
RESEARCH PAPER

Limits of linearity in squeeze film behavior of a single degree
of freedom microsystem

Shujuan Huang • Diana-Andra Borca-Tasciuc •

John Tichy

Received: 30 May 2013 / Accepted: 14 October 2013 / Published online: 2 November 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract This paper presents a theoretical investigation

of squeeze film flow in systems employing microplates

parallel to a substrate and undergoing large amplitude

normal vibration. Most previous models of squeeze film

damping assume small oscillation amplitude with linear

system behavior, but it is often unclear how small the

vibrations must be to actually elicit this response. In

addition, fluid inertia effects are usually overlooked. This

study provides a compact nonlinear solution for the

incompressible hydrodynamic forces with specific terms

describing fluid inertia and viscous damping. Numerical

analysis (the explicit Runge-Kutta method) is applied to

solve the nonlinear governing equation. The effects of

frequency, oscillation amplitude, aspect ratio (of gap to

length), and Reynolds number on the dynamic response of

the system are investigated. The overall system response

depends strongly on the actuation frequency and system

properties. It is found that a simple criterion of validity for

the linear system assumption is not possible. Near reso-

nance, the vibration input amplitude (relative to the initial

gap) must be very small indeed for linearity (*0.001),

while in other cases the relative amplitude can be greater

than one.

Keywords Hydrodynamic lubrication �
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1 Introduction

Squeeze film damping is a common phenomenon which

occurs in many devices that involves a surface moving in a

normal direction in close proximity to another solid sur-

face. The relative motion alternately squeezes out and

draws in fluid between the two surfaces. This causes a

pressure field to arise within the fluid, which may affect the

movement of the surfaces. If the fluid film thickness is

small enough compared to the wall width, such a phe-

nomenon plays a significant role in energy loss and often

dominates the dynamic motion of the system (Williams

2005).

Derived from integrated circuit fabrication technology,

microelectromechanical systems (MEMS) have driven a

great amount of research and number of applications, due

to their potential of performing sensing and actuation at

unprecedented levels of miniaturization (Hsu 2008). The

study of a fluid film squeezed between two solid surfaces is

important in many MEMS applications that involve the

out-of-plane vibration of beams or plates in the proximity

of a surface, such as accelerometers (Houlihan and Kraft

2005), resonators (Zhang et al. 2004), optical switches

(Horsley et al. 2005), microtorsion mirrors (Pan et al.

1998), and others. As size shrinks, the volume forces such

as gravity become less important, while surface forces like

those due to hydrodynamics often comprise the largest

source of parasitic losses (Bao and Yang 2007).

Depending on the design criteria and operating condi-

tions, squeeze film damping influences the behavior of

MEMS in different ways. For instance, in a resonant sen-

sor, to achieve a high Q-factor, the damping should

be reduced as much as possible for the best resolution

(Homentcovschi and Miles 2010). On the other hand,

system damping may provide stability to certain devices
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with inherent tendencies to instability, such as microac-

celerometers (Houlihan and Kraft 2005). All these devices

are greatly affected by squeeze film forces on their reso-

nance frequency, Q-factor, velocity, and amplitude. Hence,

it is essential to understand the flow mechanisms and

evaluate fluid forces accurately to optimize the design of

microdevices.

The fluid force on a surface associated with squeeze film

flow can be interpreted as the sum of two forces: an inertia

force which is proportional to the acceleration of the con-

fining surface (the proportionality constant is called the

added mass coefficient) and likewise a corresponding vis-

cous force which is proportional to the velocity (the pro-

portionality constant being the viscous damping coefficient

(Huang et al. 2011)). In this paper, the terms damper or

damping are used to characterize these devices in general,

although by a stricter terminology, damping refers only to

energy dissipation due to viscosity.

Extensive efforts have been devoted to the developing of

mathematical models for squeeze film forces acting on

MEMS devices. The publications in this area are based

almost exclusively on the well-known Reynolds equation

and the behavior of linear systems (Zhang et al. 2004; Starr

1990; Veijola et al. 1995; Darling et al. 1998; Kwok et al.

2005; Pandey and Rudra 2007; Pandey and Pratap 2008).

The linearized models are applicable for only small

amplitude oscillation devices, and when convective inertia

effects are negligible. However, large amplitude oscilla-

tions are common in many microdevices such as the RF

switch, deformable mirrors, and pull-in pressure sensors

(Chigullapalli et al. 2012; Pandey and Pratap 2003). These

devices require a more sophisticated model that accounts

for the nonlinear behavior of the squeeze film forces.

A few researchers have addressed squeeze film damping

of microdevices oscillating at large amplitude. Pandey and

Pratap (2003) studied the nonlinear effect of viscous,

unsteady, compressible, and laminar air flow between two

parallel plates with a narrow gap. The results showed that

nonlinear effects in the squeeze film model become sig-

nificant once the amplitude of vibration exceeds 10 % of

the initial gap. De and Aluru (2006) investigated the

complex nonlinear oscillations for an electrostatically

actuated microstructure. Moghimi Zand and Ahmadian

(2007) presented a model to analyze pull-in phenomenon

and nonlinear vibrational behavior and dynamics of multi-

layer microplates subjected to an electric field. In the above

works, finite element or finite difference methods were

applied to study nonlinear dynamic systems without the

prerequisite of small amplitude oscillation.

However, in all these studies, fluid inertia effects were

neglected. Nevertheless, inertia may become significant

when the velocity or oscillation frequency of the system is

high or when the system is operated in a dense (i.e., liquid)

medium. For instance, from lubrication theory, the force

resisting the motion of a plate moving perpendicular to a

close parallel substrate is proportional to _h=h3;where h is the

fluid film thickness, or the distance between the two surfaces

(Williams 2005). However, recent experimental data from

such systems of micrometer size operating in a liquid envi-

ronment seem to not exhibit this dependency (Naik et al.

2003; Harrison et al. 2007). Specifically, in Naik et al., the

viscous damping coefficient was found to be proportional to

the inverse of the fluid thickness to the first power (1/h), the

same as the inertia added mass coefficient. In Harrison et al.

where a similar problem was studied, powers of -1 and -1/2

were measured for viscous and added mass coefficients.

However, this study was later followed up by a report from

the same group, showing that the fluid force indeed scales as

1/h3 even when the plate is far away from the wall, i.e., when

the thin film assumption is not applicable (Fornari et al.

2010). These authors expressed frustration due to ‘‘the lack

of a well-described theory’’ in the literature.

A complete solution for specified properties and kine-

matic conditions that considers the effects of viscosity and

inertia at large oscillation could be obtained by directly

solving the Navier-Stokes equations via commercial sim-

ulation software (Turowski et al. 1999; Pandey et al.

2007). Although commercial software for such computa-

tion fluid dynamics simulations is efficient and readily

available, the cost and effort of solving a complete fluid

model coupled to finite element structural elastic behavior

(fluid–structure interaction or FSI) is still substantial. The

objective of this study is to achieve the similar goal via a

fast, accurate, and low cost method. This paper presents an

investigation of both inertia and viscous fluid effects on the

dynamic response of a system employing a microplate

parallel to a substrate and undergoing large normal vibra-

tions. A compact expression for the incompressible

hydrodynamic forces with separate viscous and inertia

terms is developed. The dynamic response of the system is

solved numerically for realistic cases. In the Results and

Discussion section, parameters that have effects on the

behavior of the linear and nonlinear model are discussed in

detail. The critical oscillation amplitude (i.e., the largest

amplitudes at which linear model is applicable) is also

found for a wide range of actuation frequencies.

2 Analysis

2.1 Governing equations

The system of interest consists of a rigid, rectangular plate,

as shown in Fig. 1, whose dimensions are L and W along

the x- and z-directions in a laboratory reference system.

Under the plate lies an infinite substrate, and a thin film of
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fluid is confined in between. The positions of the plate and

the substrate are yp and ys, respectively. The plate has an

effective mass m and is connected to the substrate by an

elastic structure with effective spring constant k. The plate

has single degree of freedom in the y-direction of squeez-

ing. The flow between the plate and substrate can be ide-

alized strictly as two-dimensional when W � L. According

to lubrication texts (e.g., Szeri 1998), in the cases where

W* L, it is still an accepted approximation to regard the

flow as two-dimensional.

Assuming that under an external sinusoidal excitation

this system undergoes arbitrary vertical (normal) vibra-

tions, the position of the substrate ys can be expressed as:

ys ¼ Ys0 þ dHn sin xtð Þ; x ¼ 2pf ; ð1Þ

where Ys0 is the initial position of the substrate, d is a

dimensionless parameter representing the dimensionless

oscillation amplitude (d[ 0), Hn is the nominal gap (the

gap in the absence of both the driving force and the plate

effective mass), t is time, x is the angular frequency and

f is the excitation frequency in Hz.

In the analysis, the displacement of the plate yp(t) is

sought. However, in the case of finite or large oscillation,

one cannot assume a sinusoidal motion of the plate. From

Newton’s second law, the equation describing the motion

of the plate is

m
d2yp

dt2
¼ Fg þ Fel þ Ffl; ð2Þ

where Fg is the gravity force which is equal to -mg with g

as the gravitational constant, Fel is the elastic force of the

beams, and Ffl is the hydrodynamic force acting upon the

plate by the fluid.

The dynamic gap (or the thickness of the fluid film)

between the plate and substrate is

h ¼ yp � ys: ð3Þ

An expression for the dynamic elastic force is

straightforward

Fel ¼ �k yp � ys

� �
� Hn

� �
: ð4Þ

2.2 Derivation of hydrodynamic forces

The squeeze film fluid force Ffl can be considered as the

sum of a viscous force Fv and an inertia force Fi. Deter-

mination of these quantities for incompressible fluids fol-

lows the methodology of Tichy and Modest (1978) and

Tichy and Winer (1977). In the more general (nonlinear)

case, we write:

Ffl ¼ Fv þ Fi;

Fv ¼ �
L3W

h3
gcv

dyp

dt
� dys

dt

� �
;

and

Fi ¼ FiC þ FiU

¼ � L3W

h2
qciC

dyp

dt
� dys

dt

� �2

� L3W

h
qciU

d2yp

dt2
� d2ys

dt2

� �
;

ð5Þ

where g is fluid viscosity and q is the density. The inertia

force includes both convective FiC and unsteady FiU terms.

The symbols cv, ciC, and ciU denote dimensionless viscous,

convective inertia, and unsteady inertia coefficients. The

incompressible condition (liquids or gasses undergoing

small pressure excursions relative to atmospheric) elimi-

nates the so-called fluid spring force. In the case of parallel

rectangular plates, the numerical values are cv = 1,

ciC = 17/70, and ciU = 1/10, respectively. The method of

analysis is to express the inertia terms of the Navier-Stokes

equations (left-hand-side) as a first-order correction to the

viscous Stokes flow solution. The linear Stokes flow

equations (the right-hand-side of the Navier-Stokes equa-

tions), when integrated across the film, give rise to Rey-

nolds equation. The convective term of Eq. (5) is generated

by the nonlinear convective terms of the Navier-Stokes

equations such as vdv/dx, while the unsteady term of

Eq. (5) is generated by the local unsteady term such as

dv/dt. The analytical method, known to be highly accurate

to modified Reynolds number about 10, is described in

detail in Szeri’s text (1998). The numerical values of the

coefficients are also reported by Szeri.

For other plate geometries, e.g., a circular disk, the

coefficients cv, ciC, and ciU would have different numerical

values but the structure of the equations is the same

(Hamrock 1994).

2.3 Numerical solution for the dynamic system

To solve the Eqs. (2)–(5) for plate displacement yp, a set of

state equations is attributed to the system:

ys

yp

k

m

c

b
y p

y s

Plate
a

Substrate

Support
beams

W

L

Spacersy

xz

datum plane

Fig. 1 a Rigid rectangular plate supported elastically and vibrating in

the y-direction, normal to a parallel substrate. A viscous fluid is

confined between the plate and substrate, while normal sinusoidal

displacement is imposed on the latter. b Lumped element represen-

tation, assuming that the system has a single degree of freedom
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_yp ¼ vp; _vp ¼
1

mþ mi

�kðyp � ys � H0Þ þ FflT

� �
;

mi ¼
L3W

h
qciU; vs ¼ _ys ¼ dHnx cosðxtÞ;

_vs ¼ �dHnx
2 sinðxtÞ;FflT ¼ �

L3W

h3
gcv vp � vs

� �

� L3W

h2
qciC vp � vs

� �2þ L3W

h
qciU _vs; ð6Þ

where the dot superscript means d/dt, vp is the velocity of

the plate, vs is the velocity of the substrate, mi is the added

mass associated with unsteady inertia force, and FflT is a

term of the inertia fluid force. Nonlinearities in the plate

response yp arise due to the convective velocity squared

terms ð� ð _yp � _ysÞ
2Þ, and the reciprocal of the film thick-

ness term (* 1/(yp - ys)) raised to powers one, two, and

three. Although the viscous and unsteady terms of the

Navier-Stokes equations are linear in the fluid mechanical

sense, they cause nonlinear forces on the oscillating plate.

The governing equations can be nondimensionalized

using:

y�p ¼
yp

H0

; F� ¼ FH3
0

gL3W
; x0 ¼

ffiffiffiffi
k

m

r

; t� ¼ x0t;

y�s ¼ d sinðx�t�Þ; h� ¼ y�p � y�s ;

to obtain:

v�p ¼ _y�p; _v�p ¼
1

1þ ciUNvNRe0=h�
�ðy�p � y�s � 1Þ þ F�flT

	 

;

F�flT ¼ �cvNv

v�p � v�s
h�3

� ciCNvNRe0

ðv�p � v�s Þ
2

h�2
þ ciUNvNRe0

_v�s
h�
:

ð7Þ

The following governing dimensionless parameters of

the problem emerge:

x� ¼ x
x0

; d ¼ Dys

Hn

; A ¼ H0

L
;

Nv ¼
L3Wg

mx0H3
0

¼ Wg
mx0A3

; NRe ¼
qxH2

0

g
;

and NRe0 ¼
qx0H2

0

g
; ð8Þ

where x0 is the vacuum resonance frequency of the system

in radians per second, x* is frequency ratio, Dys is the

oscillation amplitude of the substrate and A is an aspect

ratio of the gap size. The parameter Nv is a dimensionless

‘‘viscous number’’ which represents the ratio of viscous

fluid force to the inertia force of the structure (as opposed

to inertia force of the fluid). The symbol NRe is the usual

unsteady Reynolds number, which is the ratio of inertia

force of the fluid to the viscous force, and NRe0 is the

Reynolds number at resonant frequency.

When the state variables of the system undergo large

vibrations, the nonlinear Eq. (6) can be integrated numeri-

cally, using, for example, an ode command in MATLAB

(Senturia 2001). A series of solvers provided by MATLAB

can be used to solve initial value problems for ordinary dif-

ferential equations (ODE). Selection of the particular solver

depends on the characteristics of the ODE (e.g., the matrix

stiffness), the requirements of accuracy, and cost. Solver

ode45 (explicit Runge-Kutta 4th and 5th order formulation)

is chosen in this study. On the other hand, when the system

undergoes small displacement around its balance position

(d � 1), the hydrodynamic force can then be linearized and

solved analytically in a closed form (Huang et al. 2011):

Ffl ¼ Fv þ Fi;

Fv ¼ �
L3W

H3
0

gcv

dyp

dt
� dys

dt

� �
;

and

Fi ¼ FiU ¼ �
L3W

H0

qciU

d2yp

dt2
� d2ys

dt2

� �
; ð9Þ

where H0 is the mean gap value (i.e., the gap between the

plate and the substrate including the static effect of gravity

and elastic force), which can be expressed as:

H0 ¼ Hn �
mg

k
: ð10Þ

3 Results and discussion

To thoroughly examine all aspects of the behavior of the

system, two output dimensionless parameters F* and yp
*

would need to be shown as functions of input parameters

A, d, x*, Nv, and NRe0. Such a detailed investigation would

not be appropriate to the goals of this study and have

diminishing returns. Instead, to understand under which

circumstances the small amplitude oscillation assumption

can be applied, a case study is presented herein. In the

system under consideration, to demonstrate the applica-

bility of the method, the starting point is a base case typical

of many microsystem applications: the plate length and

width are taken as 500 lm (see Fig. 1). The length and

width of the suspension beams are 2 mm and 100 lm,

respectively. Using the physical parameters of the most

common material in microfabrication (silicon), the effec-

tive elastic constant k is calculated as 810 N/m for these

dimensions. Unless specified otherwise, the confined fluid

is taken as water ðq ¼ 1000 kg=m3; g ¼ 0:001Pa � sÞ, the

nominal gap Hn is set to 50 lm, and the natural frequency

of the plate in vacuum is chosen as 3,000 Hz, the same

range as used by Naik et al. (2003) and Harrison et al.

(2007) by taking the effective mass m as 2.28 mg.
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3.1 Effect of frequency ratio and oscillation amplitude

on displacement and force

First, the comparison between the full and linear solution

predictions is carried out for a system oscillating well

below its resonant frequency (x* = 0.5). Two cases are

investigated, namely when the oscillation amplitude of the

substrate is small d = 0.1 and large d = 1.0. The figures

on the left-hand side, Fig. 2a, c, show the film thickness

and displacement of the substrate and plate as a function of

time. The figures on the right-hand side, Fig. 2b, d present

the inertia and viscous forces for the same time interval and

the same conditions.

As seen from these figures, for relative amplitude

d = 0.1, the linear and nonlinear solutions of plate dis-

placement and fluid forces are imperceptibly different

(Fig. 2a, b). However, surprisingly, when oscillation

amplitude becomes much larger (d = 1.0), the linear and

nonlinear solutions of plate displacement are still nearly

identical (Fig. 2c) although the forces differ drastically. It

is worth noticing that at this condition, the substrate and

plate go through large oscillations (amplitudes of 50 and

70 lm, respectively), but the film oscillations are relatively

small (20 lm). In addition, due to high Reynolds number,

inertia force dominates over viscous force. Conditions of

high Reynolds number often appear to be the norm rather

than the exception in squeeze film microsystems

applications. A phase shift between the inertia and viscous

force can be observed since the former is proportional to

the acceleration and the latter is proportional to the velocity

of the system. As expected, the magnitudes of both forces

increase with increasing oscillation amplitude.

Next, the same exercise is performed at resonant fre-

quency (x* = 1.0). Figure 3 shows a similar comparison

between the linear and nonlinear models. In contrast to

findings for the previous case discussed above, this time

the linear and nonlinear model predictions coincide only

for ultra-small d = 0.001, Fig. 3a, b. At relative ampli-

tude d = 0.1, where the linear and nonlinear solutions

nearly coincide when the system oscillates below reso-

nance in Fig. 2a, b, the linear solution here shows that

the plate penetrates the substrate (i.e., in effect, a nega-

tive film), which is obviously physically incorrect

(Fig. 3c). This result is also in disagreement with non-

linear result in Fig. 3c. The forces now differ widely

between linear and nonlinear, and at larger d, they are no

longer sinusoidal (Fig. 3d). The solution of the nonlinear

model is a complicated sum of nonlinear terms, such as
_h=h3; _h2=h2 and €h=h; so a wide range of nonsinusoidal

behavior is not surprising. Note that in the linear case,

Eq. (9), the denominators of these terms are the constant

H0. Also, comparing to the circumstances portrayed at

x* = 0.5, the amplitude of current forces is some 20

times larger.

Fig. 2 Steady periodic displacement and fluid forces. Comparison between the linear and nonlinear solution for dynamic motion of substrate at

half the resonant frequency x* = 0.5, aspect ratio A = 0.1 (with Nv = 0.01, NRe0 = 47.07). For a and b d = 0.1; For c and d d = 1.0. In legend,

‘‘film’’ denotes the thickness of fluid film h, Eq. (3)
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3.2 Effect of aspect ratio on displacement and force

In addition to frequency ratio and oscillation amplitude, the

aspect ratio between the gap thickness and plate length

significantly impacts the dynamic response of the system.

To illustrate this, the system under consideration is excited

at a similar situation as in Fig. 3c, d (x* = 1.0, d = 0.1)

but a smaller aspect ratio A = 0.02 versus A = 0.1. It is

shown that linear and nonlinear solutions for the plate

motions and fluid forces are exceedingly close when aspect

ratio is smaller (Fig. 4a, b), and the difference increases as

aspect ratio increases (Fig. 3c, d). The fluid film thickness

becomes negative for linear solution when aspect ratio

increases to 0.1 (Fig. 3c). The result once again shows that

when the system is excited at resonance frequency and

aspect ratio is large, for the linearized model to be hold, the

relative amplitude d has to be extremely small.

3.3 Effect of Reynolds number on displacement

and force

Reynolds number is another factor that may influence the

dynamic response of the squeeze film system. To investigate,

the properties of 50 cSt silicone oil are applied ðq ¼
960 kg=m3; g ¼ 0:048 Pa � sÞ instead of water. Silicone oils

are widely used and commercially available liquids. The

system is excited again at the natural frequency (x* = 1.0)

and amplitude d equals 0.1. Reynolds number NRe0 now

drops to 0.93 compared to 47.1 with water. The dynamic

performance of the system is shown in Fig. 5. Compared to

Fig. 3 Steady periodic displacement and fluid forces. Comparison between linear and nonlinear solution for dynamic motion of substrate at the

resonant frequency x* = 1.0, aspect ratio A = 0.1 (with Nv = 0.01, NRe0 = 47.07). For a and b d ¼ 0:001; for c and d d = 0.1

Fig. 4 Steady periodic displacement and fluid forces. Comparison between linear and nonlinear solution for dynamic motion of substrate at

small aspect ratio A = 0.02 (x* = 1.0, d = 0.1, Nv = 7.29, NRe0 = 47.07)
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the results shown in Fig. 3c, the linear and nonlinear solu-

tions for plate motions are close to each other when Reynolds

number is small (Fig. 5a). While dominant inertia force

brings nonlinearity into the picture (Fig. 3d), low Reynolds

number or stronger viscous force has the opposite tendency,

causing linearity of the system (Fig. 5b).

It is worth pointing out that as shown in Eq. (5), the total

fluid force is the sum of the viscous force, convective

inertia force, and unsteady inertia force. Convective inertia

force is often neglected when Reynolds equation applies

(Bao and Yang 2007; Marrero et al. 2010). The dimen-

sionless numbers discussed above, i.e., x*, d, A, and NRe0

determine the relative importance of convective inertia

force. When excitation frequency is close to the natural

frequency, oscillation amplitude and aspect ratio are large,

or Reynolds number is high, convective force will be

important and must be taken into account. Figure 6 gives

an example showing the comparison of the complete fluid

force and the one neglecting convective inertia for two

different cases. The system is excited at the same condi-

tions as in Figs. 3d and 5b respectively. As can be seen in

Fig. 6a, when Reynolds number is high, the fluid force

including convective inertia is * 25 % greater than the one

omitting it. Moreover, due to the term _y2
p; the behavior of

the complete force solution is more irregular than the one

only considering viscous and unsteady force. On the other

hand, these results indicate that convective force can be

neglected if Reynolds number is small or the viscous effect

dominates (Fig. 6b).

3.4 Selecting the range for ‘small’ amplitude

oscillation

As discussed above, the linear solution is valid only when

oscillation amplitude is sufficiently small, and otherwise,

the nonlinear model is required. However, the boundary

between ‘‘small’’ and ‘‘large’’ amplitude oscillation is

vague. Normally, d * 0.1 is considered to be small

vibration (Pandey and Pratap 2003; Huang et al. 2011).

Nevertheless, as shown above, for low Reynolds number,

low aspect ratio or for actuation frequency away the res-

onant frequency, the linear solution can be very close to the

nonlinear solution even when the relative amplitude d is

large (order one). On the other hand, in some situations,

especially when the system is actuated very near to reso-

nant frequency, d * 0.1 is not small enough, as illustrated

in previous sections.

Therefore, the criterion for ‘‘small oscillation’’ is not the

same for different situations, and instead, it depends on the

system properties and actuation frequency. The maximum

d which is valid for a linear approximation is desirable for

specific condition in design and experiment. Hence, an

approximate method for seeking the maximum d for line-

arity is proposed here. A critical value d0 can be associated

Fig. 5 Steady periodic displacement and fluid forces. Comparison between linear and nonlinear solution for dynamic motion of substrate when

Reynolds number NRe0 = 0.93 (x* = 1.0, d = 0.1, A = 0.1, Nv = 0.56)

Fig. 6 Importance of convective inertia force (x* = 1.0, d = 0.1, A = 0.1). For a Nv = 0.01, NRe0 = 47.07; For b Nv = 0.56, NRe0 = 0.93
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with the case when the linear solution shows the plate starts

to penetrate the substrate. This condition of a negative film

h \ 0 is an unambiguous indicator that the linear analysis

is no longer valid, although significant errors may occur

sooner.

As an example, again the nominal gap Hn is set to

50 lm, the natural frequency is 3,000 Hz, and the effective

mass is 2.28 mg. Figure 7 shows the critical oscillation

amplitude d0 at a wide range of actuation frequencies. Step

intervals of frequency f and dimensionless amplitude d are

chosen to be 250 Hz and 0.02, respectively. Water and

silicone oil 50 cSt are taken as fluid media in Fig. 7a, b,

respectively, and Reynolds numbers NRe0 are 47.07 and

0.93 accordingly. For comparison, three lines associated

with viscous numbers at different orders of magnitude are

presented. It can be seen in the figure that, for all the NRe0

and Nv, the critical d0 can be one or higher when frequency

is sufficiently low: less than 2,000 Hz in the current case.

As frequency increases, the critical d0 decreases and has its

smallest value near the resonant frequency. Further

increasing frequency, the critical amplitude rises again as

the frequency is farther away from the resonance point.

However, the critical value never reaches as high as when

the frequency is less than resonance. In addition, as Nv

increases, the critical d0 increases as well. It is worth

noticing that when both NRe0 and Nv are large (Fig. 7a,

Nv = 0.11), the frequency at which d0 has the lowest value

shifts to the left instead being at resonant frequency in

other cases.

4 Conclusions

SFD effects on MEMS systems have long been investi-

gated, almost exclusively based on a linearized equation of

the dynamic mechanical system, using Reynolds equation

to account for the fluid film forces. Both of these equations

neglect fluid inertia effects, while the former also assumes

small oscillation amplitude. However, fluid inertia can be

important, or can even dominate the system, at the large

vibrations common in many microdevices. Neglecting

these effects may lead to errors in interpreting experimental

measurements and to inadequate design of microsystems.

In this paper, a nonlinear solution has been presented for

the single degree of freedom dynamic system consisting of

a plate supported elastically above a substrate, confining a

viscous fluid, and undergoing large normal oscillations.

The nonlinear viscous and inertia forces have been char-

acterized separately in a simple and compact manner. Due

to the large number of dimensionless parameters which

define the design space of this problem, a case study

approach is taken and the behavior is examined in selected

regions of interest in microsystems applications.

Comparisons between the linear and nonlinear solution

of the dynamic system are given in different situations (i.e.,

varying the excitation frequency, aspect ratio, and Rey-

nolds number). The results show that when the system is

excited at sufficiently small amplitude, the linear and

nonlinear solutions are almost identical. The difference

between the two solutions increases as the amplitude of

excitation increases, and at some point, the linear model is

clearly no longer valid, and a nonlinear model is essential.

The criterion used as the limit of linear model is when it

predicts a negative film thickness, i.e., the surfaces pene-

trate one another. The maximum critical amplitude for a

small vibration assumption is not fixed but depends on the

system geometry and kinematics. For example, the linear

solution can still be valid when the excitation amplitude is

‘‘large’’ (d = 1) if the system is actuated at a frequency

considerably less than resonance. By contrast, the linear

solution may not be valid when the excitation amplitude is

‘‘small’’ (d = 0.1) if the system excitation is near

resonance.
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