the

connection between the rich patterns formed by the drops

Fig. 5 (Enhanced online) Three-layer configuration: multi-agent

simulation (L0 = 12R): a 75 ms, b 140 ms, c 207 ms, d 320 ms,

e [500 ms; f experiments (L0 = 12R) (Jose and Cubaud 2012)

[Enhanced online]

Fig. 6 a The minimum distance between two drops inside a

microchannel as a function of the inlet spacing: comparison between

the experimental results and empirical correlation (Jose and Cubaud

2012) with the multi-agent simulation; b velocity of drops as a

function of its position in the channel: comparison between the

experimental results (Jose and Cubaud 2012) with the multi-agent

simulations. [Experimental data were digitized from Jose and Cubaud

2012]

Fig. 7 a Time evolution of the number of drops in the microchannel

for initial spacing that give one, two and three layers; b a plot of the

number of drops inside a microchannel as a function of the initial

spacing between the drops prior to entry into the channel, along with

the snapshots of the patterns formed by the drops
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and the geometry of the microchannel. One of the impor-

tant insights is, even with the drop–drop interactions, the

velocity of the drops lies in the neighborhood of the

superficial velocities (Fig. 6b). This fact helps us to

understand pattern formation qualitatively. One might be

interested in understanding the features of the microchan-

nel that resulted in the rich patterns. From Fig. 6b, it is

clear that we can approximate the velocity field inside the

microchannel as a combination of linear decrease in

velocity with length at the entrance, flat low velocity mid-

region and a linear increase in velocity near the exit. The

deceleration field near the diverging entrance and low

velocity in a large part of the midsection are the two

important features of the microchannel under study (rect-

angular) that we believe affects the pattern formation. To

address this issue, we investigate the dynamics of drops in

four different channels. All the four microchannels con-

sidered have the same minimum and maximum width of

the channel (in the y direction) as that of the rectangular

channel. This ensured that the inlet and the minimum

superficial velocities were identical. The initial spacings

between drops that were used to compare the dynamics

were the same as the ones that gave one (L0 = 37R), two

(L0 = 18R) and three (L0 = 12R) layer configurations for

the rectangular microchannel.

First we consider Microchannel-1, with superficial

velocity fields, linearly decreasing and increasing along the

length (Fig. 8a). From Fig. 8c, e, g, one can observe that

the drops did not layer as expected. Now the next question

would be to find out the features of the microchannel that

will result in pattern formation. This encouraged us to

design Microchannel-2 in which the length of the diverging

section is increased (Fig. 8b, d, f, h). We can observe from

Fig. 8d, f, h that the drops layered as expected and could

form one and two layers and two layers becoming unstable.

In comparison with the Microchannel-1, the rate at which

the superficial velocity decreased along the length of Mi-

crochannel-2 is lower. This feature of the microchannel

aids in the formation of layered arrangements. Deceleration

of drops in microchannel-2 is lower than 1 but the time

spent by drops in the diverging section is higher in 2 than in

1. Because the drop feeding rate is kept constant for both

the microchannels, the number of drops in the diverging

section of microchannel-2 is greater than that of 1. This

results in more crowding of drops and aids in the formation

of layered configurations.

Microchannel-3 is designed to understand the effect of

the low flat velocity midsection in the microchannel

(Fig. 8i). From Fig. 8k, m and o, it is clear that the patterns

formed are close to one, two and three layers. This is the

result of the similarity between microchannel-3 and the

rectangular microchannel because the velocity profile of 3

(Fig. 8i) captures features of the velocity profile of the

rectangular microchannel (Fig. 6b). Dynamics of drops in

microchannel-2 helps us to understand the role of a slowly

diverging section of a microchannel in pattern formation.

Hence, microchannel-4 was designed with an intent to

understand the combined effect of the slow deceleration

and flat velocity sections of the microchannel (Fig. 8j).

From Fig. 8l, n and p, one can conclude that the qualitative

features of the patterns formed are the same as micro-

channel-3. The increased number of drops and close

packing of drops in the patterns formed in microchannel-4

are due to the excessive crowding of drops in the slow-

diverging sections. It becomes clear from the above ana-

lysis that the low flat velocity midsection of the micro-

channel has a greater effect on pattern formation than the

diverging section of the microchannel. This is the reason

for the rich patterns observed by Jose and Cubaud (2012) in

their rectangular geometry.

7 Future work

The interacting drop-traffic models discussed in Sect. 3.2

give very simple descriptions for the forces experienced by

a drop inside a microchannel. Improving the model would

make the MAS more general to 2-D microchannels. Also,

the tuning parameters in the models are functions of system

properties like the viscosities and densities of the liquids

and their interfacial tension and geometry. Understanding

these relations through another set of models would make

the simulation technique ready for use in optimization. One

should note that the MAS framework is such that it pro-

vides room for improvement. Based on the observations of

the experiments (Jose and Cubaud 2012), phenomenolog-

ical models were developed for explaining drop dynamics

in 2-D channels. When new physics concerning drop flow

in 2-D microchannel is observed, its contribution to the

force balance can be added to Eq. (2). This way it is pos-

sible to incorporate the effect of any new phenomena in the

MAS and to study their impact on pattern formation. As

Reynolds number increases inertial effects start to domi-

nate. To study the system, it is enough to relax the creeping

flow assumption and solve the complete Newton’s second

law of motion as given in Eq. (1). Another interesting

observation was the propagated coalescence in micro-

channels crowded with drops, reported by Bremond and

coworkers (Bremond et al. 2008). They believe that it

might be a possible route to achieve phase inversion of the

two immiscible phases. It is an interesting problem because

when two immiscible liquids flow in a microchannel, the

liquid that wets the wall most becomes the continuous

phase and the other liquid becomes the discrete drop phase.

A phase inversion event is not surfactant driven unlike

macro-systems (Shui et al. 2009). But in a 2-D
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microchannel, is may be possible through a set of coales-

cence events. The first step toward predicting this phe-

nomenon computationally would be to understand drop

arrangement inside a 2-D microchannel, which has been

addressed in the present article. The next obvious step

would be to understand drop coalescence modes through a

Fig. 8 a Velocity profile of microchannel-1 (c, e, g); b velocity

profiles of microchannel-2 (d, f, h); c–h Microchannels with

superficial velocities linearly decreasing in the diverging section

and linearly increasing in the converging section; i velocity profile of

microchannel-3 (k, m, o); j velocity profiles of microchannel-4 (l, n,

p); k–p Microchannels with linearly decreasing superficial velocity in

the diverging section followed by a region of constant velocity

followed by a linearly increasing superficial velocity in the converg-

ing section [Enhanced online]
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set of models and to incorporate them with the MAS to

study the propagated coalescence as a function of geometry

and predict phase inversion.

8 Conclusions

We propose a simulation strategy to predict the dynamic

pattern formation of drops in a 2-D diverging–converging

microchannel. We proposed simple intuitive models for the

significant forces experienced by the drops inside the mi-

crochannel through the interacting drop-traffic models.

Incorporation of these models into a multi-agent simulation

that solved the Newton’s second law of motion helped in

simulating the dynamics of these drop arrangements. The

multi-agent simulation aided in the investigation of the

phenomenon of layering in the diverging section of the

channel which gave rise to the layered configuration, and

the breaking patterns in the converging section of the

channel just before the exit. The simulation helped us

understand the relation between geometry and patterns

formed inside the microchannel. Features of the micro-

channel that aided in the pattern formation were studied by

constructing suitable microchannels that decoupled the

effect of the individual features. We were able to under-

stand why the rectangular geometry of Jose and Cubaud

(2012) was able to produce such rich patterns. The phe-

nomenological nature of the models results in tuning

parameters that need to be adjusted. These parameters are

functions of the system properties like the viscosities and

densities of both the fluids and the interfacial tension. The

fact that new phenomena can be added to the interacting

drop-traffic models makes the MAS approach a versatile

technique to understand drop dynamics in 2-D micro-

channels. We believe that this is the first step toward the

development of a powerful computational tool for drop-

microfluidic research.
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Jovanović J, Zhou W, Rebrov EV et al (2011) Liquid–liquid slug

flow: hydrodynamics and pressure drop. Chem Eng Sci

66:42–54. doi:10.1016/j.ces.2010.09.040

Kelley KW (2008) Reactions in droplets in microfluidic channels.

Brain Behav Immun 22:629. doi:10.1016/j.bbi.2008.05.010

Kelly BT, Baret J-C, Taly V, Griffiths AD (2007) Miniaturizing

chemistry and biology in microdroplets. Chem Commun (Camb)

1773–88. doi:10.1039/b616252e

Leal LG (2007) Advanced transport phenomena. doi:10.1017/

CBO9780511800245

Maddala J, Srinivasan B, Bithi SS et al (2012) Design of a model-

based feedback controller for active sorting and synchronization

of droplets in a microfluidic loop. AIChE J 58:2120–2130.

doi:10.1002/aic.12740

Naiem A, Reda M, El-Beltagy M, El-Khodary I (2010) An agent

based approach for modeling traffic flow. Informatics Syst

(INFOS), 7th Int Conf 1:28–30

Niu X, Zhang M, Peng S et al (2007) Real-time detection, control, and

sorting of microfluidic droplets. Biomicrofluidics 1:044101

536 Microfluid Nanofluid (2014) 17:527–537

123

http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1038/nphys432
http://dx.doi.org/10.1103/PhysRevLett.103.114502
http://dx.doi.org/10.1016/j.physrep.2012.02.003
http://dx.doi.org/10.1016/j.physrep.2012.02.003
http://dx.doi.org/10.1073/pnas.082080899
http://dx.doi.org/10.1103/PhysRevLett.100.024501
http://dx.doi.org/10.1103/PhysRevLett.100.024501
http://dx.doi.org/10.1098/rsta
http://dx.doi.org/10.1002/anie.200701358
http://dx.doi.org/10.1063/1.857525
http://dx.doi.org/10.1103/PhysRevLett.111.118301
http://dx.doi.org/10.1126/science.1134514
http://dx.doi.org/10.1016/j.ces.2009.03.018
http://dx.doi.org/10.1002/smll.200700238
http://dx.doi.org/10.1002/smll.200700238
http://dx.doi.org/10.1039/b806405a
http://dx.doi.org/10.1039/c2sm25812a
http://dx.doi.org/10.1007/s10404-011-0909-z
http://dx.doi.org/10.1039/b416666c
http://dx.doi.org/10.1016/j.ces.2010.09.040
http://dx.doi.org/10.1016/j.bbi.2008.05.010
http://dx.doi.org/10.1039/b616252e
http://dx.doi.org/10.1017/CBO9780511800245
http://dx.doi.org/10.1017/CBO9780511800245
http://dx.doi.org/10.1002/aic.12740


Niu X, Zhang M, Wu J et al (2009) Generation and manipulation of

‘‘smart’’ droplets. Soft Matter 5:576. doi:10.1039/b816553j

Reynolds CW (1987) Flocks, herds and schools: a distributed

behavioral model. ACM SIGGRAPH Comput Graph 21:25–34.

doi:10.1145/37402.37406

Schindler M, Ajdari A (2008) Droplet traffic in microfluidic

networks: a simple model for understanding and designing.

Phys Rev Lett. doi:10.1103/PhysRevLett.100.044501

Sessoms D, Belloul M, Engl W et al (2009) Droplet motion in

microfluidic networks: hydrodynamic interactions and pressure-

drop measurements. Phys Rev E 80:1–10. doi:10.1103/Phys

RevE.80.016317

Shui L, van den Berg A, Eijkel JCT (2009) Interfacial tension

controlled W/O and O/W 2-phase flows in microchannel. Lab

Chip 9:795–801. doi:10.1039/b813724b

Smith BJ, Gaver DP (2010) Agent-based simulations of complex

droplet pattern formation in a two-branch microfluidic network.

Lab Chip 10:303–312. doi:10.1039/b916380h

Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in

microfluidic channels. Angew Chem Int Ed Engl 45:7336–7356.

doi:10.1002/anie.200601554

Sung KE, Vanapalli SA, Mukhija D et al. (2008) Programmable

fluidic production of microparticles with configurable anisot-

ropy. 1335–1340

Taha T, Cui ZF (2006) CFD modelling of slug flow inside square

capillaries. Chem Eng Sci 61:665–675. doi:10.1016/j.ces.2005.

07.023

Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic

pattern formation in a vesicle-generating microfluidic device.

Phys Rev Lett 86:4163–4166. doi:10.1103/PhysRevLett.86.4163

Uspal WE, Doyle PS (2012) Collective dynamics of small clusters of

particles flowing in a quasi-two-dimensional microchannel. Soft

Matter 8:10676. doi:10.1039/c2sm25931a

Microfluid Nanofluid (2014) 17:527–537 537

123

http://dx.doi.org/10.1039/b816553j
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1103/PhysRevLett.100.044501
http://dx.doi.org/10.1103/PhysRevE.80.016317
http://dx.doi.org/10.1103/PhysRevE.80.016317
http://dx.doi.org/10.1039/b813724b
http://dx.doi.org/10.1039/b916380h
http://dx.doi.org/10.1002/anie.200601554
http://dx.doi.org/10.1016/j.ces.2005.07.023
http://dx.doi.org/10.1016/j.ces.2005.07.023
http://dx.doi.org/10.1103/PhysRevLett.86.4163
http://dx.doi.org/10.1039/c2sm25931a

	Understanding drop-pattern formation in 2-D microchannels: a multi-agent approach
	Abstract
	Introduction
	System of interest
	Modeling strategy
	Multi-agent framework (MAS)
	Interacting drop-traffic models
	Algorithm for simulating drop movement

	Tuning
	Dynamic pattern formation
	One-layer configuration
	Two-layer configuration: the phenomenon of layering
	Three-layer configuration
	Quantitative characterization

	Reasons for pattern formation
	Future work
	Conclusions
	Acknowledgments
	References


