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Abstract The steady flow and mass transfer of nanofluids

with power-law type base fluids over a free-rotating disk

are investigated. Previously, we have modeled the volume

fraction of nanoparticles and verified the experimental

conclusion through the numerical simulation of particle

distribution in nanofluid in a Petri dish under the influence

of movement using a power-law model of mass diffusivity.

We further this study by a similar model of the mass dif-

fusivity following a power-law type to consider the laminar

non-Newtonian power-law flow in a rotating infinite disk

with angular velocity about the z-axis. The coupled gov-

erning equations are transformed into ODEs. Homotopy

analysis method (HAM) is applied to solve the ODEs while

special attention is paid to deal with the nonlinear items in

the ODEs. In the last section, we provide images of

nanoparticles suspended in power-law fluids in a rotating

disk as obtained using the laser speckle method. When they

are compared with the analytical results gained by the

HAM, they qualitatively matched the solutions of the

concentration equation of nanofluids.

Keywords Nanofluids � Power-law fluids � Mass

diffusivity � Nanoparticle precipitation � HAM

1 Introduction

Precipitation and mass transfer of nanoparticles in fluids are

common phenomena in scientific and industrial applica-

tions, such as the monitoring and controlling of product

manufacturing processes and their quality. In medical and

biological fields, homogeneous PLA/insulin solutions con-

taining different amounts of Da PEG (0–75 wt% PEG) were

processed by semi-continuous, compressed CO2 antisolvent

precipitation to fabricate protein-loaded polymeric nano-

particles (Caliceti et al. 2004). Polymeric scaffolds were

fabricated with micro- and nanoscale porosity by develop-

ing a new technique that couples two conventional scaffold

production methods: solvent casting-salt leaching and gas

antisolvent precipitation to avoid the mass transport through

biocompatible and biodegradable polymeric 3D porous

scaffolds depleted by nonporous impermeable internal

walls (Flaibani and Elvassore 2012). Engineers also inves-

tigated nanoparticle precipitation in a confined impinging

jet reactor (CIJR) (Gavi et al. 2007). With the aim of

obtaining controlled size and particle size distributions of

these superconductor precursors, semi-continuous super-

critical antisolvent (SAS) precipitation has been used to

produce europium (EuAc) and gadolinium (GdAc) acetate

nano- and microparticles (Reverchon et al. 2002). Most of

the base fluids of nanosolutions in industrial and scientific

fields are non-Newtonian fluids (i.e., fluids that do not sat-

isfy the linear relationship between the shear stress and the

shear rate of deformation). Non-Newtonian fluids cover a

wide range of fluids including, but not limited to: colloidal

emulsoid, cosmetics, UV protection gel, lubricants, corro-

sion resistant coatings, pigments, oils, paints, milk, tooth-

paste, mud, vivo blood, intra-articular synovial fluid, lymph

fluid, cells fluid, cerebrospinal fluid and bronchial endocrine

liquid (Bird et al. 1960). Shear thinning, stress relaxation,
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creep, hysteresis, residual stress, viscoelastic, turbulent drag

reduction and slip in non-Newtonian fluids have important

impacts on nanoparticles in flow fields (Tropea et al. 2007;

Rao 2007). Thus, many researchers have focused on the

characteristics of nanofluids of which the base fluids are

non-Newtonian fluids. For instance, Moraveji et al. (2012)

investigated the convective heat transfer effect on non-

Newtonian nanofluids flow in the horizontal tube with

constant heat flux. The forced convective heat transfer of

these nanofluids in carboxymethyl cellulose (CMC) through

a uniformly heated circular tube under turbulent flow con-

ditions has been studied experimentally (Hojjat et al. 2011).

Hady et al. (2011) focused on the study of the natural

convection boundary-layer flow over a downward-pointing

vertical cone in a porous medium saturated with a non-

Newtonian nanofluid in the presence of heat generation or

absorption. In paper (Mariano et al. 2013), the thermal

conductivity, rheological behavior and the high-pressure

density of several non-Newtonian ethylene glycol-based

SnO2 nanofluids were analyzed.

Pascal (1996) proposed a one-dimensional convection–

diffusion model with nonlinear molecular diffusion for

mass transfer in a two-phase system. Niu et al. (2012) also

adopted the power-law rheology to describe the charac-

teristics of a non-Newtonian nanofluid flow in a microtube

theoretically. Our own research work in this area initially

was based on these pioneering works by modeling the

volume fraction of nanoparticles and verified the experi-

mental conclusion through the numerical simulation of

particle distribution in nanofluid in a Petri dish under the

influence of movement using the model (Zheng et al.

2012):

ut þ u � ru ¼ divðD0
BrCðx; yÞÞ;

where

Cðx; yÞ ¼ ðu2
x þ u2

yÞ
n�1

2 :

In this paper, we will further this investigation by consid-

ering the vertical precipitation in nanofluid-based power-

law fluids over a free-rotating disk. On a similar assump-

tion that the mass diffusivity follows a power-law type, the

coupled governing equations are transformed into ODEs in

the boundary layer. The accuracy of the solutions is pur-

sued by employing a homotopy analysis method rather than

a pure numerical simulation. However, the power-law

terms in the momentum and mass transfer equations are

difficult to handle, and so special attention needs to be paid

to the mathematical technique involved in the process of

the mth-order deformation. Finally, we will qualitatively

validate the numerical simulation by comparison with

experiments of particle distribution in nanofluid in a Petri

dish under the influence of movement.

2 Physical model and similarity transformation

Consider a laminar non-Newtonian power-law flow in a

rotating infinite disk with angular velocity X about the z-

axis. No-slid and impermeability exist on the disk.

Assume the flow is steady and axisymmetric. The cylin-

drical polar coordinate system and physical model are

shown in Fig. 1.

The pressure is considered to be constant in the

boundary layer. Thus, the governing equations are:

ou

or
þ u

r
þ ow

oz
¼ 0 ð1Þ

q u
ou

or
� v2

r
þ w

ou

oz

� �
¼ o

oz
l

ou

oz

� �
ð2Þ

q u
ov

or
þ uv

r
þ w

ov

oz

� �
¼ o

oz
l

ov

oz

� �
ð3Þ

u
o/
or
þ w

o/
oz
¼ o

oz
D0

B

o/
oz

� �
ð4Þ

where u, v and w are velocity components in the directions

of r, u and z, respectively. / is the concentration while q is

the density of the fluid. The viscosity l obeys the power-

law model l ¼ l0
ou
oz

� �2

þ ov
oz

� �2
� �ðn�1Þ=2

, where l0 is the

consistency coefficient of the fluid and n is the power-law

index. For a Newtonian fluid, n = 1 and l = l0. This so-

called power-law model has been proposed by Ostwald–de

Waele in 1920s and proved by some convincing experi-

ments, such as Wu and Thompson (1996) demonstrated

that an accurate (and useful) power-law model worked well

for the flow of shear-thinning fluids even when the Rey-

nolds number is not large.

Pascal (1996) generalized a convection–diffusion model

where the diffusion term depends nonlinearly on both the

concentration and the concentration gradient and is of the

form:

Fig. 1 The cylindrical polar coordinate system and physical model
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J ¼ tC � BCm oC

ox

oC

ox

����
����
n�1

:

This model has been examined by a few experiments.

One is about the case when the axial mixing generated by

the buoyancy effect due to the injection of a fluid into a

less dense one when the parameters in the model were

m = 0 and n = 2/3 (Baird et al. 1992). Here, we adopt

this proved model where the concentration diffusivity DB
0

follows the same power-law rule as D0
B ¼ DB

o/
oz

�� ��n�1
,

where DB is the diffusion coefficient and n is the power-

law index.

The boundary conditions are:

ujz¼0¼ 0; vjz¼0¼ Xr;wjz¼0¼ 0;/jz¼0¼ /w; ð5Þ

ujz!1¼ 0; vjz!1¼ 0; /jz!1¼ /1: ð6Þ

A generalized dimensionless similarity variable is defined

as n ¼ z X2�n

l0=q

� �1=ðnþ1Þ
rð1�nÞ=ð1þnÞ

Let u ¼ Xr � FðnÞ; v ¼ Xr � GðnÞ; w ¼ X1�2n

l0=q

� ��1=ðnþ1Þ

rðn�1Þ=ðnþ1ÞHðnÞ; UðnÞ ¼ /�/1
/w�/1

:

Equations (1)–(4) are then transformed to the following

ordinary differential equations:

H0 ¼ �2F � 1� n

1þ n
nF0; ð7Þ

F2 � G2 þ H þ 1� n

1þ n
nF

� �
F0

¼ F0ð Þ2þ G0ð Þ2
h iðn�1Þ=2

F0
� �0

; ð8Þ

2FGþ H þ 1� n

1þ n
nF

� �
G0 ¼ F0ð Þ2þ G0ð Þ2

h iðn�1Þ=2

G0
� �0

;

ð9Þ

1� n

1þ n
nF þ H

� �
U0 ¼ 1

PDB

U0j jn�1U0
� �0

; ð10Þ

where PDB ¼ 1

D0
B

/w�/1j jn�1
rð1�nÞ

l0=q
Xð1�nÞ : With the corresponding

boundary conditions:

Fjn¼0¼ 0; Gjn¼0¼ 1; Hjn¼0¼ 0; Ujn¼0¼ 1; ð11Þ

Fjn!1¼ 0; Gjn!1¼ 0; Ujn!1¼ 0: ð12Þ

We now use HAM (homotopy analysis method) to solve

the two-parameter two-point boundary value problem to be

given in the next section.

3 Application of HAM

Following the method presented by Liao and his collabo-

rates (Liao 1995, 1997, 2003; Liao and Cheung 2003), our

nonlinear problem can be approximated efficiently by

choosing a set of base functions to express

H nð Þ; F nð Þ; G nð Þ; U nð Þ : e�n; n
	 


. The initial approxi-

mations and auxiliary linear operators can be chosen to be

of the following form:

H0ðnÞ ¼ n; F0ðnÞ ¼ 0; G0ðnÞ ¼ e�n; U0ðnÞ ¼ e�n; ð13Þ

LHð/Þ ¼
o/
on
; LFðWÞ ¼

o2W

on2
þ oW

on
; LGðXÞ

¼ o2X

on2
þ oX

on
; LUðNÞ ¼

o2N

on2
þ oN

on
; ð14Þ

LHðC1 þ C2nÞ ¼ 0; LF C1 þ C2e�n þ C3n
� �

¼ 0;

LGðC1 þ C2e�nÞ ¼ 0; LUðC1 þ C2e�nÞ ¼ 0;
ð15Þ

where C1, C2 and C3 are constants.Furthermore, the

nonlinear operators are defined by the following forms:

NH ½/ðn; qÞ;W n; qð Þ� ¼ o/
on
þ 2Wþ 1� n

1þ n
n
oW
on

; ð16Þ

NF ½W n; qð Þ;X n; qð Þ;/ n; qð Þ�

¼ W2 � X2 þ /þ 1� n

1þ n
nW

� �
oW
on

� oW
on

� �2

þ oX
on

� �2
" #ðn�1Þ=2

o2W

on2

� n� 1

2

oW
on

� �2

þ oX
on

� �2
" #ðn�3Þ=2

� 2
oW
on

o2W

on2
þ 2

oX
on

o2X

on2

� �
oW
on

; ð17Þ

Fig. 2 Concentration profiles when n = 0.5 with different PDB by the

fifth-order approximation
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NG½X n; qð Þ;W n; qð Þ;/ n; qð Þ� ¼ 2WXþ /þ 1�n
1þn

nW
� �

oX
on

� oW
on

� �2

þ oX
on

� �2
" #ðn�1Þ=2

o2X

on2

� n� 1

2

oW
on

� �2

þ oX
on

� �2
" #ðn�3Þ=2

� 2
oW
on

o2W

on2
þ 2

oX
on

o2X

on2

� �
oX
on
; ð18Þ

NU½N n; qð Þ;W n; qð Þ;/ n; qð Þ� ¼ 1� n

1þ n
nWþ /

� �
oN
on

� 1

PDB

oN
on

����
����
n�1

o2N

on2
þ ðn� 1Þ oN

on

����
����
n�2

oN
on

o2N

on2

 !
: ð19Þ

We then construct the following zeroth-order deformation

equations:

1� qð ÞLH ½/ðn; qÞ � H0ðnÞ�
¼ qhHSH nð ÞNH ½/ n; qð Þ;W n; qð Þ�; ð20Þ

1� qð ÞLF½Wðn; qÞ � F0ðnÞ�
¼ qhFSF nð ÞNF½W n; qð Þ;X n; qð Þ;/ n; qð Þ�; ð21Þ

1� qð ÞLG½Xðn; qÞ � G0ðnÞ�
¼ qhGSG nð ÞNG½X n; qð Þ;W n; qð Þ;/ n; qð Þ�; ð22Þ

1� qð ÞLU½Nðn; qÞ � U0ðnÞ�
¼ qhUSU nð ÞNU½N n; qð Þ;W n; qð Þ;/ n; qð Þ�; ð23Þ

subject to the boundary conditions:

/ð0; qÞ ¼0; Wð0; qÞ ¼ 0; Wð1; qÞ ¼ 0;

Xð0; qÞ ¼1; Xð1; qÞ ¼ 0; Nð0; qÞ ¼ 1; Nð1; qÞ ¼ 0:

ð24Þ

When q = 0 and q = 1, we have

/ðn; 0Þ ¼ H0ðnÞ;/ðn; 1Þ ¼ HðnÞ;Wðn; 0Þ ¼ F0ðnÞ;
Wðn; 1Þ ¼ FðnÞ;

Xðn; 0Þ ¼ G0ðnÞ;Xðn; 1Þ ¼ GðnÞ; Nðn; 0Þ ¼ U0ðnÞ;
Nðn; 1Þ ¼ UðnÞ:

ð25Þ

When q increases from 0 to 1, the functions HðnÞ;
FðnÞ;GðnÞ;UðnÞ vary from H0ðnÞ;F0ðnÞ;G0ðnÞ;U0ðnÞ
toHðnÞ;FðnÞ;GðnÞ;UðnÞ. According to Taylor’s theorem,

/ðn; qÞ;Wðn; qÞ;Xðn; qÞ; Nðn; qÞ can be expanded in a

series of q as the follows:

/ðn;qÞ ¼ H0þ
X1
m¼1

HmðnÞqm;HmðnÞ ¼
1

m!

om/ðn;qÞ
oqm

����
q¼0

;

ð26Þ

Wðn; qÞ ¼ F0 þ
X1
m¼1

FmðnÞqm;FmðnÞ ¼
1

m!

omWðn; qÞ
oqm

����
q¼0

;

ð27Þ

Xðn; qÞ ¼ G0 þ
X1
m¼1

GmðnÞqm;GmðnÞ ¼
1

m!

omGðn; qÞ
oqm

����
q¼0

;

ð28Þ

Nðn; qÞ ¼ U0 þ
X1
m¼1

UmðnÞqm;UmðnÞ ¼
1

m!

omNðn; qÞ
oqm

����
q¼0

:

ð29Þ

If hH ; hF; hG; hU are properly chosen, the series

(26)–(29) are convergent at q = 1. We have the solution

series:

HðnÞ ¼H0ðnÞ þ
X1
m¼1

HmðnÞ; FðnÞ ¼ F0ðnÞ þ
X1
m¼1

FmðnÞ;

GðnÞ ¼G0ðnÞ þ
X1
m¼1

GmðnÞ; UðnÞ ¼ U0ðnÞ þ
X1
m¼1

UmðnÞ:

ð30Þ

Next, we define the vectors:

FmðnÞ ¼ F1ðnÞ;F2ðnÞ; . . .;FmðnÞf g;
HmðnÞ ¼ H1ðnÞ;H2ðnÞ; . . .;HmðnÞf g;
GmðnÞ ¼ G1ðnÞ;G2ðnÞ; . . .;GmðnÞf g;
UmðnÞ ¼ U1ðnÞ;U2ðnÞ; . . .;UmðnÞf g:

ð31Þ

We define n�1
2
¼ lþ e and n - 1 = t ? d, where

l C 0 and t C 0 are integers and |e| \ 1 and |d| \ 1 are

real numbers. Notice that |U
0
| = -U

0
. The mth-order

deformation equations become:

LH ½Hm nð Þ � vmHm�1 nð Þ� ¼ hHSHðnÞRH
m nð Þ; ð32Þ

LF Fm nð Þ � vmFm�1 nð Þ½ � ¼ hFSF nð ÞRF
m nð Þ; ð33Þ

LG Gm nð Þ � vmGm�1 nð Þ½ � ¼ hGSG nð ÞRG
m nð Þ; ð34Þ

LU½UmðnÞ � vmUm�1ðnÞ� ¼ hUSUðnÞRU
mðnÞ; ð35Þ

where

vm ¼
0; m� 1;

1; m [ 1:

(

subject to the following boundary conditions:

Hmð0Þ ¼ 0;Fmð0Þ ¼ 0;Fmð1Þ ¼ 0;Gmð0Þ ¼ 1;

Gmð1Þ ¼ 0;Umð0Þ ¼ 1;Umð1Þ ¼ 0;
ð36Þ

under the following conditions:

RH
mðnÞ ¼ H0m�1ðnÞ þ 2F0m�1ðnÞ þ

1� n

1þ n
nF0m�1ðnÞ; ð37Þ
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RF
m ¼

Xm�1

k¼0

FkðnÞFm�1�kðnÞ �
Xm�1

k¼0

GkðnÞGm�1�kðnÞ

þ
Xm�1

k¼0

Hm�1�kðnÞ þ
1� n

1þ n
nFm�1�kðnÞ


 �
F0kðnÞ

�
Xm�1

k¼0

Hl;m�1�kðnÞWkðnÞ

� n� 1

2

Xm�1

k¼0

El;m�1�kðnÞWkðnÞ; ð38Þ

where

Hl;kðnÞ¼
1

k!

ok

oqk
½F00ðn;qÞððF0ðn;qÞÞ2þðG0ðn;qÞÞ2Þl�

� �����
q¼0

;

ð39Þ

WkðnÞ ¼
1

k!

ok

oqk
½ðF0ðn; qÞÞ2 þ ðG0ðn; qÞÞ2�e

� �����
q¼0

; ð40Þ

El;m�1�kðnÞ ¼
1

k!

�
ok

oqk
½ðF0ðn; qÞÞ2 þ ðG0ðn; qÞÞ2�lþ1

� ð2F0ðn; qÞF00ðn; qÞ þ 2G0ðn; qÞG00ðn; qÞÞF0ðn; qÞ
�����

q¼0

;

ð41Þ

RG
m ¼2

Xm�1

k¼0

FkðnÞGm�1�kðnÞ þ
Xm�1

k¼0

½Hm�1�kðnÞ

þ 1� n

1þ n
nFm�1�kðnÞ�G0kðnÞ

�
Xm�1

k¼0

Il;m�1�kðnÞWkðnÞ �
n� 1

2

Xm�1

k¼0

Jl;m�1�kðnÞWkðnÞ:

ð42Þ

Note that in the above, the subscript-indexed I and J are

defined by:

Il:kðnÞ¼
1

k!

ok

oqk
½G00ðn;qÞððF0ðn;qÞÞ2þðG0ðn;qÞÞ2Þl�

� �����
q¼0

;

ð43Þ

Jl;m�1�kðnÞ¼
1

k!

ok

oqk
½ðF0ðn;qÞÞ2þðG0ðn;qÞÞ2�lþ1

�

� 2F0ðn;qÞF00ðn;qÞþ2G0ðn;qÞG00ðn;qÞÞG0ðn;qÞð gjq¼0;

ð44Þ

RU
m ¼

Xm�1

k¼0

1� n

1þ n
nFm�1�kðnÞ þ Hm�1�kðnÞ


 �
U0kðnÞ

� 1

PDB

ð�1Þtn
Xm¼1

k¼0

Kt;m�1�kðnÞNkðnÞ
 !

; ð45Þ

where:

Kt:kðnÞ ¼
1

k!

ok

oqk
½U00ðn; qÞðU0ðn; qÞÞt�

� �����
q¼0

; ð46Þ

NkðnÞ ¼
1

k!

ok

oqk
ðU0ðn; qÞÞd

� �����
q¼0

: ð47Þ

From the definition (39), (41), (43), (44) and (46), we have

the recursive formulas:

Hl;kðnÞ ¼
Xk

i¼0

Hl�1;iðnÞ½ðF0k�iðnÞÞ
2 þ ðG0k�iðnÞÞ

2�; l� 1;

El;kðnÞ ¼
Xk

i¼0

El�1;iðnÞ½ðF0k�iðnÞÞ
2 þ ðG0k�iðnÞÞ

2�; l� 1;

Il:kðnÞ ¼
Xk

i¼0

Il�1;iðnÞ½ðF0k�iðnÞÞ
2 þ ðG0k�iðnÞÞ

2�; l� 1;

Jl;kðnÞ ¼
Xk

i¼0

Jl�1;iðnÞ½ðF0k�iðnÞÞ
2 þ ðG0k�iðnÞÞ

2�; l� 1;

Kt:kðnÞ ¼
Xk

i¼0

Kt�1;iðnÞU0k�iðnÞ; t� 1;

From definitions (40) and (47), we have

WkðnÞ ¼
Xk�1

i¼0

iþ 1

k
½ðF0iþ1ðnÞÞ

2 þ ðG0iþ1ðnÞÞ
2�

� 1

k!

ok

oqk
½eððF0ðn; qÞÞ2 þ ðG0ðn; qÞÞ2Þe�1�

� �����
q¼0

;

NkðnÞ ¼
Xk�1

i¼0

iþ 1

k
U0iþ1ðnÞ

1

k!

ok

oqk
½rðU0ðn; qÞÞd�1�

� �����
q¼0

:

According to the Rule of Solution Expression and Rule

of Solution Existence described by Liao (2003), we set

SHðnÞ ¼ SFðnÞ ¼ SGðnÞ ¼ SUðnÞ ¼ e�n.

In this paper, we choose hH ¼ hF ¼ hG ¼ hU ¼ m and

pick a proper value of m ¼ � 1
2
, which ensures that the

solution is convergent.

According to the above equations and boundary condi-

tions, we now define the first-order solutions when n = 0.5

as:

H1ðnÞ ¼
1

4
� e�2n

4
;

F1ðnÞ ¼ �
1

12
e�3 xð�1þ e2 xÞ;

G1ðnÞ ¼
1

12
e�3 xð1� 3ex � 2e2 x þ 4e3 xðe�2 xÞ3=4Þ;

U1ðnÞ ¼
e�3 xðPDB � 3exPDB þ 2e2 xð�2þ 2

ffiffiffiffiffiffiffi
e�x
p

þ PDBÞÞ
12PDB

:
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We only list the first-order solutions in details as above in

this paper as an example and omit others. While solutions

pertaining to numerous cases can be obtained from the

model presented in this paper, we restrict ourselves to just

one case for brevity and proof of concept. We plot con-

centration profiles with certain characteristics. Figure 2

shows the effects of different PDB on the mass transfer of a

pseudoplastic fluid for n = 0.5.

4 Experimental device and results

We devise the following experiment to investigate the

sedimentation and precipitation of nanoparticles in power-

law fluids. This innovative self-design experiment consists

of: a laser light source, a group of beam expanding lenses,

optical quartz glass Petri dishes, a CCD fast imaging sys-

tem and a rotating platform. The laser and the lens are fixed

by a customized mechanical optical frame on a shock-proof

bed. The rotating platform system is composed of a ZK100

single-axis motion controller and a rotating circular plat-

form, on which the Petri dish is placed (see Fig. 3).

The green laser emitted by LED semiconductor laser is

transformed into planar light after going through the lens

cascade. It is cast into the Petri dish vertically, beneath

which the high-speed image recording system records the

speckled pictures. Rayleigh scattering (Yang et al. 2009) is

observed where the light with a short wavelength scatters

easily. We chose a green laser in this experiment since the

wavelength of green light (510 nm) is shorter than that of

red light (650 nm).

According to the classic Rayleigh scattering model,

nanoparticles are closely related to the speckles. The dis-

tribution and motion of nanoparticles can be deduced by

the corresponding speckles in different moments. When the

volume percentage of nanoparticles in fluids is appropriate

and suspended, the requirements of spatial coherence are

satisfied. Through the complex amplitude superposition,

the light intensity is redistributed when the scattering light

of particles is interfered with. At the same time, high-speed

imaging system records clear speckle images with dark and

small bright spots. Speckle images are observed by the

high-speed imaging system below.

The base fluid of nanofluids adopted in this experiment

was power-law fluids (i.e., carboxymethyl cellulose aque-

ous solution). This experiment first investigates systemat-

ically on the motion-diffusion-precipitation characteristics

of nanofluids based on power-law fluid.

Figure 4 shows the laser speckle images of nanoparti-

cles in different power-law base fluid of different height.

The images found in Fig. 4a, b are of 0.1 M Cu nanopar-

ticles suspended in 0.1 % CMC aqueous solution while

those of Fig. 4c, d are of 0.01 M Cu nanoparticles sus-

pended in 0.01 % CMC aqueous solution. The solution

height in Fig. 4a, c is 0.01 cm while in Fig. 4b, d it is

0.1 cm. From these two sets of contrasting images, it can

be clearly seen that the lighter and more well-balanced

speckles exist in the higher solution, while the opposite is

true for the solution of lower height. Due to the fact that

brightness of speckles is proportional to the number of the

suspended nanoparticles, a preliminary judgment about the

number of nanoparticles can be deduced from the images.

By the laser speckle method, these pictures depict the

deposition of nanoparticles in power-law fluids vividly.

These images are qualitatively consistent with the analyt-

ical solutions of the concentration equation of nanofluids.

Furthermore, we put one figure here to compare the

experimental results and the predicted modeling data. To

deal with the image, we adopt the basic fact that the

numbers of bright speckles are proportional to the number

of the suspended nanoparticles and compare the number of

speckles of images of nanofluids of different height.

The comparison between the modeling results and the

designed experimental data is shown in Fig. 5. To calculate

PDB and D0
B ¼ kT=ð6pl0RÞ, we use the following experi-

mental data and parameters: l0¼ 0:01754N � sn=m2, /w ¼
0:2 % (concentration of mass), n = 0.85, r = 0.05 m,

R = 5 9 10-8 m, X = p/35 rad/s, T = 300 K (room

temperature), k is the Boltzmann constant, and q can be

treated as the density of water.

Note in Fig. 5, dimensionless variable n ¼ 0; n ¼
0:5; n ¼ 5 corresponds to the experimental heights of

nanofluids h ¼ 0; h ¼ 0:01 cm; h ¼ 0:1 cm, respectively.

Fig. 3 Experimental setup
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And the dimensionless variable U corresponds to the

concentration of fluid (U = 1.0 means the concentration /
= /w). The continuous curve in the Fig. 5 is the calculated

results, while the triangle marks are the experimental data

obtained from images of nanofluids of 0.01 and 0.1 cm

height. It is noticed that the experimental data are smaller

than the predicable analytical result.

5 Conclusions

The objective of this paper is to find analytic solutions for

flow and mass transfer within nanofluids whose motion is

greatly affected by the base fluid of a power-law type.

Comparisons with experimental results as well as discrimi-

nations with previously published works were performed

and noted. In addition, unlike previous studies, analytic

solutions of equations describing nanofluids in a rotating disk

with a mass diffusivity model depending on a power-law

function of concentration gradient are determined. We found

that the homotopy analysis method works well for a class of

fluid problems with strong nonlinear characteristics in both

momentum and mass transfer equations, as described in

(Dandapat et al. 2003; Chen 2003; Wang and Pop 2006).

These analytic solutions obtained by HAM could prove

useful in the understanding of transport behaviors of the

nanofluid-based power-law fluids arising in manufacturing

practices, such as polymer, coating and material processes.

In the end of the paper, we compared the experimental data

and the calculated results only in one case, and the experi-

mental data are smaller than the predicable analytical one. In

a sequel to this paper, we will perform a detailed quantitative

assessment of the quality of the physical model and

approximate analytic solutions by comparing them with

experimental data. We will pay close attention on the varying

parameters involved, the modified technique dealing with

the images and the method to obtain more sophisticated data

in the experiments.
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