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Abstract The circumferential distribution of the sur-

rounding particles contribution to the drag force for the

reference particle is firstly proposed and analyzed. A new

formula for the drag exerted on a given particle under the

interaction between particle clouds and fluid is derived.

Analysis shows that even for spherical particles with

symmetric shape, as the particle dispersion is nonsym-

metric and the direction of the particle velocity differs from

the reference particle, the direction of the drag and the

particle velocity is not parallel; therefore, it increased the

complexity of evolution process for the particle concen-

tration. Due to special feature of nanoparticle surface

adsorption, this study presents analysis of the radial vis-

cosity distribution in the vicinity of liquid layer for the first

time. The increasing in the viscosity of the nanolayer is

considered a contributing factor to the viscosity of nano-

fluids as the experimental result is larger than the theoret-

ical prediction. Considering the effect of multi-particles

interaction and the characteristics of liquid layer, the new

drag force model is constructed and applied to simulate the

nanofluid flow. Comparison is made for computed drag force

on particle between the traditional and present models. The

trajectory and distribution of the nanoparticles, as well as the

velocity contours of the fluid, are presented. The physical

meanings of these results have been discussed.

Keywords Drag force � Stokes’ law of resistance �
Nanofluids � Discrete phase model � Unsteady flow

1 Introduction

When a single spherical particle moves with a steady

translational velocity in the fluid, the flow fields around can

be obtained by solving Stokes equation, and therefore the

drag force acting on the sphere. The force is proportional to

the velocity of the particle, and the coefficient is 3pldp,

where l is the dynamic viscosity of the fluid and dp is the

diameter of the sphere (Batchelor 1967). The well-known

Stokes’ law of resistance is valid for viscous force domi-

nated flow Re \ 0.5 without separation, where Re is the

Reynolds number. The formula has been used widely in the

two-phase flow study, even though it is different from the

reality. Considering the impact of the weakly nonlinear

fluid inertia, second- and higher-order approximation by

singular perturbation approach can be obtained. Stokes’

drag formula is also valid for the extreme dilute suspen-

sions. Experiments show that, when the volume fraction of

the particles is less than 2 %, the dilute suspension can be

approximated with the dual-sphere model. Various inter-

actions between the two spheres have been considered,

such as van der Waals force, electric force, and fluid

dynamic force between the spheres. Due to the random

Brownian motion of suspended particles, it is convenient to
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use statistical theory describing the process, however,

which will encounter the difficulties of solving the pair-

distribution equation and the occurrence of divergent

integrals. Batchelor made the integrals convergent; the

main contribution to the change in drag force comes from

the backflow induced by surrounding spheres, and after-

ward, they overcome the difficulty of obtaining the pair-

distribution function and established the statistical theory

for polydisperse system (Wen 1996). In fact, the theory did

not consider the impact of the interaction between the

particles and was an ultimate theory, and therefore, there

existed some discrepancy with reality. In order to predict

the drag of particles under the dynamic interaction between

particle clouds and the fluid, many researchers performed

numerous experiments and summarized empirical expres-

sions for the drag force (Crowe et al. 2012). As the

experiments were conducted for different flow conditions

and particle properties, the many discrepancies between

them have never been resolved.

The adsorption between the nanoparticles and the liquid

molecules can be regarded as a special reaction, which

formed the activated complex with low mobility; mean-

while, the adsorbed liquid lost a degree of freedom. The

thickness of the liquid layer is closely related to the

chemical potential of the absorbing liquid and its pressure.

For the monomolecular liquid layer in the suspension with

low concentration, the adsorbed molecules on particle sur-

face are in a hexagonal close-packed arrangement. Many

studies have shown that the interfacial layer is typically 1–5

atomic molecular thickness (Wang et al. 2012). One the

basis of the electron density profile at the liquid layer, the

interfacial layer thickness on the particle surface can be

given as d ¼
ffiffiffiffiffiffi

2p
p

r, where r characterizes the diffuseness

of interfacial boundary and lies within 0.2–0.8 nm (Mur-

shed et al. 2008). However, there is no exact theoretical

model available in determining the liquid layer thickness on

the particle surface. As ordered liquid molecules lie in the

middle, the crystalline layer exhibits physical behavior

between liquid and solid. More investigations need to be

performed on the detailed characteristics of the nanolayer.

The arrangement of molecules in the liquid layer, the

mobility, mechanical properties and thermal conductivity of

the layer can be analyzed to identify the impact of liquid

layer on the flow and heat transfer of the nanofluid. Atten-

tions have been focused on heat conduction of the liquid

layer; however, its impact on the interaction force between

phases has not been studied before.

Numerous theoretical and experimental studies have

shown that the thermal performance of heat transfer devi-

ces can be enhanced by adding nanoparticles to the base

fluid. Wang et al. (2012) summarized potential mecha-

nisms of heat conduction in nanofluids proposed by

previous investigators. They presented their experimental

work and concluded that the key contributor to the

enhancement of thermal conductivity was nanoparticle

clustering. Lee et al. (2010) studied the models for the

thermal conductivity of nanofluids and analyzed the pro-

posed mechanisms as well as the discrepancies between

experimental data. Grosan and Pop (2011) analyzed the

mixed convection boundary layer flow of a nanofluid past a

vertical cylinder and found that small fraction of nano-

particles caused significant change in the skin friction

coefficient. Mahian et al. (2013) investigated the applica-

tion of nanofluids in solar energy engineering and dis-

cussed the impacts of nanofluids on the performance of

solar devices. Ghadimi et al. (2011) reviewed on the

research progress of stabilization methods as well as dif-

ferent instruments for stability inspection. Based on a

discrete phase model, Kondaraju et al. (2011) performed

simulations on nanofluids flow and heat transfer by solving

the Navier–Stokes equations with source terms. The effect

of polydispersity on the effective thermal conductivity of

nanofluids was investigated. They suggested that the

deviation of thermal conductivity was increased with the

increase in the size variation. Wen et al. (2009) simulated

laminar nanofluid flow by a combined Euler and Lagrange

method. The acting forces included contributions from

hydrodynamic forces, Brownian force, thermophoresis

force and virtual mass force. The particles concentration is

unsteady and highly nonuniform inside the channel.

However, temperature equation of nanoparticles was not

solved. In the simulation on the movement of nanoparticles

performed by many previous researchers, the drag force

model they adopted was Stokes’ resistance law.

Considering the interaction of multi-particle and the

fluid, a new drag force model has been developed. The

viscosity behavior of the liquid layer absorbed on nano-

particles is analyzed, and the radial distribution of viscosity

in the nanolayer is present. The new model has been

employed to simulate nanofluid flow in a circular dish, and

the numerical results have been discussed.

2 New drag force model

2.1 Drag in dispersed particle systems

For determining the viscous drag force exerted on a cloud

of particles, the typical analysis is to solve the flow equa-

tions around multi-particles; however, due to the com-

plexity of the unsteady flow conditions, it is difficult to

give the corresponding theoretical formula. If the problem

is modeled as a particle embedded in a porous medium, it

will also encounter the difficulties of complex boundaries.
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Based on the differences between the drag force on the

particles with uniform distribution and the Stokes resis-

tance for a single particle, the contribution of an individual

particle to the drag of the reference particle is given, in

which the factors of angle, distance, and velocity have been

taken into account, and then applied to calculate the drag

on the reference particle in real particle clouds.

The classic expression for particle drag with specified

volume fraction u is

6pla
4þ 3uþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð8u� 3u2Þ
p

ð2� 3uÞ2

" #

U; ð1Þ

where a is the radius of the particle and U is the relative

velocity between the particle and the fluid. The same

formula was derived by different researchers through

analysis utilizing different approaches, which showed

good agreement with the experimental data (Damiano

et al. 2004). The corresponding analysis will be conducted

as below. The velocity distribution in the Stokes flow

around a particle is

uh ¼ �U sin h
3

4

a

r
þ 1

4

a

r

� �3
� �

;

ur ¼ U cos h
3

2

a

r
� 1

2

a

r

� �3
� �

;

ð2Þ

and the magnitude of velocity varies sinusoidally with

period p around the particle, where h and r denote the

angular and radial coordinate, respectively. As the drag

force is proportional to velocity approximately in the

considered case, thus the contribution of circumferential

particles to the particle drag is assumed to show a

sinusoidal phase modulation similarly. As h = 0

corresponds to the maximum value, the extracted

contribution to the drag per unit length can be given as

F�r ¼
1

2
Fo sin 2 hþ p

4

� �

þ F; ð3Þ

where the circumferential average

F ¼ 6pla
4þ 3uþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8u� 3u2ð Þ
p

2� 3uð Þ2
� 1

" #

U

2p�r

¼ 3laU

�r

4þ 3uþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8u� 3u2ð Þ
p

2� 3uð Þ2
� 1

" #

;

and the fluctuation magnitude Fo ¼ urð0Þ � uh
p
2

� �	 


6pla
2p�r ¼

9laU
4�r

a
r
� a3

r3

� �

;where �r represents the averaged distance

between particles.

The variation in the surrounding particles impact on the

drag with the distance is analyzed as follows. From the

circumferential averaged velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
h þ u2

r

q

, the force

varies approximately as F / r�1; however, through ana-

lysis on the results of the long-range forces between the

particles, it follows closely F / r�2. Here, the impact of

the distance on the drag is considered the same as the

mechanism for the viscosity of the suspensions F / leff ,

taking the Brownian motion into account, the effective

viscosity of the suspensions is expressed by leff ¼ ð1þ
2:5uþ 6:2u2Þlf (Batchelor 1977), so the actual contribu-

tion to the drag force

Fr0 ¼
ð1þ 2:5u0 þ 6:2u02Þ
ð1þ 2:5uþ 6:2u2Þ F�r; ð4Þ

where u0 is the volume fraction corresponding to the spe-

cific distance r0 between an individual particle and the

reference particle.

As the direction of the velocities of the impacted

particles and the specified particle is not entirely consis-

tent, the velocity components in parallel and perpendic-

ular direction need to be analyzed, respectively. The

lateral force is caused by the perpendicular velocity

component, which changes the velocity direction of the

reference particle; therefore, the complexity of the evo-

lution process for the particle distribution is increased.

Due to the asymmetric particle distribution with reference

to the specified particle and the difference in particle

velocity directions, the distribution of fluid velocity and

pressure in the vicinity of the particle is nonsymmetrical,

and this will cause the direction inconsistence between

the particle velocity and the resistance of the particle,

which is suitable even for particles with symmetric shape

moving in the overall symmetrical flows, which may be

one of the reasons for dispersion of measurement data on

particle drag.

In actual computations, as the influence of particles far

away from the analyzed particle is negligible, particles

within 1.5 times the averaged distance are selected. In the

two-dimensional case, the position (h0, r0) and the parallel

velocity U0 of the particles relative to the reference particle

are known. The equivalent range influenced by the particle

interaction is Dh ¼ 2p
n

, and the contribution of a particle to

the drag FD0 ¼
R h0þp

n

h0�p
n

Fr0�rdh, where n ¼ pr2
c u

pa2 . Considering

the comprehensive contribution of all particles to the drag

force component in the direction parallel and perpendicular

to the velocity of the reference particle, the drag on the

reference particle is obtained by

FD
�! ¼

X

n0
FD0
�!

; ð5Þ

where n0 is the number of particles for computation, and the

velocity used in the real calculation represents the velocity

difference between the particles and the local fluid.
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2.2 Viscosity distribution of the liquid layer

As shown in Fig. 1 (Jang and Choi 2004), the thickness of

the liquid layer can be analyzed through the methods in

physical chemistry of surfaces. For instance, in a dilute

suspension, the thickness can be estimated by Langmuir

monolayer adsorption model d ¼ 1
ffiffi

3
p 4M

qfNA

� �1=3

(Wang et al.

2003), where M represents the molecular weight of the

liquid, qf is the density of the liquid, and NA is the Avogadro

constant (6.022 9 1023/mol). For the thermal conductivity

of the nanolayer, if the distribution inside the layer var-

ies linearly (Kamalvand and Karami 2013), the expression

for the average thermal conductivity can be derived

as kl ¼ kf M
2
l

ðMl�cÞ lnð1þMlÞþcMl
, where Ml ¼ epð1þ cÞ � 1, ep ¼

kp=kf , c ¼ d=a, in which kp and kf, respectively, represent

the thermal conductivity of the particle and fluid. For par-

ticles in the compressible fluid, such as argon atoms around

the copper nanoparticle, it was observed that the density of

argon in the liquid layer is about 1.5 times the density

outside (Li et al. 2010). For particles in the liquid, due to the

impact of the surface adsorption, the pressure in the liquid

layer has increased, and the space between molecules

decreases and their interactions will be enhanced, so the

viscosity is revealed to be increased near the layer. Thus, the

increased viscosity in the liquid layer is suggested to have a

significant role in predicting the effective viscosity of

nanofluids as the experimental data are larger than the pre-

vious theoretical prediction, while no one has considered

this effect.

Theoretical analysis can be performed on the radial

distribution of viscosity in the nanolayer as follows. If the

solid viscosity is considered to be very large, the fluid

within the layer has low mobility, the viscosity within the

structure of a few molecular layers is different from the

viscosity of the surrounding ordinary fluid, which is similar

to the atmosphere of the Earth, and thus, it will cause

the noncontinuous spatial distribution of viscosity. For

convenience, we assume that the viscosity ll shows the

continuous exponential variation

ll

l
¼ d

r
e�Bða=dÞr=dþa=d þ 1; ð6Þ

and the influenced range of the nanolayer outer boundary

on both sides is the same, which satisfied the constraints

r = 0,
ll

l !1 and r = 2d,
ll

l ! 1, thus when r ¼ d,
ll

l ¼ eð1�BÞða=dÞ þ 1. If the outer boundary is considered as a

case similar to the mixture of ice and water, according to

the viscosity variation in water with the temperature, for

instance, the viscosity at the freezing point is approxi-

mately 2 times that at the room temperature, so the coef-

ficient B is taken as 1 for the water-based nanofluid. In

addition, the viscosity in this layer may be analyzed from

the view of the viscous properties of viscoelastic fluids.

3 Verification of drag force model

In order to examine the accuracy of the new force model,

the drag force computed by the simulation of particles

motion is compared with the existing result. The movement

of one and a half thousand particles has been presented, and

the mean drag coefficient for particles is determined via

calculating the statistical average. The drag force coeffi-

cient variation for particles as given by previous investi-

gators has been shown in Fig. 2, where F�D ¼
FD�6plaU

6plaU
. It

can be observed that the simulation results are in good

agreement with the classical predictions (Tam 1969; van der

Hoef et al. 2005).

Fig. 1 Sketch of a particle with nanolayer in a liquid Fig. 2 Variation in drag force coefficient versus volume fraction
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4 Application in nanofluid flow

Flow and heat transfer of a nanofluid in a confined zone with

constant temperature at the wall–liquid interface has been

considered. The medium is a water-based nanofluid con-

taining alumina nanoparticles. According to its physical

characteristics, a theoretical approach has been used to pre-

dict nanofluid as two-phase mixtures. It is considered that the

base fluid and the nanoparticles are coupled with momentum

and heat transfer. The numerical simulation is performed

based on a combined Euler and Lagrange method.

4.1 Mathematical modeling and numerical approach

Discrete phase model is used to study the nanofluid flow

with nanoparticles determined by the Lagrangian trajectory

method. For the continuous fluid phase, the flow and heat

transfer behaviors are governed by the equations according

to the laws of conservation of mass, momentum, and

energy (Warsi 2006).

It is convenient to define the following dimensionless

variables before solving the problem.

x~� ¼ x~

R
; V
!� ¼ V

!

V1
; t� ¼ V1t

R
;

p� ¼ p

qV2
1
; q� ¼ q

q1
; T� ¼ T � T1

Ts � T1
;

Fp
�!� ¼ Fp

�!
R

V2
1

; q�p ¼
qpR

V1ðTs � T1Þ
ð7Þ

where x~and tdenote the space and time coordinates, V
!

, p,

q, and T represent respectively the velocity, pressure,

density and temperature of the fluid, Fp
�!

and qpare source

terms, and these variables are normalized by the charac-

teristic quantities as Rfor the spatial variable, V1for

velocity, q? for density, Ts and T? for temperature.

Considering the laminar, unsteady regime of the model,

the incompressible Navier–Stokes equations with source

terms for the fluid flow can be expressed in the dimen-

sionless variables as below (Kondaraju et al. 2011).

r � V
!� ¼ 0; ð8Þ

oV
!�

ot�
þ ðV!

�
� rÞV!

�
¼ �rp� þ 1

Re
r2 V
!� þ Fp

�!�
; ð9Þ

oT�

ot�
þ V
!� � rT� ¼ 1

Re Pr
r2T� þ q�p; ð10Þ

where the Reynolds number Re ¼ qU1R
l , the Prandtl number

Pr ¼ m
a, a ¼ kf

qf cpf
, in which m, a are kinematic viscosity and

thermal diffusion coefficient of the fluid, respectively, cpf

represents the specific heat of the fluid. The source terms

Fp
�!

and qp representing the momentum and energy transfer

between the fluid and particles are given by (Bianco et al.

2009)

Fp
�! ¼ 1

qf

X

np

mp

dV

d Vp
�!

dt
; qp ¼

1

qf

X

np

mp

dV
cpp

dTp

dt
; ð11Þ

where dV is the cell volume, np is the number of nano-

particles within a cell volume, mp, cpp, and Tp denote

respectively the mass, the specific heat, and the tempera-

ture of the particle.
d Vp
�!
dt

and
dTp

dt
respectively represent

instantaneous change rate of velocity and the temperature

for particles to be discussed below.

In the Lagrangian frame of reference, the movement

equation of nanoparticles is given by

d Vp
�!

dt
¼ FD
�!þ FB

�!þ FT
�!þ FL

�!
; ð12Þ

The main force terms on the right-hand side include the

drag force, Brownian force, the thermophoretic force and

Saffman’s lift force.

The drag force FD
�!

exerted on the particle by the sur-

rounding fluid is calculated by Eq. 5, and the viscosity used

is ll(d).

FB
�!

is the Brownian force expressed as (Li and Ahmadi

1992)

FB
�! ¼ ni

ffiffiffiffiffiffiffi

pS0

Dt

r

; ð13Þ

where ni is the unit variance Gaussian random number with

zero mean. The spectral intensity S0 ¼ 216mkBT

p2qfd
5
p

qp
qf

� �2

Cc

, where

kBis the Boltzmann constant, Cc is known as the Cunn-

ingham correction factor, qp and dp represent the density

and the diameter of the particle, respectively.

The thermophoretic force FT
�!

due to the temperature

gradient on the particle surface in Eq. 8 can be calculated

by (Wen et al. 2009)

FT
�! ¼ � 6pdpl2CsðK þ CtKnÞ

qð1þ 3CmKnÞð1þ 2K þ 2CtKnÞ
1

T
rT; ð14Þ

where the thermal slip coefficient Cs ¼ 1:17, the thermal

exchange coefficient Ct = 2.18 and Cm = 1.14, the ratio of

thermal conductivity K = kf/kp.

The expression for Saffman’s lift force due to the shear

is given by (Saffman 1965)

FL
�! ¼ 2Ksm1=2qdij

qpdpðdlkdklÞ1=4
ðV!� Vp

�!Þ; ð15Þ

where Ks = 2.594 and dij is the deformation tensor.
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The time-dependent temperature equation for particle is

expressed as (Kondaraju et al. 2010)

dTp

dt
¼ 6kfNup

qpcppd2
p

ðT � TpÞ; ð16Þ

Nup is the Nusselt number for nanoparticles calculated

by Ranz–Marshall correlation Nup ¼ 2þ 0:6 Re
1=2
p Pr1=3,

where Rep ¼
qf dp Vp

�!
�V
!�

�

�

�

�

�

l .

Physical and thermal properties of solid nanoparticles

and water at reference temperature are listed in Table 1

(Abu-Nada et al. 2008).

In the present study, the characteristic-based split (CBS)

algorithm (Zienkiewicz et al. 2005) is used to simulate the

incompressible fluid flow in a dish. Discrete phase equations

are solved by the momentum and energy balance on the

particles. Due to two-dimensional flow features, the gov-

erning equations for the fluid flow are 2-D unsteady N–S

equations. As shown in Fig. 3, the domain of the present

simulation is a circular dish rotated clockwise with dimen-

sionless angular velocity being from 1.0 to 5.0. It consists of

9,109 nodes and 17,929 triangular elements. In the dish,

7,825 alumina nanoparticles move with the same velocity

and temperature as water initially. As the Knudsen number

Kn \ 0.001 is valid for the nanofluid flow, no slip velocity

and isothermal boundary conditions are applied on dish

walls. Constant higher temperature Ts = 323 K is applied to

the wall, and the initial fluid temperature is T? = 298 K.

The diameter of the nanoparticles is selected to be 30 nm.

In order to validate the numerical algorithm, different

flow regimes are selected to demonstrate the precision of

the Fortran program. The numerical data from the present

computation for a case of fluid flow at low Reynolds

numbers (Re = 100) is compared with previous data. The

averaged Nusselt number obtained by the present code is

5.07, the corresponding result of the experimental work is

5.19 (Khiabani et al. 2010), and the numerical data carried

out by Mettu et al. (2006) are 5.08. The comparison of the

present result and the previous data shows satisfactory

agreement. Figure 4 shows the temperature profile of alu-

mina–water nanofluid with 4 % volume fraction. The

present result is found to agree well with the numerical data

of Yang and Lai (2011).

4.2 Results and discussions

Figure 5 presents the comparison of the drag force on

particles simulated respectively with Stokes drag model for

single particle and the modified model, where t0 is the

number of computational time and FD
0 = FDDt, in which

Dt represents the time step. The three typical particles

selected are located close to the boundary, near the center

part and approximately in the middle between them. It can

Table 1 Thermo physical properties of base fluid and alumina

nanoparticle

Base fluid/nanoparticle Density

(kg/m3)

Specific

heat

(J/(kg K))

Thermal

conductivity

(W/(m K))

Water 997.1 4,180 0.613

Al2O3 3,970 765 40

Fig. 3 Elements in the circular domain

Fig. 4 Temperature distribution for alumina-water nanofluid with

4 % volume fraction
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be observed that the obviously larger enhanced fluctuations

simulated by multi-particle model, the enhanced com-

plexity in frequency with low- and high-frequency com-

ponents, and the results of the single-particle model

approximately fluctuate up and down symmetrically

around the average value with relatively simple frequency.

As the effect of particles interactions with fluid is in

analogy to the increased particle size, the impact range of

the flow field on the particle becomes larger, which is

equivalent to the movement of a enlarged particle in the

larger local area; the effect of variation in the flow field is

enhanced, so the fluctuation has been enlarged with more

complex frequencies. The difference in the above com-

parisons is similar to the Brownian motion of different-

sized particles.

The trajectories of particles within a square domain in

the vicinity of the central part are shown in Fig. 6, the

geometry of trajectory is more regular approximating arc as

the distance from the dish center increases, and the effect

of Brownian motion stands out near the central part with

trajectories fluctuating significantly. Note that the circular

dish rotates clockwise in the simulation.

The distribution of the instantaneous velocity magnitude

of the fluid within the dish at Re = 5 is illustrated in Fig. 7.

Obvious fluctuations can be seen in the contours, and the

velocity in the middle is lower than that close to the

Fig. 5 Variation in drag force exerted on particles simulated with

a Stokes drag model b present model

Fig. 6 Trajectories of nanoparticles in the circular dish

Fig. 7 Fluid velocity contours in the dish

Microfluid Nanofluid (2014) 17:253–261 259

123



boundary, due to the disturbance of the particles, the fluid

velocity near the wall may be slightly larger than that on

the dish boundary.

Figure 8 presents the instantaneous distribution of the

nanoparticles in the dish rotating with constant and varied

angular. As the flow in the rotating dish exhibits special

feature, so the particles are approximately uniformly dis-

persed and the intermediate hollow space is gradually

enlarged; the centripetal force provided by fluid pressure

gradient is not sufficient for the change in the velocity

direction of particles. Moreover, as shown in the actual

computation, the lateral force is of a lower order than the

drag force component in the direction of movement for

particles. The velocity of particles on the outer side is high

than that on the inner side of the reference particle, so it

makes a larger contribution to the lateral force and then the

diffusion process of particles. When the rotation of the dish

speeds up, it first drives the accelerated movement of the

particles near the boundary, thus will cause a significant

change in the arrangement of the particles.

5 Conclusions

Based on the viewpoint of multi-particle interactions, the

circumferential distribution function of the contribution to

the drag on particle is constructed, combined its variation

with the distance; the improved expression for the calcu-

lation of the drag force is presented. The computed drag is

not parallel with the direction of the particle velocity, and

the impact of the lateral force increases the complexity for

the transport process of particles. For the ordered structure

adsorbed on the surface of nanoparticles, the viscosity

behavior in and near the nanolayer has been analyzed for

the first time. The increased viscosity of the interfacial

layer is suggested to be the main reason why the experi-

mental result for the effective viscosity of nanofluids is

larger than the theoretical prediction. Considering the

multi-particle effect and the characteristic of the crystalline

layer, a new model for the drag exerted on a nanoparticle

has been proposed and applied to simulate the nanofluid

flow in rotary dish. Different simulation results with the

traditional drag model is investigated, and the instanta-

neous distribution of nanoparticles as well as the velocity

of the fluid has been analyzed. If we could obtain the

precise solution of the flow field in the vicinity of nano-

particles, a more accurate model for the drag force will be

presented.
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