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Abstract A theoretical model for nanofluid flow,

including Brownian motion and thermophoresis, is devel-

oped and analysed. Standard boundary layer theory is used

to evaluate the heat transfer coefficient near a flat surface.

The model is almost identical to previous models for

nanofluid flow which have predicted an increase in the heat

transfer with increasing particle concentration. In contrast

our work shows a marked decrease indicating that under

the assumptions of the model (and similar ones) nanofluids

do not enhance heat transfer. It is proposed that the dis-

crepancy between our results and previous ones is due to a

loose definition of the heat transfer coefficient and various

ad hoc assumptions.

Keywords Nanofluid � Convective heat transfer �
Boundary layer � Heat transfer coefficient

1 Introduction

There exists a vast literature regarding the behaviour and

applications of nanofluids. In particular the often remark-

able experimental results concerning their heat transfer

properties have seen them proposed as a front runner in the

race to cool modern high-performance electronic equip-

ment. However, there appears no real consensus on whe-

ther nanofluids are indeed capable of removing large

amounts of heat. The plethora of experimental papers

promoting their efficiency and enhanced thermal conduc-

tivity, see (Haddad et al. 2012; Hwang et al. 2009; Kle-

instreuer and Feng 2011) for example, appeared to have

been superseded by the benchmark study (Buongiorno

et al. 2009) carried out in over 30 organisations throughout

the world which suggested no anomalous enhancement of

thermal conductivity in the fluids tested. Indeed, this

should not be too surprising since heat conduction occurs

due to the transfer of kinetic energy from hot, rapidly

vibrating atoms or molecules to their cooler, more slowly

vibrating neighbours. In solids, the close, fixed arrange-

ment of atoms means that conduction is more efficient than

in fluids, which have a larger distance between atoms

(Myers et al. 2012). A nanofluid is made up of a small

quantity of solid particles separated by a large amount of

fluid, thus ruling out the possibility of a great deal of

intimate contact between particles and hence suggesting no

significant increase in thermal conductivity. This conclu-

sion is backed up by a small number of other theoretical

and experimental papers showing a degradation in thermal

performance with increasing volume fraction (Haddad

et al. 2012; Popa et al. 2011; Yang et al. 2005). Yet despite

this conclusion, nanofluids and their heat transfer proper-

ties are still the subject of numerous articles, as discussed

in the recent review of Kleinstreuer and Feng (2011).

M. M. MacDevette � T. G. Myers (&)

Centre de Recerca Matemàtica, Campus de Bellaterra,

Edifici C, 08193 Bellaterra, Barcelona, Spain

e-mail: tmyers@crm.cat

M. M. MacDevette

e-mail: mmacdevette@crm.cat

M. M. MacDevette
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In addition to the lack of consensus on physical prop-

erties, there is not yet an accepted model for nanofluid

flow. A number of models and physical mechanisms

(which may or may not be important) are described by Das

et al. (2003). In this paper, we will focus on a particular

form of model, originally proposed by Buongiorno (2006),

which includes thermophoresis and Brownian motion. In

the paper by Buongiorno (2006), an order of magnitude

study was carried out to dismiss a number of heat transfer

mechanisms and show that thermophoresis and Brownian

motion play a significant role in the energy transport of a

flowing liquid. He then analysed a boundary layer flow

model to demonstrate an increase in heat transfer coeffi-

cient with particle volume fraction. Subsequently, various

theoretical papers based on the same model have verified

this conclusion (Jang and Choi 2006; Kuznetsov and Nield

2010; Maiga et al. 2004; Xuan and Roetzel 2000). Evans

et al. (2006) concluded that Brownian motion has a neg-

ligible effect on the thermal conductivity. Savino and Pa-

terna (2008) study buoyancy-driven flow in a 1 mm wide

channel, and they conclude that Brownian motion and

thermophoresis do affect the flow, but only over a time-

scale of 27 h, with the results most noticeable when gravity

is 10-6 of its normal value. The real goal in the develop-

ment of nanofluids for cooling purposes is to enhance the

heat transfer and energy removal from a given surface. To

understand this requires knowledge of the flow and heat

transfer coefficient (HTC) at the interface between the fluid

and the solid. This is the aim of the present paper. The

HTC is a surprisingly poorly defined quantity so, in the

following section, we will begin by examining the HTC

and defining it in a way that reflects the correct heat

transfer from a surface. We will then develop a similar

model to that of Buongiorno (2006), Savino and Paterna

(2008) via the energy and momentum equations defined in

chapter 3 of Bird et al. (2007). Standard boundary layer

scaling will be applied to reduce the equations and, in

particular, demonstrate that Brownian motion and ther-

mophoresis are negligible within the boundary layer. We

go on to show that, for the fluid-particle systems investi-

gated, the HTC decreases with increasing particle volume

fraction. Finally, given the number of papers that have

reached the opposite conclusion from the same equations,

we briefly discuss reasons for this discrepancy. Throughout

the paper, we will work with a water-based nanofluid,

although parameter values and some results are also

reported for ethylene glycol-based nanofluids.

2 Calculating the heat transfer coefficient

The goal of this paper is to determine whether the addition

of nanoparticles to a base fluid can improve its ability to

transfer heat. It is important to bear in mind that this heat

transfer depends not only on the heat removal from the

surface but also how well the fluid transports the energy

away. For example, although the nanofluid may have a

higher heat capacity than the base fluid, this increased

ability to store thermal energy may be offset by the

increase in fluid viscosity, meaning energy transport with

the flow is slower. Hence, in assessing the fluid’s heat

removal ability, we must consider the coupled problem of

heat and fluid flow. A second significant issue in analysing

the heat removal is the concept of the heat transfer coef-

ficient. This is the parameter used by many authors to

quantify the heat transfer from a solid to a fluid. However,

it is loosely defined and often does not truly reflect the

amount of heat transferred to the fluid. Consequently,

before we move on to the full thermal model, we will begin

with a discussion of the HTC.

When fluid flows over a solid surface, the HTC repre-

sents the ratio of heat input at the boundary to that trans-

ferred to the fluid. If Q is the energy input at the boundary

per unit area and DT some temperature change in the fluid,

then the HTC is typically defined by h ¼ Q=DT . If the no-

slip condition holds at the solid–liquid boundary then the

heat transfer there is by conduction, rather than convection,

and so Fourier’s law holds,

Q ¼ �k
oT

oy

�
�
�
�
y¼0

; ð1Þ

where y = 0 denotes the position of the interface.

Substituting for Q leads to the standard boundary condition

�k
oT

oy

�
�
�
�
y¼0

¼ hDT : ð2Þ

The variation in interpretation of this boundary condi-

tion comes through the choice of DT . Perhaps the most

common choice is DT ¼ Tw � T1, where Tw is the tem-

perature of the solid and T1 that of the fluid in the far field

(Bejan 2004; Das et al. 2003). If the solid is heating the

fluid, then it is well known that Tw [ Ty¼0þ and so, since

h / 1=DT , the definition DT ¼ Tw � T1 will underesti-

mate the HTC. The mathematical literature tends to favour

the choice DT ¼ Ty¼0þ � T1, which should be closer to

representing the heat passed to the fluid. In fact, the two

choices are often combined by choosing a mathematical

description where the fluid temperature Ty¼0þ ¼ Tw. In the

nanofluid literature, such choices may be found in

(Buongiorno 2006; Daungthongsuk and Wongwises 2007;

Popa et al. 2011; Xuan and Li 2000) for example, and there

are also numerous examples in the general heat transfer

literature (Bird et al. 2007).

In fact, neither of the above options actually represents

the energy increase in the fluid. The problem being that the
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choice of DT is arbitrary and implicitly assumes that the

temperature (or energy) rise is linear in the fluid. To cor-

rectly determine the energy rise requires knowledge of the

velocity and temperature profiles in the liquid. Say a fluid

enters a system at x = 0 with some initial temperature T1
and a corresponding energy flux then a distance L down-

stream the energy flux above the initial value is given by

ZdTðLÞ

0

qcuðT � T1Þdy; ð3Þ

where dT(L) is the thickness of the thermal boundary layer

at x = L. In order to write a HTC in a manner similar to

previous definitions, we may define an average temperature

rise in the fluid Tav by

ðTav � T1Þ
ZdT

0

qcu dy ¼
ZdT

0

qcuðT � T1Þdy: ð4Þ

Note, Tav is referred to in Bird et al. (2007) as the ‘cup’

average. The term cup average indicates that if the flow to

the edge of the boundary layer at x = L was collected in a

cup, the temperature of this fluid would be given by Tav.

The HTC that correctly reflects the ratio of energy entering

at the boundary to that transferred into the fluid is

h ¼ Q

Tav � T1
¼

Q
R dT

0
qcu dy

R dT

0
qcuðT � T1Þdy

: ð5Þ

This is the definition we will use in the following work.

Note, the HTC varies with distance downstream (we have

omitted writing x = L in all the integrals) but will tend to

an asymptote far downstream. A more detailed description

of the HTC and different ways to estimate it are given in

Bird et al. (2007).

3 Mathematical modelling

Initially, we will assume fluid properties, such as density,

viscosity, thermal conductivity and heat capacity, depend

on the volume fraction /. Hence, we write down a general

model to account for this. The equations governing the flow

of a compressible nanofluid may be written as

oqnf

ot
þr � ðqnfuÞ ¼ 0; ð6Þ

qnf

ou

ot
þ u � ru

� �

¼ �rp�r � ~sþ qnfg; ð7Þ

oðvnfTÞ
ot

þr � ðvnfuTÞ ¼ r � ðknfrTÞ þ lnfU; ð8Þ

o/
ot
þr � ð/uÞ ¼ r � DBr/þ DT

rT

T

� �

; ð9Þ

where u is the velocity vector, T the temperature, / the

volume fraction of nanoparticles and g gravity. Subscripts

bf, nf and np refer to the base fluid, nanofluid and

nanoparticle, respectively. The density, volumetric heat

capacity and viscous dissipation are defined as

qnf ¼ /qnp þ ð1� /Þqbf ; ð10Þ

vnf ¼ ðqcÞnf ¼ /qnpcnp þ ð1� /Þqbfcbf ð11Þ

U ¼ oui

oxj

oui

oxj

þ ouj

oxi

� �

: ð12Þ

The derivation of Eqs. (6–8) follows along the lines

described in Bird et al. (2007), Ch. 3. Although it should be

noted that in the derivation of Bird et al. (2007), the spe-

cific heat capacity is assumed constant. In that case, com-

bining the energy and continuity equations permits v to be

moved outside the derivative terms on the left-hand side of

(8). However, since the specific heat of a nanofluid is a

function of / for the moment we leave the equations in a

slightly more general form.

Brownian diffusion is represented by the term involving

DB in Eq. (9), the term DT describes thermophoresis. The

velocity induced by a temperature gradient is typically

written as

v ¼ �blbfrT=ðqbfTÞ; ð13Þ

where b ¼ 0:26 � kbf=ð2kbf þ knpÞ is a proportionality

factor between that of the slip velocity due to

thermophoresis and the temperature factor rT/T, see

(Astumian 2007; Brenner and Bielenberg 2005; Duhr and

Braun 2006; McNab and Meisen 1973; Savino and Paterna

2008). The thermophoretic mass flux is then jT = qnp/

v. This is often written as jT ¼ �qnp
~DTrT where ~DT ¼

blbf/=ðqbfTÞ is termed the thermal diffusion coefficient.

However, this ‘diffusion coefficient’ has dimensions

m2 (s K)-1. Consequently in Eq. (9), we follow the

convention of Buongiorno (2006) in defining a

dimensionally correct diffusion coefficient, DT = blbf//

qbf, which then requires an additional factor 1/T in the final

term of Eq. (9). Vigolo et al. (2010) also point out this

discrepancy in definition and term ~DT as used by many

previous authors as a thermophoretic mobility rather than a

diffusion coefficient. The two diffusion coefficients, DB

and DT, involve the variable temperature and volume

fraction, respectively,

DB ¼
kBT

3plbfdp

; DT ¼
blbf/
qbf

; ð14Þ
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where kB is the Boltzmann constant and dp the particle

diameter. Previous studies have evaluated DB and DT using

some reference temperature and volume fraction, whilst

allowing T and / to vary everywhere else in the equations,

see for example (Buongiorno 2006; Savino and Paterna

2008). To clarify the dependence on temperature and vol-

ume fraction in all subsequent equations. we will use

constants that do not involve T, /, i.e. CB ¼ DB

T
;CT ¼ DT

/ .

Note, we write C’s instead of D’s to clarify that these are

not the standard diffusion coefficients (and indeed CB no

longer has the correct dimensions for this).

The components of the stress tensor are given in various

coordinate systems in [(Bird et al. 2007), Ch. 3]. In

Cartesian coordinates,

~sxx ¼ lnf �2
ou

ox
þ 2

3
r � u

� �

; ~sxy ¼ ~syx ¼ �lnf

ou

oy
þ ov

ox

� �

;

~sxz ¼ ~szx ¼ �lnf

ou

oz
þ ow

ox

� �

; ð15Þ

and the components ~syy; ~szz follow the pattern of ~sxx. The

viscosity, lnf, may vary considerably with the particle

volume fraction. The Brinkman relation for the viscosity

significantly under predicts the true value for /[ 0.01.

Khanafer and Vafai (2011) present a complex polynomial

representation for lnf = lnf(/, T) and show good

agreement with data. The experiments of Prasher et al.

(2006) indicate only a weak dependence of viscosity on

T and particle diameter. Corcione (2011) shows a weak

dependence on T but presents evidence for the diameter

dependence. In the absence of agreement, we will begin

with a simple representation, where lnf = lnf(/), given by

Maiga et al. (2004) who fitted the experimental data of a

water-based nanofluid by Wang et al. (1999) with the

following relation

lnf ¼ ð1þ 7:3/þ 123/2Þlbf ; ð16Þ

and for ethylene glycol-based fluids,

lnf ¼ ð1� 0:19/þ 306/2Þlbf : ð17Þ

The thermal conductivity of a nanofluid is a thorny

issue, with much discrepancy and debate concerning the

often remarkable experimental results. The basic theoreti-

cal model, the Maxwell model, provides a simple relation

for knf in terms of / and kbf. For / � 1, this relation may

be linearised to show

knf ¼ kbfð1þ Ck/Þ; ð18Þ

where Ck & 3. This is well known to significantly

underpredict the thermal conductivity. The Maxwell

model is based on a steady-state analysis: a recent theory

involves determining the conductivity via a time-dependent

analysis which leads to Ck & 5 and provides significantly

improved agreement with published data (Myers et al.

2013). The new equation that takes into account the

volume fraction and particle properties is given by

knf ¼
kbf

ð1�/1=3Þ2

� ð1�/Þ þ/
qnpcnp

qbfcbf

� �
n� 1

2ðnþ 1Þ
1þ /1=3

2
� 1

nþ 1

" #�1

;

ð19Þ

where n = 2.233 is a constant determined by the boundary

condition (Myers et al. 2013).

To reduce the complexity of the system, we now make

the following assumptions:

1. Viscous dissipation is negligible, U � 0. This will be

the case for most standard nanofluid flows and is clear

from the numerical solutions provided in the paper by

Koo and Kleinstreuer (2005) for flow with U &
2 m s-1 in a channel of around 50 lm. Their results

for water and CuO nanoparticles showed a negligible

difference with and without viscous dissipation, whilst

excluding the dissipation in ethylene glycol led to a

very slight difference.

2. Gravity is negligible (this is simply so we may focus

on the heat transfer, rather than the driving force).

3. The system is in a steady state, so we are considering

the fully developed region.

Under these assumptions, the flow is now governed by

r � ðqnfuÞ ¼ 0 ð20Þ
qnfu � ru ¼ �rpþr � ~sð Þ ð21Þ
r � ðvnfuTÞ ¼ r � ðknfrTÞ ð22Þ

r � ð/uÞ ¼ r � CBTr/þ CT/
rT

T

� �

: ð23Þ

In the following section, we will analyse this system subject

to a uniform flux condition along a flat boundary, y = 0,

knfTy ¼ �Q: ð24Þ

The flow is subject to no-slip conditions at y = 0

u ¼ v ¼ 0; ð25Þ

whilst the inlet values, at x = 0, are defined as

/ ¼ /in T ¼ T1 u ¼ ðU; 0Þ: ð26Þ

The above system is almost identical to that of Buongiorno

(2006). To obtain that system requires assuming incom-

pressible flow (so reducing Eq. (20) to r � u ¼ 0), setting

CB = DB/T, CT = DT// in (23) gives the steady, incom-

pressible version of Buongiorno (2006), Eq. 17, the energy

equation Buongiorno (2006), Eq. 23 differs from our

Eq. (22) since it includes thermophoresis and Brownian
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motion. However, the scaling later shows this to be negli-

gible (in the paper by Buongiorno (2006), the Lewis num-

ber, of order 105, divides both terms) and in fact both terms

are neglected in all subsequent analysis. Savino and Paterna

(2008) work in terms of mass fraction rather than /. Their

system is also similar to ours, but they retain the time

dependence and include gravity in the momentum equation

to permit buoyancy effects.

In the following section, we carry out the standard

boundary layer analysis on Eqs. (20–23) to determine the

fluids ability to remove heat. This requires us to augment the

boundary conditions (24–26) with the far-field conditions

u ¼ U v ¼ 0 T ¼ T1 as y!1: ð27Þ

4 Steady-state boundary layer analysis

The standard boundary layer scaling (Acheson 1990) has

x̂ ¼ x

L
ŷ ¼ y

L

ffiffiffiffiffiffi

Re
p

T̂ ¼ T � T1
A

ð28Þ

û ¼ u

U
v̂ ¼ v

U

ffiffiffiffiffiffi

Re
p

p̂ ¼ p� p1
qbfU

2
; ð29Þ

where U is the flow velocity in the far field (equal to the

inlet velocity), Re = qbfUL/lbf is the Reynolds number,

and A is an as yet undetermined temperature scale. An

important point to note here is that we take U as a fixed

velocity scale, that is, it does not vary with /. Using sca-

lings independent of particle load allows us to directly

compare results in subsequent sections but, since an

increase in / will lead to an increased viscosity, this means

that fixed U requires an increase in pressure gradient. In the

following section, we will show that the heat transfer

decreases with increasing /, however since U is fixed our

result actually shows the HTC in a better light than it

deserves. In fact, not only does the HTC decrease with

increasing / with our model, but it also costs more energy

to move the fluid.

The variable physical parameters are scaled with the

base fluid value

l̂nf ¼
lnf

lbf

q̂nf ¼
qnf

qbf

k̂nf ¼
knf

kbf

/̂ ¼ /
/in

v̂nf ¼
vnf

vbf

:

ð30Þ

At present, this scaling will lead to a form of boundary

layer system. To simplify the problem, we first examine the

effect of the scaling on the / equation, Eq. (23). Dropping

the hat notation, this becomes

r � ð/uÞ ¼ c
o

oy
T þ T1

A

� �
o/
oy
þ k

/
T þ T1=A

oT

oy

� �

ð31Þ

where c = CBAqbf/lbf, k = CT /(CBA). The temperature

scale is chosen based on the input of heat to the system, so

we non-dimensionalise the boundary condition in Eq. (24),
kbf A

ffiffiffiffi
Re
p

L
Ty ¼ �Q, and choose A ¼ QL=ðkbf

ffiffiffiffiffiffi

Re
p
Þ. In

Table 1, we present the device and material properties

for ethylene glycol- (EG) and water-based nanofluids with

Al2O3 particles, from which the values for the coefficients

in the non-dimensional equations are calculated: these are

presented in Table 2. For EG c ¼ Oð10�5Þ and water

c ¼ Oð10�4Þ � 1 and so the right-hand side of (31) is

negligible. Consequently, we may write

r � ð/uÞ ¼ /r � ðuÞ þ u � r/ � 0: ð32Þ

The steady-state continuity equation, Eq. (20), with the

definition of qnf given by Eq. (10), expands to

/qnp þ ð1�/Þqbf

� 	

r � uþ ðqnp � qbfÞu � r/¼ 0: ð33Þ

From Eq. (32), we may substitute u � r/¼�/r � u which

then allows all / terms to be cancelled and leads to

r � u¼ 0, that is, the fluid is incompressible. We may then

write

Table 1 Device and material properties of water- and ethylene glycol

(EG)-based nanofluids with Al2O3 nanoparticles

Quantity Symbol Units Value

Particle diameter dp m 20 9 10-9

Far-field temperature T1 K 300

Plate flux Q Wm-2 107

Length of plate L m 10-2

Far-field velocity U ms-1 10-1

Thermal conductivity

(Al2O3, EG, H2O)

knp, kbf Wm-1K-1 30, 0.258, 0.609

Density (Al2O3, EG, H2O) qnp, qbf kgm-3 3950, 1108.8,

103

Specific heat capacity

(Al2O3, EG, H2O)

cnp, cbf J kg-1K-1 800, 2360, 4187

Viscosity (EG, H2O) lbf Nsm-2 1.61 9 10-2 ,

10-3

Boltzmann’s constant kB JK-1 1.38 9 10-23

Data taken from Buongiorno (2006) and Wikipedia

Table 2 Values of coefficients in non-dimensional equations based

on properties given in Table 1

Quantity Ethylene glycol Water

CB 4.3825 9 10-15 7.0559 9 10-14

CT 3.1918 9 10-8 5.0721 9 10-9

b 0.0022 0.0051

Re 68.8696 103

Pr 147.2713 6.8752

A 4.6705 9 104 5.1926 9 103

c 1.2714 9 10-8 3.6638 9 10-7

k 155.9362 13.8437
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u � r/ ¼ 0: ð34Þ

The physical significance of this equation is that / is

constant along the streamlines. From the inlet condition,

we know the non-dimensional volume fraction / = 1 and

so on all streamlines / = 1 (hence, / = 1 everywhere).

Since c ¼ Oð10�4Þ for water, the approximation / = 1 is

accurate to Oð10�2Þ% and for ethylene glycol, it is even

more accurate. Put another way, since the diffusion effects

due to Brownian motion and thermophoresis are so small,

the particles simply move with the fluid and, in particular,

are not affected by the heat input at the boundary. Although

the value of c may vary with the nanofluid or heat flux, its

miniscule value indicates particle diffusion through

Brownian motion or thermophoresis is unlikely to ever play

an important role in the boundary layer flow of a nanofluid.

This concurs with the findings of Evans et al. (2006), who

used molecular dynamics to demonstrate that Brownian

motion only has a minor effect on the enhancement of

thermal conductivity of nanofluids.

The conclusion that / = 1 has significant implications

for the mathematical model, for example, it shows that

physical quantities such as qnf, lnf and knf are also con-

stant and determined via the non-dimensional versions of

(10), (19) and (16, 17). With constant physical quantities,

we may apply standard boundary layer theory to the u and

T equations.

With the above scaling, the governing steady-state

equations become

ou

ox
þ ov

oy
¼ 0 ð35Þ

qi u
ou

ox
þ v

ou

oy

� �

¼ � op

ox
þ li

o2u

oy2
þOð1=ReÞ ð36Þ

0 ¼ op

oy
þOð1=ReÞ ð37Þ

u
oT

ox
þ v

oT

oy
¼ ki

vi

1

Pr

o2T

oy2
þOð1=ReÞ; ð38Þ

where the subscript i denotes the inlet value of each

quantity for the nanofluid and the Prandtl number

Pr = lbfvbf/(qbfkbf). Equation (37) indicates p = p(x). In

keeping with standard boundary layer theory, we note that

approaching the far field, y!1, then u! 1; v! 0 and

so Eq. (36) determines px = 0. Hence, the problem is now

described by (35) and

u
ou

ox
þ v

ou

oy
¼ mi

o2u

oy2
ð39Þ

u
oT

ox
þ v

oT

oy
¼ ki

vi

1

Pr

o2T

oy2
; ð40Þ

where mi = li/qi. These equations and the subsequent

boundary conditions could be further simplified by

choosing the inlet values of the physical parameters in the

scaling, but this would mean that the length and height

scales would vary for each inlet volume fraction. Using the

base fluid values means that our subsequent results may be

compared on the same graph, with the same scales.

The imposed non-dimensional boundary conditions are

u ¼ v ¼ 0; kiTy ¼ �1 at y ¼ 0; ð41Þ

u ¼ 1; v ¼ 0; T ¼ 0 as y!1: ð42Þ

4.1 Flow over a flat plate

The well-known Blasius solution for boundary layer flow

over a flat plate (see Acheson 1990 for example) involves

first introducing a stream function w where

u ¼ ow
oy

v ¼ � ow
ox
: ð43Þ

This automatically satisfies the continuity equation, (35).

The similarity variable g ¼ y=
ffiffiffiffiffiffiffiffi
2mix
p

is then introduced. To

satisfy the momentum equation, (39), requires w ¼
ffiffiffiffiffiffiffiffi
2mix
p

f ðgÞ where f is an unknown function determined

from

f 000 þ ff 00 ¼ 0; ð44Þ

where primes denote differentiation with respect to g. This

is simply the transformed version of Eq. (39). The

boundary conditions u = v = 0 at y = 0 and u! 1 as y!
1 become

f ð0Þ ¼ f 0ð0Þ ¼ 0 f 0ð1Þ ¼ 1: ð45Þ

In fact, this boundary value problem may be simplified

using Töpfer’s transformation f(g) = rF(rg), where r [ 0

is a constant. The Blasius equation remains the same

F000 þ FF00 ¼ 0; ð46Þ

but it may be solved subject to the conditions

Fð0Þ ¼ 0 F0ð0Þ ¼ 0 F00ð0Þ ¼ 1; ð47Þ

that is, we solve an initial value problem (which is much

easier to deal with than a boundary value problem). The

solutions of the two systems will coincide provided

f 0ð1Þ ¼ r2F0ð1Þ ¼ 1 ð48Þ

which then requires r ¼ ðF0ð1ÞÞ�1=2
. The numerical

solution of (46, 47) determines r & 0.7773.

The same transformation could be used to reduce the

heat equation, but the flux condition at y = 0 does not

permit a similarity form. Consequently, at this stage, we

must look for an approximate solution form.
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4.2 Solution by heat balance integral method (HBIM)

A standard approximate method to analyse boundary layer

flow was developed by von Karman and Pohlhausen. From

this stemmed the heat balance integral method (HBIM),

which is primarily used on thermal problems. Obviously,

we are interested in the boundary layer flow, but there has

been much more research on the HBIM, so we will use

techniques developed for this method to analyse the current

problem. Specifically, we will employ a technique descri-

bed in (Myers 2010b) to approximate the momentum and

thermal boundary layer flow of a power law fluid.

If we consider the flow equation, Eq. (39), then the

HBIM involves choosing a simple function to approximate

the velocity over a finite boundary layer d(x). For y [ d,

the deviation of velocity from that of the bulk flow is

negligible (although we do not yet define what constitutes

negligible). In this case, the velocity boundary layer would

be defined by the boundary conditions u(x, d) = 1 and uy(x,

d) = 0. If the approximating function is a polynomial of

the form

u ¼ a0 þ a1 1� y

d


 �

þ ap 1� y

d


 �p

; ð49Þ

then the conditions u(x, d) = 1 and uy(x, d) = 0 determine

a0 = 1, a1 = 0. The no-slip condition at y = 0 determines

ap = - 1 and so

u ¼ 1� 1� y

d


 �p

: ð50Þ

The expression for u involves two unknowns, d(x) and

p. The velocity boundary layer thickness is determined by

integrating Eq. (39) over the region y 2 ½0; d�

Zd

0

uux þ vuy dy ¼ mi

Zd

0

uyy dy: ð51Þ

Noting from the continuity equation (35) ux = - vy, we

may write the above integral momentum equation

d

dx

Zd

0

uð1� uÞdy ¼ mi

ou

oy

�
�
�
�
y¼0

; ð52Þ

see (Chhabra and Richardson 2008; Myers 2010b) for more

details. Substituting for u from Eq. (50) leads to a single

ordinary differential equation for d with solution

d ¼ a
ffiffiffi
x
p

ð53Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2miðpþ 1Þð1þ 2pÞ
p

and d(0) = 0. The

standard HBIM and the von Karman–Pohlhausen

technique take p = 2; however, a more accurate method,

developed by Myers (2009, 2010a) is to choose p to

minimise the least squares error when the approximating

function is substituted back into the momentum equation.

In this case, the error function is defined as

Ep ¼
Zd

0

oG

ox
� mi

o2u

oy2

� �2

dy ð54Þ

where G = u(u - 1). Note that mi is a function of the inlet

values and so depends on the inlet volume fraction. Con-

sequently, the optimal p value could also vary with the

volume fraction; however, our calculations with /in varying

between 1 and 10 % show p = 2.7237 with less than a 10-2

% variation. To demonstrate the result of this method in

Fig. 1 we compare velocity profiles of (50) with p = 2.7237

and that of the Blasius solution at x = 0.1 with /in = 5 %.

Near the surface, y = 0, the agreement is excellent. For

y [ 1, there is some divergence, but the solutions both end

close to y = 2.5 (indicating the d calculation is accurate).

However, for practical purposes, the important point is that

the approximation works well near the boundary, so

allowing an accurate calculation of the drag coefficient. The

decay to the far-field velocity is of less practical impor-

tance. In (Myers 2010b) the similarity solution for a New-

tonian fluid with a fixed temperature boundary condition

was also calculated and compared with the HBIM solution.

Again the approximation was excellent near the boundary

(in fact better than the velocity boundary layer). In this case,

it allowed the HTC to be accurately calculated.

For the energy equation, we define dT as the thickness of

the thermal boundary layer, then the conditions

T(x, dT) = 0, Ty(x, dT) = 0, kiTy(x, 0) = -1 determine

the temperature profile

T ¼ dT

kiq
1� y

dT

� �q

: ð55Þ

The heat balance integral is determined by integrating the

energy Eq. (40) over y 2 ½0; dT�

d

dx

ZdT

0

uT dy ¼ �mi

oT

oy

�
�
�
�
y¼0

¼ mi

ki

ð56Þ

where mi = ki/(viPr), see (Myers 2010b) for details.

Substituting for u, T from (50, 55) requires numerical

integration since p is a non-integer; however, an analytical

solution is preferred so, following Chhabra and Richardson

(2008), Myers (2010a, b), we assume that the thermal

boundary layer is much smaller than the velocity boundary

layer

dT ¼ �d ð57Þ

where �� 1 (this is confirmed a priori) is to be

determined. On applying this to (50) and noting that

within the HBI y � dT, we can make the approximation
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u � 1� 1� py

d


 �

¼ py

d
: ð58Þ

Now, the HBI (56) may be integrated analytically giving

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

miqðqþ 2Þðqþ 1Þ
pa2

3

s

: ð59Þ

The exponent q is found by minimising the error

Eq ¼
ZdT

0

oF

ox
� mi

o2T

oy2

� �2

dy ð60Þ

where F = uT. According to Eq. (60) the value of q may

vary with mi, which depends on ki, vi and Pr, so it may be a

function of material properties and volume fraction. For

water, with /in 2 ½1; 10�% we find q = 1.9975 (with less

than 0.01 % variation), and for EG, q = 2.014 (with less

than 0.4 % variation). We then find that for /in 2 ½1; 10�%
the value of the small parameter varies � 2 ½0:2971; 0:2635�.

With no analytical solution to verify the thermal

approximation, we developed a finite difference code to

solve Eqs. (35, 39, 40) subject to boundary conditions (41,

42) and inlet conditions u = 1, v = 0 and T = 0. The

semi-infinite y range was cut off at large y where conditions

(42) applied. For example at x = 0.1, it was sufficient to

calculate results to y = 5. Standard finite difference

approximations were made for the derivatives in y, and the

solution was marched in x with implicit stepping. The

results showed reasonable agreement with the temperature

profiles predicted by Eq. (55) with the worst disagreement

occurring at y = 0. With x = 0.1, the HBIM and numerical

solutions differed by approximately 10 %. We will discuss

this difference later with regard to Fig. 4.

In Fig. 2, we plot velocity and thermal boundary layers

for three different volume fractions, /in = 1, 5, 10 %

which are represented by dotted, dashed and solid lines,

respectively. First, we note that dT � d in all cases,

confirming the assumption made earlier. A more impor-

tant point is that the thermal boundary layer thickness

increases with volume fraction suggesting that the nano-

fluid could indeed extract more heat with higher nano-

particle concentrations. In Fig. 3, we show the velocity

profile u(y) at x = 0.05 for the same three volume frac-

tions. Here, we note that velocity decreases with

increasing volume fraction, indicating that the mass

transport is slower, which may then have an adverse

effect on heat transport.

Figures 2 and 3 show the trade-off between increasing

the heat flow (through increasing k) whilst decreasing the

fluid flow (through increasing l) by adding nanoparticles.

To determine which effect is dominant, we now return to

the HTC calculation. Defining a non-dimensional HTC ĥ ¼
Lh=ðkbf

ffiffiffiffiffiffi

Re
p
Þ and dropping the hat notation, Eq. (5) may be

written

hnf ¼
R dT

0
u dy

R dT

0
uT dy

: ð61Þ

In Fig. 4, the HTC (61) is plotted against the device length

for three values of the volume fraction, /in = 1, 5, 10 %,

and the base fluid. What is clear from this graph is that the

HTC decreases with increasing volume fraction. Further-

more, as discussed earlier the velocity scale U is fixed in all

cases, and so an increase in /in (which increases viscosity)

requires an increase in Dp. So with higher particle loadings,

the system requires more energy to move the fluid and this

further decreases the system’s efficiency. That is, accord-

ing to the present mathematical model and for the cases we

have studied for fluid and heat flow of a nanofluid, there is

no augmentation in the HTC; in fact, it appears that the

opposite occurs, despite the numerous claims based on the

same theory. However, our theoretical result does concur

with Ding et al. (2007) who state that nanofluids with an

enhanced thermal conductivity do not guarantee an
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Fig. 1 Comparison of the exact

Blasius and approximate HBIM

solutions for the velocity profile

at x = 0.1 with /in = 5 %
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enhancement in the convective heat transfer. Li and Pet-

erson (2010) present experimental results showing a

decrease in HTC during natural convection of Al2O3–water

nanofluids: a similar deterioration for Al2O3–water, CuO–

water and TiO2–water nanofluids is shown by Putra et al.

(2003).

Earlier, we discussed the error in using the HBIM

approximation to the temperature. At x = 0.1, we found an

error of approximately 10 % between the approximate and

numerical solutions. From Fig. 4, we see that there is an

approximately 30 % decrease in HTC, which cannot be

explained away by a 10 % error in temperature. In the
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Fig. 2 Delta profiles are

compared for different volume

fractions /in = 1, 5, 10 %

which are represented by dotted,

dashed and solid lines,

respectively, for an Al2O3-water

nanofluid
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Fig. 3 Velocity profiles
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different volume fractions
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represented by dotted, dashed
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an Al2O3–water nanofluid
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following section, we will discuss why so many researchers

have found the opposite result to ours using a similar initial

set of equations.

5 Apparent improvement in HTC?

Buongiorno (2006) wrote the seminal paper describing the

mathematical model for nanofluid heat transfer including

thermophoresis and Brownian motion. Savino and Patter-

son (2008) developed a similar model accounting for

gravity effects. Numerous theoretical studies have been

based on the form of model developed in these two papers

and, in contrast to the present conclusion, the authors

generally conclude that the HTC increases with volume

fraction. This raises the obvious question of why do our

results differ from this previous body of work? There exist

too many studies to go through each one individually, so

now we will focus on a few highly cited ones.

Buongiorno’s model is a special case of that described in

the present paper. In §5 of his paper, he investigates the

HTC in a ‘laminar sublayer’ where the flow is described by

o

oy
lnf

ov

oy

� �

¼ 0
o

oy
knf

oT

oy

� �

¼ 0

o

oy
DB

o/
oy
þ DT

T

oT

oy

� �

¼ 0:

ð62Þ

This region is matched to a turbulent sublayer. Equation

(62) is formally derived from Eqs. (21–23) by rescaling

height to focus on a region close to the wall. To reproduce

this, we alter the scaling given by Eqs. (28, 29) to

y ¼ H�y; v ¼ HU�v=L, where H is an as yet unspecified

height scale (previously we chose H ¼ L=
ffiffiffiffiffiffi

Re
p

). Scaling

Eq. (23) leads to

r � ð/uÞ ¼ CBAL

H2U

o

oy
T þ T1

A

� �
o/
oy
þ k/

T þ T1=A

oT

oy

� �

:

ð63Þ

In the analysis of the previous sections, we neglected the

right-hand side of this equation since the leading

coefficient was small. To retrieve the third equation in

(62), we require this same coefficient to be large, which

indicates

H2 � CBAL

U
) H � CBQL

kbfU
; ð64Þ

after applying the definition A = QH/kbf. To get some idea

of the thickness H of this sublayer consider water flowing

at a velocity 10 cm s-1 over a section with L = 1 cm and

CB = 7 9 10-14, as shown in Tables 1 and 2. This results

in H� 100 nm. It is well known from experiments that the

actual laminar sublayer has a thickness d & 11.6 l/(qU):

taking the base fluid values for the viscosity and density

from Table 1 gives d & 0.1 mm. This indicates that for

water, the system of Eq. (62) is valid in a region three

orders of magnitude smaller than the actual laminar sub-

layer thickness, and so cannot be matched to the outer

turbulent region. In fact this conclusion is independent of

the velocity scale since for water, using the parameter

values given in Tables 1 and 2, H/d = CBQLqbf/

(11.6kbflbf) & 10-3. For ethylene glycol, the ratio is even

smaller H/d = 10-5 and the equations hold in a region five

orders of magnitude smaller than the width of the laminar

sublayer.

Our analysis in the previous section used boundary layer

theory. This is a standard technique to determine flow and

heat transfer at a boundary. The key to boundary layer

theory is finding an appropriate similarity variable which

transforms the governing partial differential equations to

ordinary differential form. Kuznetsov and Nield (2010) add

buoyancy to Buongiorno’s system and seek similarity

solutions involving the variable g� y/x1/4. Their governing

equation for / then reduces to an ordinary differential

equation,

g00 þ 3

4
Lewg0 þ Nt

Nb

h00 ¼ 0 ð65Þ

where g and h are the functions representing the non-

dimensional /, T, and w is the stream function. The

strength of Brownian motion and thermophoresis are rep-

resented by the coefficients Nb, Nt respectively and

Le = anf/DB is the Lewis number. Values for these coef-

ficients are calculated by Buongiorno (2006) (with Nb/Nt

denoted NBT). The values quoted for water containing

10 nm alumina nanoparticles are Le = 8 9 105,

NBT = 0.2; for 10 nm copper nanoparticles, Le = 7 9 105,

NBT = 2. The extremely high value of Le indicates that the

non-dimensional Eq. (65) is incorrectly scaled. Dividing

through by Le leads to g0 & 0 and consequently / is

constant (as determined in our analysis). However, the

results presented by Kuznetsov and Nield (2010) show a

significant variation in g, which then affects the velocity

and temperature profiles (since g appears in all three gov-

erning equations) and consequently affects the heat trans-

fer. The reason for this difference between our conclusion

of constant / and theirs is that they choose Le = 10, rather

than the correct physical value. The larger value would

make the boundary layer thickness negligible. However,

the negligible terms in (65) could be retained by intro-

ducing a new height scale (of the order 1/Le smaller than

the boundary layer height scale), but again this could not be

matched to an outer turbulent region, and so their boundary

conditions of constant T, / in the far field do not hold.

Khan and Pop (2010) use a slightly different scaling to

Kuznetsov and Nield (2010) for the similarity variable to
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obtain an equation almost identical to (65). Their Lewis

number is defined as Le = m/DB, where m is the kinematic

viscosity. For water m & 10-6 and so Le ¼ Oð5� 104Þ.
They also employ the value Le = 10.

Savino and Paterna (2008) study a system almost iden-

tical to our initial system (6–9). The focus of their study is

convective motion of a nanofluid contained between two

differentially heated plates held 1 mm apart and they do

determine a difference in motion due to the effects of

thermophoresis and Brownian motion. However, their

timescale is of the order 105s or 27 h for motion in a 1 mm

gap, and the results are most noticeable in conditions where

gravity is 10-6 of the standard value.

6 Conclusion

In this paper, we have developed a model for nanofluid

flow including the effects of thermophoresis and Brownian

motion, with the aim of determining whether nanofluids

improve heat removal. The heat transfer coefficient was

examined within standard boundary layer theory. The

boundary layer formulation showed quite clearly that close

to the substrate, thermophoresis and Brownian motion

effects are negligible compared to advection. Conse-

quently, the particle volume fraction remains constant

along the streamlines and so the fluid properties, such as

density, viscosity and specific heat, are also constant.

The most significant result of this analysis is the clear

decrease in the heat transfer coefficient as the particle

concentration increases. From the governing equations,

this is not an obvious conclusion, since the addition of

nanoparticles changes the thermal properties and viscosity

of the fluid. Nanoparticles increase the viscosity, density

and conductivity; however, they may decrease the product

qc (with water a 10 % increase in Al2O3 nanoparticles

decreases qc by around 2.5 %). Hence, there is a trade-off

between the enhanced properties, the increased viscosity

and possible decrease in qc. In fact, our negative result

was somewhat flattering with regards to the HTC since we

used a fixed far-field velocity. This means that as the

particle concentration increases, and so the viscosity also

increases, the pressure drop or pumping power must also

be increased. So, not only did the HTC decrease with

particle concentration but it cost more energy to pump the

fluid.

Our result contradicts many analyses based on similar

governing equations; however, it is backed up by recent

experimental evidence, see (Buongiorno et al. 2009; Ding

et al. 2007; Li and Peterson 2010; Putra et al. 2003) for

example. Our model also required a number of assumptions

and simplifications, but these could all be quantified and

are not of sufficient magnitude to alter our conclusion

regarding the heat transfer. Possible reasons for this dis-

crepancy between our conclusion and that of previous

papers include

• the rather loose definition of heat transfer coefficient

prevalent in the literature

• a number of unjustified assumptions and approxima-

tions to reduce the governing equations to a simpler

form

• incorrect parameter values, which then enhance the

thermophoresis and Brownian motion effects.

This paper does not prove that nanofluids cannot

improve heat removal. It may be that the enhancement

observed in some experiments is due to a physical effect

not included in our model. Further, we have only presented

results for water- or ethylene glycol-based fluids with

Al2O3 particles (although results with CuO particles were

found to be similar) in a single-flow configuration. It is

possible that some other fluid–solid combinations may

have a beneficial effect on heat transfer. However, given

the clear deterioration in HTC shown by our calculations,

there would need to be a marked change in the fluid

properties (such as a much larger increase in thermal

conductivity coupled with a much lower viscosity increase)

for the current form of model to suggest that nanofluids can

improve heat removal significantly.
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