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Abstract We use computational modeling to probe the

utility of actuated synthetic cilia lining walls of a micro-

fluidic channel for enhancing the deposition of nanoparti-

cles dispersed in a viscous fluid filling the channel. We

demonstrate that elastic cilia actuated by a sinusoidal force

applied to their free ends generate circulatory secondary

flows facilitating nanoparticle transport. We identify opti-

mal operational conditions in which the effect of cilia

beating on particle deposition is maximized. Our simula-

tions also reveal that cilia transition to a three-dimensional

beating pattern when the actuation force exceeds a critical

value. This transition is associated with buckling instability

experienced by elastic cilia. Our findings guide the optimal

design of ciliated microfluidic systems for uses such as

deposition of particulates onto sensory surfaces and

microfluidic mixing.

Keywords Synthetic cilia � Microfluidics �
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1 Introduction

A variety of biological organisms utilize beating cilia to

create flows in the surrounding fluid which help them to

transport, capture, and absorb nutrients, as well as to expel

foreign objects (Riisgard and Larsen 2001; Sleigh 1989).

Cilia are tiny elastic filaments that are a few micrometers in

length. Due to their small size, cilia operate at a low-Rey-

nolds-number environment, in which the fluid motion is

dominated by the fluid viscosity, whereas the inertial effects

can be safely neglected. In this situation, a net fluid flow

arises only when cilia perform a non-reciprocal, time-irre-

versible beating (Purcell 1977). Cilium elasticity combined

with an asymmetric stroke (Satir and Christensen 2007;

Wiggins et al. 1998; Brennen and Winet 1977) plays a

critical role in generating required motion leading to effi-

cient mass transport in a highly viscous fluidic environment.

The ability of biological cilia to regulate microscale

transport processes has motivated researchers to design

different types of biomimetic synthetic cilia (Pokroy et al.

2009; Wang et al. 2009; Tripathi et al. 2013; Vilfan et al.

2010; Timonen et al. 2010; Dayal et al. 2012; Malvadkar

et al. 2010; Masoud and Alexeev 2011b). Such actuated

and passive artificial cilia could be useful to enhance

microscale transport processes in microfluidic devices (Den

Toonder and Onck 2013b; Masoud and Alexeev 2011a;

Semmler and Alexeev 2011; Shields et al. 2010).

Researchers have designed and built synthetic elastic fila-

ments that are actuated by various external stimuli. Evans

et al. (2007) created high-aspect-ratio cantilevered syn-

thetic cilia made of a PDMS–ferrofluid composite material

and showed that they could be actuated using an external

magnetic field. Oh et al. (2009) fabricated PDMS cilia and

used a piezo-actuator to cause them to resonate in water.

They demonstrated rapid fluid mixing performed by their

synthetic cilia (Oh et al. 2010). Babataheri et al. (2011)

coated a microtube with a carpet of flexible artificial cilia

fabricated from superparamagnetic colloidal particles

linked together with polyacrylic acid and generated a small

net fluid flow in the tube by actuating the cilia with a time-

varying magnetic field. Khaderi et al. (2011) actuated

magnetic artificial cilia with a rotating permanent magnetic

field so as to create metachronal-type waves and pump

fluid through a microchannel. Keißner and Brücker (2012)
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used PDMS cilia embedded into a thin membrane, and

actuated by a ball-chain moved underneath the membrane,

to induce fluid pumping in a microfluidic channel. Thus, it

has been demonstrated that synthetic cilia can be fabricated

and actuated and can indeed manipulate fluid in microflu-

idic systems.

Herein, we examine the ability of oscillating synthetic

cilia to enhance the deposition of nanoparticles onto cili-

ated walls. To this end, we employ three-dimensional

numerical simulations to investigate the deposition of

nanoparticles dispersed in the viscous fluid in a micro-

channel with walls decorated by periodic arrays of oscil-

lating synthetic cilia. We probe how system parameters

including particle diffusivity, cilia oscillation frequency,

actuation force amplitude, and cilia coverage density affect

nanoparticle deposition at a low Reynolds number. We

investigate the parameter space by systematically varying

the parameters under investigation and determine the

conditions at which the oscillating cilia are most effective

in enhancing the deposition of nanoparticles.

2 Methodology

The system that we simulate consists of a microchannel

filled with a viscous fluid. The top and bottom walls of the

microchannel are decorated with arrays of elastic cilia

(Fig. 1a), each with an aspect ratio of 10. The cilia are

driven by a sinusoidal horizontal force applied at the cilia

tips, causing them to periodically oscillate from their ver-

tical equilibrium position.

In our study, we take the simulation domain to be the

volume encompassing a single cilium (Fig. 1b) and apply

periodic boundary conditions in the x- and z- (horizon-

tal) directions, allowing for simulation of a microchannel

with cilia arrays periodic in the horizontal directions. A

symmetry boundary condition is applied at the top of the

computational domain, representing a vertically symmetric

microchannel with cilia on its top and bottom walls. To

examine the effect of oscillating cilia on nanoparticle

deposition, we introduce diffusive inertialess point parti-

cles that are initially uniformly distributed in the fluid. We

track the evolution of the tracer particles and probe their

deposition on the channel walls for cilia actuated with

different frequencies and amplitudes.

In order to simulate our ciliated microchannel, we utilize a

hybrid LBM/LSM method (Alexeev et al. 2005; Mills et al.

2013) that combines the lattice Boltzmann model (LBM)

with a lattice spring model (LSM) to model the dynamic

interactions between the viscous fluid and the elastic cilia.

Additionally, this fluid–structure interaction model is coupled

with a Brownian dynamics (BD) model to simulate nano-

particles within the system (Verberg et al. 2006).

The fluid dynamics is modeled using LBM, which is an

efficient solver of incompressible viscous flows (Succi

2001; Ladd and Verberg 2001). LBM is particularly useful

for flows in complex geometries, such as in microfluidic

channels with walls covered by oscillating cilia. The LBM

algorithm consists of two steps: a streaming step, in which

fluid ‘‘particles’’ move along a space-fixed lattice to

neighboring lattice nodes, and a collision step, in which the

fluid ‘‘particles’’ collide at the nodes. These fluid ‘‘parti-

cles’’ represent mesoscopic amounts of the fluid and are

described by a distribution function, fiðr; tÞ, which gives

the mass density of fluid propagating in the direction i with

velocity ci at the lattice node r and time t. The hydrody-

namic fields of the system are obtained by taking the

moments of the distribution function, i.e., the mass density

q ¼
P

i fi, the momentum j ¼ qu ¼
P

i cifi, where u is the

local fluid velocity, and the stresses P ¼
P

i cicifi: The

Fig. 1 a Schematic of a fluid-

filled microchannel with

periodic arrays of cilia on the

top and bottom walls. b Periodic

simulation domain, consisting

of a single elastic cilium

actuated by a periodic force

applied horizontally at its tip.

The dotted line shows the

contour of a flow field plotted in

Fig. 5
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time evolution of the distribution function is governed by

the discretized Boltzmann equation (Succi 2001). We use a

D3Q19 lattice, which simulates a three-dimensional system

using 19 particle-distribution functions at each node (Ladd

and Verberg 2001). The height of the computational

domain is set to be equal to 50 LBM units, and the lateral

extent of the domain is varied in order to alter the coverage

density of the cilia.

We simulate the dynamics of the elastic cilia using a

LSM, which models the elastic solids as a system of uni-

formly distributed mass points (nodes) connected by har-

monic springs (Buxton et al. 2001). A cilium is constructed

from 4 9 4 9 32 nodes arranged on a square lattice in

which harmonic springs connect the nearest and next-

nearest nodes (Ghosh et al. 2010; Alexeev et al. 2008).

Two lower rows of nodes are fixed in space in order to

impose a clamped boundary condition at the point of elastic

cilium attachment to the wall. The equilibrium spacing

between LSM nodes is equal to 4/3 LBM units. The cilia

are arranged in a rectangular pattern with spacing dx and dz

in the x and z directions, respectively (Fig. 1). In our

simulations, we set dz ¼ dx=2: We integrate Newton’s

equation of motion using the velocity Verlet algorithm to

update the system dynamics at each time step (Tuckerman

et al. 1992).

In our LBM/LSM simulations, the cilia and fluid interact

through appropriate boundary conditions (Alexeev et al.

2005, 2006). Velocities of lattice spring nodes at the solid–

fluid interface are transmitted to the surrounding fluids

through a modified bounce-back rule (Bouzidi et al. 2001)

that transfers momentum to the LBM distribution functions

crossing the interface. LSM nodes on the boundary expe-

rience forces from the fluid pressure and viscous stresses

calculated using the momentum exchange in the LBM fluid.

We model the movement of the nanoparticles in the

fluid filling the microchannel using a BD method (Verberg

et al. 2006, 2007). Particle trajectories are governed by the

stochastic differential equation:

drðtÞ ¼ uðr; tÞdt þ
ffiffiffiffiffiffiffiffi
2D0

p
dWðtÞ; ð1Þ

where rðtÞ is the particle location. The first term on the

right represents the advection of particles due to the local

fluid velocity uðr; tÞ; and the second term on the right

describes the contribution of Brownian diffusion, where

D0 ¼ kBT=6pla is the diffusion coefficient of the particle

in the fluid and dWðtÞ is the differential of a Wiener

process with unit variance. Here, kB is Boltzmann’s

constant, T is the absolute temperature, l is the dynamic

viscosity, and a is the nanoparticle radius. A discretized

form of Eq. (1) is given by

rðt þ DtÞ ¼ rðtÞ þ u½rðtÞ�Dt þ
ffiffiffiffiffiffiffiffi
2D0

p
DWðtÞ ð2Þ

where DW is a random number sampled from a truncated

Gaussian distribution with unit variance and is obtained

using the Ziggurat method (Marsaglia and Tsang 2000).

The local fluid velocity at the particle position is

determined through linear interpolation of the fluid

velocity at neighboring LBM nodes. In our simulations,

we neglect the influence of nanoparticles on the fluid flow,

as well as any interactions between nanoparticles,

including their agglomeration in the flow. Furthermore,

we neglect the momentum exchange between nanoparticles

and oscillating cilia due to their collisions. These

assumptions are relevant to relatively dilute suspensions

with particle sizes much smaller than those of cilia.

In the simulations reported here, we use 104 particles.

We assume that the cilia surface is perfectly reflective of the

particles. In this case, the particles do not deposit on the

cilia. To impose this condition, we reflect the particles off of

the cilia by reversing the component of the particle velocity

that is normal to the cilia surface. At the boundaries of the

simulation domain, we apply a reflective boundary at the

top of the domain and periodic boundary conditions in the

horizontal directions (Fig. 1). At the bottom of the domain

representing the bottom microchannel wall, any particle

that crosses the boundary is assumed to be deposited,

thereby simulating perfectly adsorptive walls. This

assumption is valid in the situations when the number of

adsorption sites is much larger than the amount of deposited

nanoparticles, and/or nanoparticles can bind to each other

forming continuous deposit layers. We track nanoparticle

deposition and calculate the fraction of particles deposited

on the microchannel walls in the course of the simulations

to assess the effect of beating cilia on this process.

We characterize the system using several dimensionless

parameters. The Schmidt number, Sc ¼ m=D0, gives the

relative importance of momentum diffusion to particle

diffusion in mass transport within the system. Here, m is the

kinematic viscosity of the fluid. The sperm number,

Sp ¼ L fx=Kð Þ0:25
, shows the ratio of viscous to elastic

forces on the oscillating cilia and defines the bending

pattern of the cilia. Here, L is the cilia length, f is the

lateral drag coefficient of the cilia (defined here as

f ¼ 4pqm), x is the driving force oscillation frequency, and

K is the bending rigidity of the cilia. The dimensionless

force, A = FL2/3K, gives the amplitude of the oscillatory

force applied at the cilia tips scaled by cilia bending

elasticity, where F is the amplitude of the oscillatory force

driving the cilia.

We vary Sc, Sp, A, and dx to investigate the effects of

particle diffusivity, cilia oscillation pattern, driving force

amplitude, and cilia coverage density, respectively, on the

ability of beating cilia to enhance deposition of nanopar-

ticles on the walls of a microfluidic channel.
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3 Results and discussion

In the absence of fluid flow, the deposition of nanoscopic

particles is controlled by diffusion. If the particles in the

fluid are taken to be a dilute liquid solution at constant

temperature and pressure with no reactions and zero fluid

velocity, the problem of deposition of nanoparticles from a

quiescent fluid onto microchannel walls can be solved

analytically by integrating the diffusion equation (Bird

et al. 2002). The resulting analytical solution for the frac-

tion of particles deposited on the microchannel walls,

denoted by P, is given by

P ¼ 1� 2

p2

X1

n¼1

ð1� ð�1ÞnÞ2

n2
eð�n2t=sÞ; ð3Þ

where s � H2
�

Dp2 is the diffusion timescale. The equation

is obtained subject to boundary conditions of zero con-

centration at the channel walls (perfectly adsorptive walls)

and an initial condition of a uniform concentration

throughout the channel at time t = 0.

Figure 2a shows that the amount of deposited particles

steadily increases with time. This figure also compares the

theoretical predictions with the results of our computa-

tional model for the case of a microchannel without cilia.

The results of simulations match closely with the analytical

solution, indicating that our computational model correctly

predicts diffusive transport and particle deposition in a

microchannel.

When we introduce elastic cilia that are driven by a

horizontally oscillating force, the deposition rate increases.

Figure 2b shows a plot of P over time for both the case of

oscillating cilia (solid line) and the case with no cilia

(dashed line). The amount of deposited particles increases

more quickly when the fluid is agitated by oscillating cilia,

indicating that beating cilia enhance nanoparticle deposi-

tion by creating convective fluid flows.

In order to quantify the enhancement of deposition, we

introduce a deposition enhancement factor EP = tD/tC
where tD is the time required to reach the desired deposi-

tion P without cilia and tC is the time required to reach the

same P with oscillating cilia. For the case shown in

Fig. 2b, the deposition enhancement for 90 % deposition,

denoted by E0.9, was found to be 1.86. This means that

90 % of particles will be deposited almost two times faster

using oscillating cilia as compared with the deposition in a

plain channel.

The value of E depends upon P, as shown in the plots of

E versus P for varying Sp and A given in Fig. 3a and b,

respectively. For relatively short times t � s, deposition is

limited to those nanoparticles that are located in the

vicinity of the walls, in which case enhancement due to

oscillating cilia is relatively weak. However, as the

deposited P increases, E also increases. This can be

explained by considering that the initial concentration of

particles throughout the channel is uniform and particles

located close to the walls can deposit fast due to molecular

diffusion. As more particles deposit on the channel walls,

the concentration of particles near the walls is reduced as

compared with the center of the channel. This causes the

deposition rate to slow as P increases (Fig. 2). If beating

cilia are used to agitate the fluid, then the fluid from the

center of the channel, which contains a higher concentra-

tion of particles, is brought closer to the walls, increasing

the amount of particles that are near the walls, thereby

facilitating their deposition. Thus, the influence of beating

cilia on deposition increases with time as the concentration

of particles in the channel drops.

We find that E increases monotonically for different

values of Sp, as shown in Fig. 3a. Among three values of

Sp shown in this figure, Sp = 3 yields a consistently larger

E than somewhat larger and smaller values of Sp, indi-

cating a non-trivial dependence of E on Sp. We also find

that an increase in amplitude can enhance the deposition as

indicated by increasing E in Fig. 3b. Below, we examine

the dependence of E on Sp and A in more detail.

We first investigate the effect of Sp on the deposition of

nanoparticles in a ciliated microchannel. As seen in Fig. 4,

the dependence of E on Sp is non-monotonic, with two

maxima at around Sp = 3 and Sp = 5, respectively. The

maximum at Sp = 3 is significantly larger than at Sp = 5

and, therefore, characterizes the beating regime that is

optimal for enhancing particle deposition. We find a

Fig. 2 a Diffusive deposition

of nanoparticles in a

microchannel without cilia.

b Deposition of nanoparticles

Sc = 4,000 on microchannel

walls without cilia and with cilia

beating at Sp = 3, dx/L = 1,

and A = 1. The time required to

achieve 90 % deposition is

shown for each case and is

denoted by tD and tC,

respectively
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similar dependence of E on Sp for different values of Sc.

Our simulations show that the enhancement is more sig-

nificant for larger Sc. Because Sc relates the effects of fluid

convection on mass transport to that of diffusion, an

enhancement for larger Sc means that the effect of cilia on

deposition will be more significant for larger, less diffusive

particles, as well as for systems at lower temperatures, for

which transport by diffusion is relatively slow.

The non-trivial relationship between E and Sp results

from the flow patterns generated by cilia oscillating with

different Sp. Figure 5 shows the period-averaged flow

fields for various Sp. The flow fields are calculated using

the period-averaged velocity of non-diffusive tracer parti-

cles. Due to symmetry, a slice x–y plane at the center of the

cilia in the z-direction is given only for the bottom half of

the channel from the middle plane between cilia in the x-

direction and the left side of the cilia (Fig. 1).

In all cases presented in Fig. 5, oscillating cilia induce

the secondary flows in the microchannel. However, among

all these cases, Sp = 3 induces the fastest secondary flow

with the velocity about an order of magnitude greater than

for the other cases. We also find that the structure of flow is

different for ciliated channels with Sp = 2 and 3 and with

Sp = 4 and 5. When oscillated at Sp = 2 and 3, the cilia

create a large circulating flow pattern (Fig. 5a, b) that

transports the fluid upward near the cilia and downward in

the center between neighboring cilia. On the other hand,

when cilia oscillations are characterized by Sp = 4 and 5,

the period-averaged flow includes multiple smaller vortices

that locally transport fluid. These local circulations,

however, are not sufficient to noticeably enhance the net

transport of suspended nanoparticles, resulting in a rela-

tively small E. Thus, we find that cilia with Sp = 3 are

optimal for enhancing nanoparticle deposition.

To investigate the effect of cilia coverage density on

deposition enhancement, simulations are performed in

which we vary the spacing between cilia. The results are

shown in Fig. 6. We find that E varies non-monotonically

with cilia spacing, showing maximum enhancement at

about dx = 1.1 L. This optimal density of cilia coverage is

independent of the Schmidt number. A similar optimal

spacing has been previously reported for heat transport

enhancement by tilted oscillating cilia (Mills et al. 2012),

in which case the optimal spacing was related to the for-

mation of flow structures in the ciliated layer. Smaller

intercilial spacing prevents the development of circulatory

flow currents, whereas excessive separation between

neighboring cilia leaves parts of the fluid unagitated.

Finally, we investigate the effect of the magnitude of the

cilia actuation force on deposition enhancement. As seen in

Fig. 7, E increases with increasing driving force amplitude

for A \ 12. For larger values of A, E saturates or even

slightly decreases. In other words, an additional increase in

the oscillating force beyond A = 12 is unable to further

enhance the deposition of nanoparticles. We can explain

this by examining the displacement of oscillating cilia. We

find that cilia displacement approaches a limiting cycle as

the driving force is about 12. Further increase in the force

magnitude essentially does not affect the cilium displace-

ment and, therefore, has a weak effect on nanoparticle

deposition.

We also find that cilia can exhibit transition from a two-

dimensional to three-dimensional beating pattern when the

oscillating force amplitude exceeds a critical value Acr

(Fig. 8). When driven by relatively small oscillatory forces,

cilia beat in a periodic two-dimensional non-reciprocal

pattern, as shown for A = 6 in Fig. 8a and b. However,

when the driving force is increased to A = 8, the beating

cilia exhibit a periodic three-dimensional pattern. The

three-dimensional motion of cilia with A = 8 is further

illustrated in Fig. 8c and d, showing a sequence of pro-

jections of the cilium centerline on the x–y and x–z planes,

Fig. 3 Deposition enhancement

E in ciliated microchannels with

dx/L = 1 for nanoparticles with

Sc = 4,000. a Cilia beating with

different Sp and A = 1. b Cilia

beating with different A and

Sp = 3

Fig. 4 Dependence of E at 90 % deposition on cilia sperm number

Sp. The force amplitude is A = 1, and cilia separation is dx/L = 1
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respectively, during an oscillation period. Our simulations

show that the critical amplitude of the oscillatory force

causing the transition for Sp = 3 is Acr & 7.

The three-dimensional bending of cilia is caused by a

buckling instability (Guglielmini et al. 2012; Vogel and

Stark 2012; Son et al. 2013). Buckling occurs when the

oscillating force A [ Acr bends the cilia to the side and

then drives them in the opposite direction, as shown in

Fig. 8e. Buckling causes cilium bending in the x–z plane,

thereby inducing three-dimensional motion of the oscil-

lating cilia. This behavior resembles Euler’s buckling

instability of columns. We can estimate the critical force

leading to cilium buckling by considering an axially loaded

long column with unsupported length of 0.75 L, which is

approximately equal to the length of the horizontal section

of cilia in our simulations at the onset of buckling.

Replacing the oscillatory external force with a constant

compressive force and using Euler’s formula for the critical

force for a column with fixed–free end conditions (Landau

and Lifshitz 1970), we estimate the magnitude of the

dimensionless force required to induce buckling to be

approximately 1.5. This value is close to the instantaneous

external force experienced by cilia at the onset of buckling,

which is found in simulations to be approximately 4,

indicating that the three-dimensional motion is indeed a

result of cilium buckling during the beating cycle.

4 Summary

Using three-dimensional numerical simulations, we probe

how arrays of oscillating synthetic cilia can be used to

enhance the deposition of nanoparticles onto the walls of a

microfluidic channel. The synthetic cilia are high-aspect-

ratio elastic filaments that are actuated by a periodic force

Fig. 5 Period-averaged velocity in the x–y (cilia motion) plane (see

Fig. 1b) with Sp = 1, dx/L = 1, and a Sp = 3, b Sp = 3, c Sp = 4,

d Sp = 5. For clarity, velocity magnitudes for Sp = 3, 4, and 5 are

scaled up by a factor of 10 as compared with those for Sp = 3. The

flow pattern for Sp = 3 has the most significant impact on nanopar-

ticle deposition

Fig. 6 Dependence of E at 50 % deposition on cilia spacing

dx/L. The simulation parameters are Sp = 3, A = 1, and dz = dx/2 Fig. 7 Dependence of E at 90 % deposition on oscillation amplitude

A for various Sc, Sp = 3, and dx/L = 1
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applied to their free ends. We find that secondary flows

created by beating cilia can significantly accelerate depo-

sition and that this effect is more pronounced for larger

particles and in systems with lower temperatures charac-

terized by slower diffusion.

The fastest deposition is found for cilia oscillating at

Sp = 3 and separated by a distance of about

dx = 1.1 L. In this case, cilia engage a substantial

amount of fluid in an intensive circulatory motion that

effectively convects nanoparticles toward the micro-

channel walls. Increasing the magnitude of the actuating

force intensifies the secondary flow, thereby increasing

the deposition rate. However, when the force amplitude

exceeds A = 12, the cilia oscillation cycle saturates, and

a further increase in driving force strength has only a

minor effect on deposition.

Furthermore, our simulations reveal that large actuation

forces cause the cilia to move in a three-dimensional

periodic bending pattern. This three-dimensional motion

arises due to cilia buckling taking place when filaments are

bent horizontally.

The results of our study are useful for designing

microfluidic devices in which actuated synthetic cilia are

employed to enhance microscale transport processes. In

particular, beating cilia can be utilized in microfluidic

sensors to enhance their sensitivity by facilitating the

deposition of particulates on sensory surfaces. Beating

regimes creating convective flows are also relevant for

applications in which rapid mixing at the microscale is

required.

Researchers have proposed different synthetic cilia

actuated by external magnetic and electrical forces and by

self-oscillating chemical reactions taking place inside the

filaments (Den Toonder and Onck 2013a). These synthetic

cilia exhibit a wide range of sizes, mechanical properties,

different actuation patterns, and beating frequencies. Here,

we focus on regular arrays of identical cilia. However, the

use of cilia arrays composed of filaments with different

sizes, mechanics, and stimulus responses, as well as arrays

of individually addressable filaments opens an elegant way

to create locally actuated ciliated surfaces to precisely

drive the fluid flows and deposit specific nanoparticles.

Finally, we note that although in our simulations we

consider externally actuated synthetic cilia driven in a

relatively simple stroke, the results shed additional light on

the utility of cilia by biological organisms that employ cilia

for transporting nutrition and feeding.
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