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Abstract This work investigates the steady-state slip

flow of viscoelastic fluids in hydrophobic two-dimensional

microchannels under the combined influence of electro-

osmotic and pressure gradient forcings with symmetric or

asymmetric zeta potentials at the walls. The Debye–Hückel

approximation for weak potential is assumed, and the

simplified Phan-Thien-Tanner model was used for the

constitutive equation. Due to the different hydrophobic

characteristics of the microchannel walls, we study the

influence of the Navier slip boundary condition on the fluid

flow, by considering different slip coefficients at both walls

and varying the electrical double-layer thickness, the ratio

between the applied streamwise gradients of electric

potential and pressure, and the ratio of the zeta potentials.

For the symmetric case, the effect of the nonlinear Navier

slip model on the fluid flow is also investigated.

Keywords Electro-osmotic/pressure-driven flows �
Asymmetric zeta potentials � Viscoelastic fluids �
Hydrophobic microchannels � Slip velocity

1 Introduction

The exponential growth of technology, together with a

rapid dissemination of knowledge, made us question the

validity of some ‘‘empirical laws’’ that were considered an

absolute truth in the past, as happens for the no-slip

boundary condition at walls. Based on the experiments

with Newtonian fluids, the no-slip boundary condition

became popular and, above all, it was considered as a law,

as stated in many books on the subject of fluid mechanics.

However, the no-slip boundary condition is nothing more

than an empirical model, which is an excellent approxi-

mation in most cases.

For some non-Newtonian fluids, such as polymer

melts, it is nowadays consensually accepted the existence

of slip velocity between the fluid and the solid wall

(Brochard and de Gennes 1992; de Gennes 1979; Denn

2001; Inn and Wang 1996; Kraynik and Schowalter

1981; Léger et al. 1999; Migler et al. 1993; Schowalter

1988; Wan 1999). The same applies to electro-osmotic

flow (Marry et al. 2003; Herr et al. 2000), flow in

microfluidic devices (Gad-el-Hak 1999; Stone et al.

2004), biological processes (Zhang et al. 2003; Beebe

et al. 2002), and gas flow (incidentally, the assumption

that gases may exhibit wall slip was first introduced by

Maxwell 1879).

Even for Newtonian fluids, where the no-slip boundary

condition fits well the macroscopic experimental data,

some recent experiments in microfluidic flows showed the

inaccuracy of such boundary condition (Pit et al. 2000;
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Institute for Polymers and Composites/I3N, University of Minho

Campus de Azurém, 4800-058 Guimarães, Portugal
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Craig et al. 2001; Zhu and Granick 2001; Horn et al. 2000;

Baudry et al. 2001; Bonaccurso et al. 2002).

In the last decade, we have witnessed a fast evolution

in micro- and nanofluidics, and electro-osmotic flows

have also attracted the scientific community, especially

due to its applicability to chemical analysis, medical

research, and possibly in the mixing of fluids with

microscale flows.

Several works have been published on electro-osmotic

flow, such as the ones of Soong et al. (2008) and Jamaati

et al. (2010), regarding the Newtonian pressure-driven

electrokinetic flows in hydrophobic and planar micro-

channels. For non-Newtonian fluids, Afonso et al. (2009,

2011) presented analytical solutions of mixed electro-

osmotic/pressure-driven viscoelastic fluids in microchan-

nels for electro-osmotic flow under symmetric and asym-

metric zeta potentials using the Phan-Thien and Tanner

(1977, 1978) model to describe the viscoelasticity; Dhi-

nakaran et al. (2010) analyzed the full PTT model with

nonzero second normal stress difference; and Afonso et al.

(2012) derived the analytical solution for fully developed

electro-osmosis-driven flow of polymer solutions, descri-

bed by the sPTT and FENE-P models with a Newtonian

solvent contribution.

The existence of slip between the fluid and the wall is an

interfacial phenomenon that influences the hydrodynamics

of micro- and nanoflows, as discussed in Tretheway and

Meinhart (2002, 2002), Tandon and Kirby (2008), and

Tandon et al. (2008), and therefore, appropriate boundary

conditions should be used to properly model the flow

process. The Navier slip boundary condition (Navier 1827)

is the most widely used model to describe such effect.

In microfluidics, it is common to use channels with

walls made from different materials. For instance, in soft

lithography, the channels are often made in poly-

dimethylsiloxane (PDMS) except for the top wall that is

often made of glass for optical access, which emphasizes

the practical relevance of asymmetric flows.

In this work, we present an analytical solution for mixed

pressure-driven electrokinetic slip flows of viscoelastic

fluids in hydrophobic microchannels, with asymmetric zeta

potential and under the influence of the Navier slip

boundary condition at the channel walls.

Section 2 starts with the set of governing equations

including the nonlinear Poisson–Boltzmann equation gov-

erning the electric double-layer (EDL) field and the added

body force to the momentum equation, caused by the

applied electrical potential field. In Sect. 3, we present the

analytical solution for the sPTT and FENE-P models,

including the particular case of streaming potential. A

discussion of the Navier slip coefficient effects upon the

flow characteristics and the main conclusions obtained

closes this work.

2 Governing equations

The governing equations for this type of flow are the

continuity equation,

r � u ¼ 0 ð2:1Þ

and the momentum equation,

q
Du

Dt
¼ r � s�rpþ qeE ð2:2Þ

where u is the velocity vector, p the pressure, t the time, q
the constant fluid density (incompressible flow), and s the

polymeric extra-stress contribution, which is here

described by the sPTT constitutive model (Phan-Thien

and Tanner 1977; Phan-Thien 1978),,

f ðskkÞsþ k
Ds

Dt
�ruT � s� s � ru

� �
¼ 2gD; ð2:3Þ

where D is the rate of deformation tensor

(D ¼ 1
2
ruþruTð Þ), k is the relaxation time of the fluid,

g is the viscosity coefficient, skk ¼ sxx þ syy þ szz is the trace

of the extra-stress tensor and f ðskkÞ ¼ 1þ ek
g skk (the linear

version of the function). Note that although the transient

term is present in the full Eqs. (2.2) and (2.3), this study is

carried out assuming a steady-state flow; thus, the unsteady

terms are discarded in the remaining analysis.

In Eq. (2.2), qeE represents a body force term, where

E is the applied external electric field and qe is the net

electric charge density associated with the spontaneously

formed electric double layers (EDL, see Bruus 2008 for

more details), which are assumed here not to be affected by

the imposed electric field. The electric field is related to a

potential (U), E ¼ �rU, with U ¼ wþ /, where / is the

applied streamwise potential and w is the equilibrium-

induced potential at the channel walls, associated with the

interaction between the ions of the fluid and the wall

dielectric properties.

The different concentrations of counterions and co-ions

lead to the creation of a varying potential field, within the

electric double layer, that can be expressed by means of a

Poisson equation:

r2w ¼ � qe

�
ð2:4Þ

where w denotes the EDL potential and � is the dielectric

constant of the solution.

In this work, we assume that the microchannel walls can

be made of different materials (e.g., glass and PDMS),

leading to different hydrophobic characteristics, different

zeta wall potentials (see Fig. 1), and different slip boundary

conditions. In some previous works dealing with Newtonian

fluids (Soong et al. 2010), a slip-dependent zeta potential is

employed. Information on this issue is still rather limited
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and is essentially focused on Newtonian fluids. The addition

of macromolecules to water to produce viscoelastic solu-

tions has a strong impact upon the interaction between the

fluid and the wall (for instance, adsorption or the formation

of a skimming layer are two examples), so that the rela-

tionship between the zeta potential and slip coefficients of

rheologically complex fluids is still unknown. Therefore,

we have decided to carry out this work assuming those two

quantities can be independent of each other in order to

arrive at a more general analytical solution, which can be

easily modified in the future to account for the slip-depen-

dent zeta potential relationship. As boundary condition, we

assume the linear Navier slip law with different slip coef-

ficients (Navier 1827), L1 and L2, for the bottom and top

walls, respectively,

ukwall1 ¼ þL1sxykwall1

ukwall2 ¼ �L2sxykwall2

8<
: ð2:5Þ

where u is the streamwise velocity component and sxy is the

shear stress at the wall, which is parallel to the x-axis (cf.

coordinate system in Fig. 1).

For the symmetric case, we will also consider the non-

linear Navier slip boundary condition,

ukwall

�� �� ¼ Ls sxykwall

�� ��m ð2:6Þ

where m is the slip exponent.

We remark that for pure pressure-driven flows of vis-

coelastic fluids, one can find in the literature that values of

m range from 1 (Newtonian) to 4 (Chatzimina et al. 2009).

For electro-osmotic flows of viscoelastic fluids under the

influence of slip, the literature is scarce and we could not

find any experimental data. Therefore, as was done in the

past for pressure-driven flows, we extend the Navier slip

law (used for Newtonian fluids) to a more general model

that is able to deal with wall slip boundary conditions for

viscoelastic fluids. In this way, we obtain a more general

solution that can cope with various degrees of slip and

different classes of fluids.

3 Analytical solution

3.1 Asymmetric boundary conditions

Considering the flow between parallel plates (Fig. 1)

and by assuming the Debye–Hückel approximation,

(d2w
dy2
¼ j2w; where j2 ¼ 2n0e2z2=�kBT is the Debye–

Hückel parameter—more details in Afonso et al. 2011),

together with different zeta potential at the walls,

wky¼�H ¼ f1 and wky¼H ¼ f2, Eq. (2.4) leads to:

wðyÞ ¼ f1 W1ejy �W2e�jyð Þ ð3:1Þ

The net electric charge density is given by (Afonso et al.

2011)

qe ¼ ��j2f1 W1ejy �W2e�jyð Þ ¼ ��j2f1X
�
1 ðyÞ; ð3:2Þ

where W1 ¼ RfejH�e�jHð Þ
2 sinhð2jHÞ , W2 ¼ Rfe�jH�ejHð Þ

2 sinhð2jHÞ ;Rf ¼ f2=f1

denotes the ratio of the zeta potentials of the two walls

within the range -H B y B H, and X�p ðyÞ ¼
Wp

1 ejyð Þp�Wp
2 e�jyð Þp.

Assuming the fully developed flow of a fluid modeled

by the sPTT model, the constitutive equation (Eq. 2.3) can

be further simplified (for more details, see Afonso et al.

2011), leading to

f ðskkÞsxx ¼ 2k _csxy ð3:3Þ

f ðskkÞsxy ¼ g _c; ð3:4Þ

where skk ¼ sxx is the trace of the extra-stress tensor (note

that syy = szz = 0) and c
� ¼ du=dy is the velocity gradient.

The ratio between Eqs. (3.3) and (3.4) leads to

sxx ¼ 2
k
g
s2

xy ð3:5Þ

For the particular flow conditions considered, the

momentum equation (Eq. 2.2) can also be simplified to

dsxy

dy
¼ �qeEx þ p;x; ð3:6Þ

where p;x � dp=dx;Ex � �d/=dx and / is the electric

potential of the applied external field, which is character-

ized by a constant streamwise gradient. The external

electrical field is positive if in accordance with Fig. 1 and

negative otherwise.

Integration of Eq. (3.6) yields the following expression

for the shear stress distribution,

sxy ¼ �jf1ExX
þ
1 ðyÞ þ p;xyþ s1; ð3:7Þ

and making use of Eq. (3.5), the normal stress component

is given by

sxx ¼ 2
k
g
�jf1ExX

þ
1 ðyÞ þ p;xyþ s1

� �2
: ð3:8Þ

Ex

2H

y

x

Wall 1 (reference)

Wall 2

Fig. 1 Schematic view of the flow in a parallel plate microchannel
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where s1 is a shear stress integration constant to be quan-

tified later from the slip boundary conditions.

If we combine Eqs. (3.4), (3.7), and (3.8), the velocity

gradient distribution is obtained, given as

c
� � du

dy
¼ 1þ 2ek2 �Exf1

g
jXþ1 ðyÞ þ

p;x

g
yþ c1

�
� �2

" #

� �Exf1

g
jXþ1 ðyÞ þ

p;x

g
yþ c1

�
� �

ð3:9Þ

where the shear rate asymmetry coefficient is defined as

c1

� ¼ s1=g. Eq. (3.9) can be integrated subject to the slip

boundary condition at the lower wall (y = - H)

uky¼�H ¼ L1sxyky¼�H : ð3:10Þ

resulting in a velocity profile that depends on c1

�
. The

restriction imposed by the upper wall y ¼ Hð Þ slip

boundary condition (Eq. 3.11) provides the equation for c1

�

uky¼H ¼ �L2sxyky¼H ð3:11Þ

Note that the slip velocity can assume different

directions as illustrated in Fig. 2. This is a consequence

from the fact that sxyky¼H can be either positive or negative,

depending on the flow direction. We note, however, from

Eqs. (3.3) and (3.5) that sxy and the velocity gradient have

necessarily the same sign.

After integration and introducing the normalizations �y ¼
y=H and �j ¼ jH, the dimensionless velocity profile is then

given by

u

ush

¼�L1 jX
þ
1 ð�1ÞþC� c

�
1

� �

þ c
�
1 yþ 1ð Þ 1þ 2c

� 2
1

eWi2
j

j2

� �
� 1þ 6c

� 2
1

eWi2
j

j2

� �
X
�
1;1ðyÞ

þ 2c
�
1

eWi2
j

j
6W1W2j yþ 1ð Þþ 3

2
X
�
2;1ðyÞ

� �

� 2eWi2
j

1

3
X
�
3;1ðyÞþ 3W1W2X

�
1;1ðyÞ

� �

þ 1

2
C y2� 1
� �

1þ 6c
� 2
1

eWi2
j

j2
þ eWi2

j

j2
C2 y2þ 1
� �� �

þ 2c
�
1

eWi2
j

j2
C2 y3þ 1
� �

� 12c
�
1

eWi2
j

j3
C X

�
1;2ðyÞ�X

þ
1;1ðyÞ

� �

þ 6
eWi2

j

j2
C W1W2j

2 y2� 1
� �

þ 1

2
X
�
2;2ðyÞ�

1

4
X
þ
2;1ðyÞ

� �

� 6
eWi2

j

j4
C2 X

�
1;3ðyÞþ 2X

�
1;1ðyÞ� 2X

þ
1;2ðyÞ

� �
ð3:12Þ

where X
�
p;qðyÞ is the normalized operator defined as

X
�
p;qðyÞ ¼ j yð Þðq�1ÞX

�
p ðyÞ � ð�1Þðqþ1Þjðq�1ÞX

�
p ð�1Þ

ð3:13Þ

with X
�
p ðyÞ ¼ Wp

1 ej y
� �p�Wp

2 e�j y
� �p

. The parameter C ¼
� H2

�f1

p;x
Ex

represents the ratio of pressure to electro-osmotic

driving forces, c
�
1 ¼ c

�
1H
ush

, L1 ¼ L1
g
H

, and Wij ¼ kush

n ¼ kjush

is the Weissenberg number based on the EDL thickness

and on the Helmholtz–Smoluchowski electro-osmotic

velocity, ush ¼ � �f1Ex

g (Park and Lee 2008). For simplicity,

the above terms were based on the zeta potential at the

bottom wall (wky¼�H ¼ f1).

The dimensionless shear rate asymmetry coefficient is

calculated from the following cubic equation

c
� 3
1 þ a1c

� 2
1 þ a2c

�
1 þ a3 ¼ 0; ð3:14Þ

with coefficients

a1¼�
3

2
X
�
1;1ð1Þ

a2¼
j2

2eWi2
j
þC2þ6j2W1W2þ

3

4
jX
�
2;1ð1Þ

�3
C
j

X
�
1;2ð1Þ�X

þ
1;1ð1Þ

� �
þ

j2 L1þL2

� �
4eWi2

j

a3¼�
1

4

j2X
�
1;1ð1Þ

eWi2
j
�1

2
j2 1

3
X
�
3;1ð1Þþ3W1W2X

�
1;1ð1Þ

� �

þ3

2
C

1

2
X
�
2;2ð1Þ�

1

4
X
þ
2;1ð1Þ

� �

�3

2

C2

j2
X
�
1;3ð1Þþ2X

�
1;1ð1Þ�2X

þ
1;2ð1Þ

� �

þ j3

4eWi2
j
�L1 X

þ
1 ð�1Þ�L2 X

þ
1 ð1Þ

� �
þ

j2C �L1þL2

� �
4eWi2

j
:

ð3:15Þ

The relevant solution of this cubic equation is given in

Eq. 3.21. Performing the integration of the velocity profile

(Eq. 3.12) over the channel width, the following expression

relating Q and C is obtained,
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Q ¼ Q

2Hush

¼ u

ush

¼ 1

2

Z1

�1

u

ush

dy ¼ �L1 jX
þ
1 ð�1Þ þ C� c

�
1

� �

þ c
�
1 1þ 2

eWi2
j

j2
c
� 2
1

� �
� 1

2
C

4

5

eWi2
j

j2
C2 þ 2

3
1þ 6c

� 2
1

eWi2
j

j2

� �� �

þ 2c
�
1

eWi2
j

j2
C2 � 1

2
1þ 6

eWi2
j

j2
c
� 2
1

� �
X
þ
1;1ð1Þ
j
� 2X

�
1 ð�1Þ

 !

þ eWi2
j

j
c
�
1 12W1W2jþ

3

2

X
þ
2;1ð1Þ
2j

� 2X
�
2 ð�1Þ

 ! !

� eWi2
j

X
þ
3;1ð1Þ
9j

� 2

3
X
�
3 ð�1Þ þ 3W1W2

X
þ
1;1ð1Þ
j
� 2X

�
1 ð�1Þ

 ! !

� 6c
�
1

eWi2
j

j4
C X

þ
1;2ð1Þ � 2X

�
1;1ð1Þ þ 2j jX

�
1 ð�1Þ þ X

þ
1 ð�1Þ

� �h i

þ 3
eWi2

j

j2
C

1

4j
X
þ
2;2ð1Þ � X

�
2;1ð1Þ

� �
� 4

3
W1W2j

2 þ jX
�
2 ð�1Þ

�

þ 1

2
X
þ
2 ð�1Þ

�
� 3

eWi2
j

j5
C2 X

þ
1;3ð1Þ � 4X

�
1;2ð1Þ þ 6X

þ
1;1ð1Þ

� �

þ 6
eWi2

j

j4
C2 j2 þ 2

� �
X
�
1 ð�1Þ þ 2jX

þ
1 ð�1Þ

� �
:

ð3:16Þ

The expressions for the dimensionless shear and normal

stress components are easily obtained from Eqs. (3.5) and

(3.7), once s1 ¼ gc
�
1 is evaluated (from Eq. 3.14 in the

form of the normalized c
�
1).

The analytical solution for the FENE-P model can be

easily derived from the sPTT solution, provided suitable

substitutions are made (see Cruz et al. 2005).

3.2 Symmetric boundary conditions

Assuming equal zeta potentials at the walls,

wky¼�H ¼ wky¼H ¼ f ðRf ¼ 1Þ, analytical solutions can be

derived using the linear ukwall ¼ �Lssxykwall

� �
and also the

nonlinear Navier slip boundary condition ukwall

�� �� ¼�
Ls sxykwall

�� ��mÞ.
Considering again the fully developed flow conditions,

the dimensionless velocity profile is given by
u

ush

¼ Ls jD� C
�� ��m�1

jD� C
� �

þ ð1� 2CeWi2
jÞð1� AÞ

þ 2

3
eWi2

jð1� A
3Þ � 1

2
C 1� �y2
� �

1þ eWi2
j

�j2
C2 1þ �y2
� �	 


þ 3

2

eWi2
j

�j2
C 1� A

2 þ �j2ð1� y2ÞC þ 2jD yA B� 1
� �h i

� 12eWi2j
�j4

C2 �jD 1� yB
� �

þ ð1þ 1

2
�j�yð Þ2ÞA� ð1þ 1

2
�j2Þ

	 


ð3:17Þ

where A ¼ cosh �j�yð Þ
cosh �jð Þ , B ¼ sinh �j�yð Þ

sinh �jð Þ , C ¼ 1
cosh2 �jð Þ, D ¼ tanh �jð Þ,

L ¼ L g
H

� �m
ushj jm�1

, and the expression for the normalized

flow rate is

Q ¼ Q

2Hush

¼ u

ush

¼
Z1

0

u

ush

dy ¼ Ls jD� C
�� ��m�1

jD� C
� �

þ 1� 2CeWi2
j

� �
1� D

�j

� �

þ 2

3
eWi2

j 1� 1

3

D

�j
1þ 2C
� �� �

� C
2

5

eWi2
j

�j2
C2 þ 1

3

� �

þ 3

2

eWi2
j

�j2
C 2� D

�j
� C þ 2

3
C �j2 � 2�jD

� �

� 12eWi2
j

�j4
C2 �3þ 3

D

�j
þ 3

2
�jD� 1

2
�j2

� �
ð3:18Þ

Equation (3.17) and (3.18) agree with Eqs. (3.12) and

(3.16) when symmetric boundary conditions are used

(Rf ¼ 1 and c
�
1 ¼ 0) and m = 1, but the former are

(a) (b)

Fig. 2 Schematic view of the

flow in a parallel plate

microchannel with different

flow conditions at the upper

wall: a positive slip velocity;

b negative slip velocity
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preferred because of their simplicity (and the possibility of

using the nonlinear Navier slip law).

For Navier slip coefficient with m = 1, 2, and 3, this is a

cubic equation on C and the solution of the inverse problem

(calculation of C for a given Q) involves the determination

of C, which can be done using the Cardano–Tartaglia

solution for cubic algebraic equations. In many practical

applications, the finite electric double layer is very small,

about 1 to 3 orders of magnitude smaller than the thickness

of the microfluidic channel (10 . �j . 103). In these cir-

cumstances, cosh �jð Þ � 1 and D ¼ tanh �jð Þ � 1, so the

above equations for the velocity profile can be further

simplified. In particular, the normalized flow rate becomes

Q ’ Ls j� Cj jm�1 j� Cð Þ þ �j� 1

�j

� �
þ 2

3
eWi2

j
3�j� 1

3�j

� �

� C
2

5

eWi2
j

�j2
C2 þ 1

3

� �
þ 3

2

eWi2
j

�j2
C

2�j� 1� 2�j2

�j

� �

� 12eWi2
j

�j4
C2 �j

2
3� �jð Þ þ 3� 3�j

�j

� �
ð3:19Þ

which is simpler than Eq. (3.18), but still cubic in C for

m = 1, 2, and 3. This expression can be written in a more

compact form as

C3 þ a1C
2 þ a2Cþ a3 ¼ 0 ð3:20Þ

for m = 1, 2 or 3. Eq. (3.20) comprises the explicit solution

of the inverse problem, giving the ratio of pressure to

electro-osmotic driving forces as a function of the

dimensionless flow rate, viscoelastic model parameters,

and relative microchannel ratio. The solution is obtained

using the Cardano–Tartaglia formula (for simplicity, here

we consider the usual case j� C [ 0),

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1

4
þ a3

27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1

4
þ a3

27

r
3

s
� a1

3

a ¼ a2 �
a2

1

3

b1 ¼ a3 �
a1a2

3
þ 2a3

1

27

ð3:21Þ

with

a1 ¼
12

eWi2j
�j4

�j
2

3� �jð Þ þ 3�3 �j
�j

� �
� m� 1ð ÞLs

3
2
j

� �m�2

2
5

eWi2
j

�j2 þ dm3Ls

� �

a2 ¼
1
3
� 3

2

eWi2j
�j2

2 �j�1�2 �j2

�j

� �
þ mLsjm�1

2
5

eWi2
j

�j2 þ dm3Ls

� �

a3 ¼
Q� �j�1

�j

� �
� 2

3
eWi2

j
3 �j�1

3 �j

� �
� Lsjm

2
5

eWi2j
�j2 þ dm3Ls

� � ð3:22Þ

where dm3 is a Kronecker delta that assumes the value of 1

for m = 3 and 0 for m = 1 or 2.

4 Results and discussion

In order to understand the influence of the slip velocity on

the fluid flow, we present the results for the velocity pro-

files of an sPTT fluid under the mixed influence of electro-

osmotic/pressure-driven forces and symmetric/asymmetric

hydrophobic wall zeta potentials, and assuming different

slip coefficients at both walls. The influence of the slip

velocity on the coefficient of asymmetry is also studied.

4.1 Symmetric boundary conditions

4.1.1 Newtonian fluid with mixed drive forcings and wall

slip

For a Newtonian fluid, the Weissenberg number vanishes

(Wij = 0); thus, Eq. (3.17) becomes

u

ush

¼ Ls jD� C
�� ��m�1

jD� C
� �

þ ð1� AÞ � 1

2
C 1� �y2
� �
ð4:1Þ

under the mixed influence of electro-osmotic and pressure-

driven forcings. For C! 0, the last term on the right-hand

side of Eq. (4.1) vanishes, the flow becomes governed

solely by the electro-osmosis, and the velocity profile is

only a function of the wall distance and the relative mi-

crochannel ratio, �j. When 1
C! 0, pressure forcing domi-

nates the momentum transport and the classical laminar

parabolic velocity profile is recovered. Figure 3 shows

velocity profiles for various ratios of pressure gradient to

electro-osmotic driving forcings at �j ¼ 20 and �j ¼ 100 for

two different values of the slip coefficient, Ls ¼ 0 and

0.002 (m = 1). When C ¼ 0 the velocity profiles corre-

spond to a pluglike flow. The cases C\0 and C [ 0 cor-

respond to mixed Poiseuille/electro-osmotic flows with

favorable and adverse pressure gradients, respectively.

Equation (4.1) predicts negative velocities at �y ¼ 0 when

C [ 2

2Lsþ1

cosh �jð Þ�1

cosh �jð Þ

� �
þ 2Ls

2Lsþ1
j tanh �jð Þ, for the linear Na-

vier slip law m ¼ 1ð Þ. For small Debye lengths, �j J 10,

the velocity becomes negative in the central region of the

channel for CJ 2þ2Lsj
2Lsþ1

, which, as expected, reduces to the

solution without slip, CJ2, as found in Afonso et al.

(2009) when Ls ! 0. When comparing with the no-slip

solutions, we can conclude that the presence of slip

velocity affects the velocity profile and requires larger

adverse pressure gradients to obtain negative velocities.
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4.1.2 Viscoelastic fluid flow driven by electro-osmosis

with wall slip

For pure electro-osmotic flow (C ¼ 0) of a viscoelastic

fluid, Eq. (3.17) reduces to

u

ush

¼ Ls jD
� �mþð1� 2CeWi2

jÞð1� AÞ þ 2

3
eWi2

jð1� A
3Þ

ð4:2Þ

Figure 4a, b show the dimensionless velocity profiles as

a function of
ffiffi
e
p

Wij for two relative microchannel ratios

�j ¼ 20 and �j ¼ 100; with and without slip at the wall. By

comparing with the Newtonian case, we see that a pluglike

velocity profile is again obtained, but now
ffiffi
e
p

Wij and Ls

both contribute to an increase in the velocity plateau,

especially for �j ¼ 100 where the effect of the slip velocity

is more significant. The influence of �j on the velocity

profile is restricted to the effective EDL thickness, with

the velocity profiles for higher values of �j exhibiting

thinner EDL layers and consequently larger velocity

gradients (or shear rates). In Fig. 5, we analyze the

effect of the slip law exponent m on the velocity profile.

The profiles show that an increase in m leads to an

increase in the velocity plateau, with the influence of m on

the increase in the flow rate being more important than

that of Ls.

(a)

(b)

Fig. 3 Velocity profiles for various ratios of pressure to electro-

osmotic driving forcings, C, and various slip coefficients, �Ls ¼ 0

(solid line) and 0.002 (dashed line), for Newtonian fluids with m = 1

and relative microchannel ratio of (a) �j ¼ 20 and (b) �j ¼ 100

(a)

(b)

Fig. 4 Dimensionless velocity profiles of a PTT fluid for various

values of
ffiffi
e
p

Wij under pure electro-osmotic flow (C ¼ 0) ( �Ls ¼ 0

solid lines, �Ls ¼ 0:002 dashed lines). a �j ¼ 20 and b �j ¼ 100
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4.1.3 Viscoelastic fluid with mixed drive forcings and wall

slip

The viscoelastic flow characteristics under the combined

action of electro-osmosis and pressure gradient forcings are

discussed in this section, based on Eq. (3.17). Figure 6a, b

present dimensionless velocity profiles for flows with

favorable C\0ð Þ and adverse C [ 0ð Þ pressure gradients,

respectively. In both cases, the velocity profiles increase

with
ffiffi
e
p

Wij and Ls, and, as also shown in Fig. 4, the

increase due to the slip coefficient Ls contribution is more

intense for higher values of
ffiffi
e
p

Wij.

The effect of the slip velocity on the velocity profile can be

evaluated by imposing a constant dimensionless flow rate Q.

Fig. 7a, b present velocity profiles as a function of Ls at the

flow rate Q ¼ 1
2
, for the cases

ffiffi
e
p

Wij ¼ 0 and
ffiffi
e
p

Wij ¼ 2. The

influence of viscoelasticity leads to a decrease in the centerline

velocity (see Fig. 7b) when compared to the Newtonian case

(see Fig. 7a), and the slip velocity enhances this effect.

Simultaneously, an increase in the velocity gradients in the

EDL layers is observed for higher
ffiffi
e
p

Wij and Ls. This is

mainly a consequence of shear thinning, inherent to the vis-

coelastic model employed, which promotes higher velocity

gradients near the wall, and consequently lower velocities near

the symmetry plane for the same flow rate. Figure 7c, d show

similar results, but now for a higher dimensionless flow rate,

Q ¼ 3
2
.

In order to assess the influence of C on the dimension-

less flow rate Q, in Fig. 8, we show the variation of Q

QN

(QN

is the flow rate that would be observed for a Newtonian

fluid with no-slip velocity for each C) with C for j ¼ 20

and different values of �Ls and
ffiffi
e
p

Wij. For
ffiffi
e
p

Wij ¼ 0

(Newtonian fluid) we can see that the dimensionless flow

rate always increases with C (except at the critical value

C ¼ 2:85, for which QN ¼ 0) while for the other values offfiffi
e
p

Wij and �Ls the dimensionless flow rate is non-mono-

tonic. This can also be seen in Fig. 9, which illustrates the

variation of Q

QN

as a function of
ffiffi
e
p

Wij and �Ls, for two

different values of C. The parameter
ffiffi
e
p

Wij leads to a

significant increase in Q

QN

, due to the shear shinning effect

Fig. 5 Dimensionless velocity profiles of a PTT fluid for various

values of
ffiffi
e
p

Wij, m and �Ls and constant �j ¼ 20 under pure electro-

osmotic flow (C ¼ 0)

(a)

(b)

Fig. 6 Dimensionless velocity profiles for a PTT fluid under the

mixed influence of electro-osmotic/pressure-driven forces as a

function of
ffiffi
e
p

Wij and �Ls with a relative microchannel ratio of �j ¼
20 (Ls ¼ 0 (solid line); Ls ¼ 0:002 , m = 1 (dashed line)): a favor-

able pressure gradient (C ¼ �1) and b adverse pressure gradient

(C ¼ 2:5)
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mentioned above, and an increase in the slip velocity also

enhances Q

QN

, as expected.

4.2 Asymmetric boundary conditions

4.2.1 Pure electro-osmosis

For the sPTT fluid under pure electro-osmotic driving

force, the simplified velocity solution is derived by setting

C ¼ 0 in Eq. (3.12), which reduces to

u

ush

¼�L1 jX
þ
1 ð�1Þ � c

�
1

� �

þ c
�
1 yþ 1ð Þ 1þ 2c

� 2
1

eWi2
j

j2

� �
� 1þ 6c

� 2
1

eWi2
j

j2

� �
X
�
1;1ðyÞ

þ 2c
�
1

eWi2
j

j
6W1W2j yþ 1ð Þ þ 3

2
X
�
2;1ðyÞ

� �

� 2eWi2
j

1

3
X
�
3;1ðyÞ þ 3W1W2X

�
1;1ðyÞ

� �
: ð4:3Þ

For symmetric boundary conditions with no-slip

(Rf ¼ 1; L1 ¼ L2 ¼ 0; leading to c
�
1 ¼ 0) the above

equation reduces to that presented by Afonso et al. (2011),

but for Rf 6¼ 1 and L1;2 6¼ 0 the dimensionless shear rate

asymmetry coefficient, c
�
1, depends on the fluid rheological

properties. For a Newtonian fluid, the dimensionless shear

rate asymmetry coefficient is a linear function of Rf, as

expressed by
X
�
1;1ð1ÞþL1j X

þ
1 ð�1ÞþRLX

þ
1 ð1Þ

� �
2þL1 1þRLð Þ , that simplifies to

c
�
1 ¼ 1

2
X
�
1;1ð1Þ ¼ 1

2
Rf � 1ð Þ, when L1 ¼ 0 as shown in

Afonso et al. (2011).

Assuming the no-slip boundary condition at both walls,

for a viscoelastic fluid and Rf\1, c
�
1 is always negative,

decreasing with the increase in
ffiffi
e
p

Wij, an indication that

the shear stress is also decreasing as
ffiffi
e
p

Wij increases. For

(a) (b)

(c) (d)

Fig. 7 Dimensionless velocity profiles for Newtonian (
ffiffi
e
p

Wij ¼ 0)

and PTT fluids (
ffiffi
e
p

Wij ¼ 2) under the mixed influence of electro-

osmotic/pressure-driven forces for different values of the slip

coefficient �Ls and j ¼ 20: a Q ¼ 1
2

and
ffiffi
e
p

Wij ¼ 0; b Q ¼ 1
2

andffiffi
e
p

Wij ¼ 2; c Q ¼ 3
2

and
ffiffi
e
p

Wij ¼ 0; d Q ¼ 3
2

and
ffiffi
e
p

Wij ¼ 2

Fig. 8 Dimensionless flow rate Q

QN

as a function of C for pressure-

driven/electro-osmotic flow of a PTT fluid for j ¼ 20 and different

values of the slip coefficient, �Ls, and
ffiffi
e
p

Wij
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Rf [ 1, c
�
1 is always positive and increases with

ffiffi
e
p

Wij,

due to the increasing shear-thinning behavior of the fluid,

leading to higher normalized shear stresses. Afonso et al.

(2011) showed that all curves asymptote to the same lim-

iting curve when
ffiffi
e
p

Wij !1, with the absolute value of

c
�
1 increasing when �j increases.

The dependence of the dimensionless shear rate asym-

metry coefficient on the slip coefficients L1;L2

� �
is shown

in Fig. 10, for the particular case of
ffiffi
e
p

Wij ¼ 1. To capture

the influence of both slip coefficients on c
�
1, and based on

the data obtained from Afonso et al. (2011), we selected

three different values of Rf, Rf ¼ �1; 1; 2 and plotted the

variation of c
�
1 for two particular cases, L1 ¼ 0 and

L1 ¼ L2.

For the first value, Rf ¼ �1, c
�
1 is negative and decreases

in both situations, being smaller for L1 ¼ L2. The same

happens with Rf ¼ 2, with the difference that c
�
1 is now

positive and increases for both cases (L1 ¼ 0 and

L1 ¼ L2). The decrease in c
�
1 was expected, because the

shear stress is reduced when wall slip is present. We can

see that the variation of c
�
1 with the slip velocity is similar

to the variation of c
�
1 with

ffiffi
e
p

Wij. Additionally, we observe

that the slip coefficient enhances the viscoelastic effects.

For Rf ¼ 1, only the variation of Rf with L2 (L1 ¼ 0)

was analyzed, because when L1 ¼ L2 the flow is sym-

metric and c
�
1 ¼ 0. For this case, we found that c

�
1 increases

with L2.

Figure 11 shows the velocity profiles for asymmetric

slip boundary conditions (with L1 ¼ 0). Note that for Rf ¼
1 the velocity profile is skewed due to the asymmetry

imposed by the slip velocity. We can also see, as expected,

an increase in the normalized velocity magnitude with the

slip coefficient L2.

(a)

(b)

Fig. 9 Variation of the dimensionless flow rate Q

QN

with
ffiffi
e
p

Wij and

the slip coefficient �Ls (m = 1)for the pressure-driven/electro-osmotic

flow of a PTT fluid for relative microchannel ratio j ¼ 20: a favorable

pressure gradient (C ¼ �1) and b adverse pressure gradient (C ¼ 2:5)

Fig. 10 Variation of c
�
1 with the slip coefficients, L1;L2, for m = 1

and constant values of Rf and
ffiffi
e
p

Wij ¼ 1 with a relative microchan-

nel ratio of j ¼ 20

Fig. 11 Dimensionless velocity profiles as a function of L2 (m = 1)

for constant L1 ¼ 0, for the electro-osmotic flow of a PTT fluid with

Rf ¼ �1; 1 and
ffiffi
e
p

Wij ¼ 1
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4.2.2 Mixed driving forces

In this section, we investigate the sPTT fluid flow under the

combined action of electro-osmosis, pressure gradient, and

slip boundary conditions (Fig. 12).

Afonso et al. (2011) showed (for the asymptotic limit

of
ffiffi
e
p

Wij !1) that increasing the favorable pressure

gradient (decreasing C for negative values), c
�
1 increases,

especially for Rf\1, and increasing C for adverse pres-

sure gradient conditions also leads to an increase in c
�
1,

especially for �1\Rf\1. Notice that for the asymptotic

limit of large
ffiffi
e
p

Wij the cubic equation that needs to be

solved is independent of the slip boundary conditions;

therefore, we followed the same procedure adopted for the

pure electro-osmotic case. For this case, we studied the

variation of c
�
1 with the slip coefficients L1 and L2 for

Rf ¼ �1; 1; 2 and C ¼ �2;�1; 0; 1; 2. The results

obtained are similar to those obtained with C ¼ 0, with

the difference that the absolute values of c
�
1 increase

with C.

Figure 13a, b present the dimensionless velocity pro-

files for slip flows with symmetric (Rf ¼ 1) and anti-

symmetric zeta potentials (Rf ¼ �1), respectively, forffiffi
e
p

Wij ¼ 1. For both, favorable (C\0) and adverse

pressure gradients (C [ 0), Fig. 13a shows that the

velocity profile increases with L2; due to the consequent

reduction in the shear stress near the wall. For the case

of Rf ¼ �1; Fig. 13b shows that the slip velocity

increases in the direction of the flow. For this case, the

flow near the upper wall is in the adverse direction and,

therefore, the slip velocity increases (in magnitude) in

that direction.

5 Conclusions

In this work, we derived analytical solutions for the fully

developed channel flow of symmetric z-z electrolyte vis-

coelastic fluid (sPTT) under the mixed influence of electro-

osmosis and pressure gradient forcings, for the cases of

symmetric and asymmetric wall zeta potentials and

assuming different slip coefficients at the bottom and top

walls, representing different hydrophobic characteristics of

the microchannels walls. The combined effects of the slip

boundary conditions, fluid rheology, electro-osmotic, and

pressure gradient forcings on the fluid velocity distribution

are also discussed in terms of the relevant dimensionless

numbers. The results demonstrate that both the presence of

the slip velocity and viscoelasticity induce an increase in

the dimensionless velocity profiles and the flow rate. We

also found that an increase in the slip coefficient influences

the asymmetry coefficient, with _c1 decreasing for Rf\0

and increasing for Rf [ 0.

Fig. 12 Variation of c
�
1 with the slip coefficients, L1;L2, for constant

values of Rf and
ffiffi
e
p

Wij ¼ 1 with a relative microchannel ratio of

j ¼ 20 and a favorable pressure gradient C ¼ �1

(a)

(b)

Fig. 13 Dimensionless velocity profiles as a function of L2 (m = 1)

for L1 ¼ 0, for the electro-osmotic flow of a PTT fluid with
ffiffi
e
p

Wij ¼
1 (a) Rf ¼ 1 (b) Rf ¼ �1
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