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Abstract The electrophoretic motion of a charged

spherical particle situated at an arbitrary position within a

charged spherical cavity along the line connecting their

centers is studied theoretically for the case of thin electric

double layers. To solve the electrostatic and hydrodynamic

governing equations, the general solutions are constructed

using the two spherical coordinate systems based on the

particle and cavity, and the boundary conditions are satis-

fied by a collocation technique. Numerical results for the

electrophoretic velocity of the particle are presented for

various values of the zeta potential ratio, radius ratio, and

relative center-to-center distance between the particle and

cavity. In the particular case of a concentric cavity, these

results agree excellently with the available exact solution.

The contributions from the electroosmotic flow occurring

along the cavity wall and from the wall-corrected electro-

phoretic driving force to the particle velocity are equiva-

lently important and can be superimposed due to the

linearity of the problem. The normalized migration veloc-

ity of the particle decreases with increases in the particle-

to-cavity radius ratio and its relative distance from the

cavity center and increases with an increase in the cavity-

to-particle zeta potential ratio. The boundary effects on the

electrokinetic migration of the particle are significant and

interesting.

Keywords Electrophoresis � Electroosmosis �
Colloidal sphere � Boundary effect � Spherical pore

1 Introduction

A charged solid surface in contact with an electrolyte

solution is surrounded by a diffuse cloud of ions carrying a

total charge equal and opposite in sign to that of the solid

surface. This distribution of fixed charge and adjacent

diffuse ions is known as an electric double layer. When a

charged colloidal particle is subjected to an external elec-

tric field, a force is exerted on both parts of the double

layer. The suspended particle is attracted toward the elec-

trode of its opposite sign, while the ions in the diffuse layer

migrate in the other direction. This particle motion is

termed electrophoresis and has long been applied to the

particle analysis and separation in a variety of physico-

chemical and biomedical systems (Hunter 1981; Masliyah

and Bhattacharjee 2006).

The electrophoretic velocity U0 of a dielectric particle of

arbitrary shape and thin double layer (relative to the local

radii of curvature of the particle) in an unbounded ionic

solution is related to the uniformly imposed electric field

E? by the well-known Smoluchowski equation (Morrison

1970; Anderson 1989),

U0 ¼
efp

g
E1; ð1Þ

where g and e are the viscosity and permittivity, respec-

tively, of the fluid, and fp is the zeta potential associated

with the particle surface. Since the thickness of the double

layer usually ranges from several to tens of nanometers,

which is much smaller than the typical particle size, Eq. 1

has been used widely in practice.

On the other hand, the interaction between the ions in

the mobile portion of the double layer adjoining a charged

solid surface with the zeta potential fw and an external

electric field generates a tangential velocity for the fluid
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within the diffuse layer. This electroosmotic velocity at

each point on the outer edge of the thin diffuse layer, which

appears as a slip velocity relative to the frame of the solid

surface, is given by the classic Helmholtz equation,

vs ¼ �
efw

g
Es; ð2Þ

where Es is the component of the local electric field tan-

gential to the dielectric solid surface.

In real situations of electrophoresis in microfluidic and

other practical applications, colloidal particles are not

isolated and will move near solid boundaries (Smith et al.

2000; Kang and Li 2009). Electrophoresis in porous media

is often applied because the unwanted mix-up caused by

free convection due to Joule heating can be avoided.

Microporous gels or membranes can be used to achieve

high electric fields and permit separations based on both

the size and the charge of the particles (such as DNA

fragments, proteins, and other macromolecules) (Jorgenson

1986). In capillary electrophoresis, gels in the column can

minimize the particle diffusion, prevent the particle

adsorption to the walls, and eliminate electroosmosis,

while serving as the anti-convective media (Ewing et al.

1989). Therefore, it is of great interest to determine how

the presence of various neighboring boundaries affects the

electrophoretic motion of particles.

Using a method of reflections, Keh and Anderson (1985)

analyzed the electrophoretic motions of a charged sphere

with a thin double layer normal to a conducting plane,

parallel to an insulating plane, along the axis of a circular

tube, and on the mid-plane between two parallel plates. On

the other hand, through the use of spherical bipolar coor-

dinates or a lubrication theory, semi-analytical solutions for

the electrophoretic velocity of a dielectric sphere in the

vicinity of a plane wall have been obtained in two principal

cases: the migration perpendicular to a conducting plane

(Morrison and Stukel 1970; Loewenberg and Davis 1995)

and the movement parallel to a dielectric plane (Keh and

Chen 1988; Yariv and Brenner 2003). The boundary effects

on electrophoresis were also studied analytically or semi-

analytically for a spherical particle located at the center of a

spherical cavity (Zydney 1995; Keh and Hsieh 2007), at an

axial (Keh and Chiou 1996) or eccentric (Yariv and Brenner

2002) position in a circular tube, and at an arbitrary position

between two parallel plane walls (Unni et al. 2007; Chang

and Keh 2008). An important result of these investigations

is that the boundary effects on electrophoresis are weaker

than on sedimentation, because the fluid velocity field

dragged by an electrophoretic particle with a thin double

layer decays faster than that caused by a stokeslet.

The system of a spherical particle moving inside a

spherical cavity can be an idealized model for the elec-

trophoresis in media or microchannels composed of

connecting spherical pores and the location of the particle

within the cavity can play an important role (Chen 2011).

The purpose of this article is to obtain a semi-analytical

solution for the axisymmetric electrophoresis of a dielectric

sphere in a nonconcentric spherical cavity with thin double

layers. The electrostatic and hydrodynamic equations

governing the system are solved by using the boundary

collocation method, and the wall-corrected electrophoretic

mobility of the particle is obtained with good convergence

for various cases. Some interesting features of the bound-

ary effect on the electrokinetic migration of the particle are

revealed from the results.

2 Analysis

We consider the axisymmetric electrophoretic motion of a

dielectric spherical particle of radius a and zeta potential fp

in an electrolyte solution within a spherical cavity (pore) of

radius b and zeta potential fw, as shown in Fig. 1, at the

quasi-steady state. Here, (q, /, z) and (r2, h2, /) represent

the circular cylindrical and spherical coordinate systems,

respectively, with the origin at the center of the cavity. The

center of the particle is located on the z axis away from the

cavity center at a distance d. A uniform electric field E?ez

is imposed to the fluid, where ez is the unit vector in the

z direction. The thickness of the electric double layers

adjoining the particle and cavity surfaces is assumed to be

much smaller than the particle radius and the spacing

between the solid surfaces. Our objective is to obtain the

correction to Eq. 1 for the particle velocity due to the

presence of the cavity wall.

Before determining the electrokinetic migration velocity

of the confined particle, it is necessary to ascertain the

pζ

zE e∞

wζ

r1

r
2

1θ

2θ

z

U

ρ

a

d

b

Fig. 1 Geometrical sketch for the axisymmetric electrokinetic

migration of a spherical particle in a spherical cavity
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electric potential and velocity distributions in the fluid

phase.

2.1 Electric potential distribution

The fluid outside the thin double layers is of uniform

composition, electric neutrality, and constant conductivity;

hence, the electric potential distribution w (r, h) is gov-

erned by the Laplace equation from charge conservation,

r2w ¼ 0: ð3Þ

Since the particle is non-conducting, the boundary

condition for w at its surface (or more precisely, the

outer edge of the double layer) is

r1 ¼ a :
ow
or1

¼ 0; ð4Þ

where (r1, h1, /) are the spherical coordinates based on the

center of the particle.

Given the uniformly applied electric field, the legitimate

boundary condition for the electric potential at the cavity

wall is

r2 ¼ b : w ¼ �E1r2 cos h2 ð5Þ

in the Dirichlet approach (Keh and Hsieh 2007) or

r2 ¼ b :
ow
or2

¼ �E1 cos h2 ð6Þ

in the Neumann approach (Zydney 1995). Both approaches

lead to the electric field E?ez in the whole fluid phase

when the particle does not exist. Note that the angular

component of the electric potential gradient at the cavity

wall is not specified in the Neumann approach.

The general solution of the electric potential distribution

can be expressed as

w ¼ E1
X1

m¼0

½S1mr�m�1
1 Pmðcos h1Þ þ S2mrm

2 Pmðcos h2Þ�;

ð7Þ

where Pm is the Legendre polynomial of order m, and the

unknown constants S1m and S2m need to be determined

using the boundary conditions at the particle surface and

cavity wall. In the construction of the solution in Eq. 7,

the superposition of the general solutions to Eq. 3 in

spherical coordinates as written from two different origins

can be employed due to the linearity of the governing

equation (Keh and Lee 2010). In order to use Eq. 7, ri and

coshi should be expressed in terms of the cylindrical

coordinates q and z, as shown in Eqs. 32 and 33 in the

‘‘Appendix’’.

Applying the boundary conditions given by Eqs. 4–7,

we obtain

X1

m¼0

fðmþ 1ÞS1ma�m�2Pmðcosh1Þ� S2m½dð1Þm ðq; zÞ�r1¼ag ¼ 0;

ð8Þ
X1

m¼0

fS1m½r�m�1
1 Pmðcos h1Þ�r2¼b þ S2mbmPmðcos h2Þg

¼ �b cos h2; ð9Þ
X1

m¼0

fS1m½dð2Þm ðq; zÞ�r2¼b þ mS2mbm�1Pmðcos h2Þg

¼ � cos h2; ð10Þ

where the definitions of the functions dð1Þm and dð2Þm are given

by Eqs. 26 and 27.

A collocation technique (Keh and Jan 1996) to truncate

the infinite series in Eq. 7 after M terms and enforce the

boundary conditions in Eqs. 8 and 9 or 10 at M discrete

points on each longitudinal arc of the particle and cavity

surfaces (with values of hi between 0 and p) leads to a

system of 2M simultaneous linear algebraic equations. This

matrix equation can be numerically solved to yield the

2M unknown constants S1m and S2m required in the trun-

cated form of Eq. 7 for the electric potential distribution. In

principle, the accuracy of the boundary collocation tech-

nique can be improved to any degree by taking a suffi-

ciently large value of M.

2.2 Fluid velocity distribution

With knowledge of the solution for the electric potential

field, we can now proceed to find the fluid velocity distri-

bution. Owing to the low Reynolds number, the fluid

motion outside the thin double layers is governed by the

Stokes equations,

gr2v�rp ¼ 0; ð11Þ
r � v ¼ 0; ð12Þ

where v is the fluid velocity field and p is the dynamic

pressure distribution.

Since the local electric field acting on the diffuse ions

within the thin double layer at each solid surface produces

a relative tangential fluid velocity at the outer edge of the

double layer as given by the Helmholtz expression in Eq. 2

for the electroosmotic flow, the boundary conditions for the

fluid velocity require that

r1 ¼ a : v ¼ Uez þ
efp

g
ow

r1oh1

eh1; ð13Þ

r2 ¼ b : v ¼ efw

g
ow

r2oh2

eh2: ð14Þ

Here, U is the migration velocity of the particle to be

determined, eh1 and eh2 are the unit vectors along the h1
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and h2 coordinates, respectively, and the expression for w
has already been given by Eq. 7 with constants determined

from Eqs. 8 and 9 or 10. There is no rotation of the particle

due to the axial symmetry of the system.

The cylindrical-coordinate components of the fluid

velocity can be expressed as

vq ¼
X1

n¼2

½BnB0nðr1; h1Þ þ DnD0nðr1; h1Þ þ AnA0nðr2; h2Þ

þ CnC0nðr2; h2Þ�; ð15Þ

vz ¼
X1

n¼2

½BnB00nðr1; h1Þ þ Dn;D
00
nðr1; h1Þ þ AnA00nðr2; h2Þ

þ CnC00nðr2; h2Þ�; ð16Þ

where the functions B0n, D0n;, B00n , D00n A0n, C0n, A00n , and C00n are

given by Eqs. 26–33 in Keh and Lee (2010) for the

creeping motion of a confined particle with the same

geometry but driven by gravity, and Bn, Dn, An, and Cn are

the unknown constants to be determined.

Applying the boundary conditions in Eqs. 13 and 14

along the particle surface and cavity wall together with

Eqs. 7–15 and 16, we obtain

X1

n¼2

fBnB0nða; h1Þ þ DnD0nða; h1Þ þ ½AnA0nðr2; h2Þ þ CnC0nðr2; h2Þ�r1¼ag

¼ U0

X1

m¼0

fS1mdð3Þm ða; h1Þ þ S2m½dð4Þm ðq; zÞ�r1¼ag cos h1;

ð17Þ
X1

n¼2

fBnB00nða; h1Þ þ DnD00nða; h1Þ þ ½AnA00nðr2; h2Þ þ CnC00nðr2; h2Þ�r1¼ag

¼ U � U0

X1

m¼0

fS1mdð3Þm ða; h1Þ þ S2m½dð4Þm ðq; zÞ�r1¼ag sin h1;

ð18Þ
X1

n¼2

f½BnB0nðr1; h1Þ þ DnD0nðr1; h1Þ�r2¼b þ AnA0nðb; h2Þ þ CnC0nðb; h2Þg

¼ U0

fw

fp

X1

m¼0

fS1m½dð5Þm ðq; zÞ�r2¼b þ S2mdð6Þm ðb; h2Þg cos h2;

ð19Þ
X1

n¼2

f½BnB00nðr1; h1Þ þ DnD00nðr1; h1Þ�r2¼b þ AnA00nðb; h2Þ þ CnC00nðb; h2Þg

¼ �U0

fw

fp

X1

m¼0

fS1m½dð5Þm ðq; zÞ�r2¼b þ S2mdð6Þm ðb; h2Þg sin h2:

ð20Þ

Here, U0 ¼ efpE1=g is the electrophoretic velocity of the

particle in an infinite volume of the same fluid given by

Eq. 1, the functions dð3Þm , dð4Þm , dð5Þm , and dð6Þm are defined by

Eqs. 28–31, and the first M constants S1m and S2m have

been determined through the procedure given in the pre-

vious subsection.

Equations 17–20 can be satisfied by utilizing the

boundary collocation method presented for the solution of

the electric potential field. Along the longitudinal arcs at

the particle and cavity surfaces, these equations are

applied, respectively, at N discrete points, and the infinite

series in Eqs. 15 and 16 are truncated after N terms. This

generates a set of 4N linear algebraic equations for the

4N unknown constants An, Bn, Cn, and Dn. The fluid

velocity field is obtained once these constants are solved

for a sufficiently large number of N.

2.3 Particle velocity

The drag force acting on the particle by the fluid can be

determined from

F ¼ 4pgD2: ð21Þ

Since the particle is freely suspended in the surrounding

fluid, the net force on the particle must vanish. Applying

this constraint to Eq. 21, one has

D2 ¼ 0: ð22Þ

To determine the electrokinetic migration velocity U of

the confined particle, Eq. 22 and the 4N algebraic equa-

tions resulting from Eqs. 17–20 need to be solved

simultaneously.

Owing to the linearity of the problem, the obtained

particle velocity can be expressed as a superimposed form

U ¼ U0 Mp þ
fw

fp

Mw

� �
; ð23Þ

where the dimensionless coefficients Mp and Mw are

functions of the normalized particle size a/b and deviation

distance of the particle center from the cavity center

d/(b - a). The coefficient Mp represents the normalized

electrophoretic mobility of the charged particle inside a

cavity with uncharged wall fw ¼ 0ð Þ relative to its

Smoluchowski result given by Eq. 1, whereas Mw denotes

the normalized mobility of an uncharged sphere fp ¼ 0
� �

in the charged cavity caused by the electroosmotic flow

recirculation that develops from the interaction of the

applied electric field with the thin double layer adjacent to

the cavity wall. The cavity-to-particle zeta potential ratio

fw=fp corresponds to the strength and direction of the

cavity-induced electroosmotic flow relative to the electro-

phoretic driving force exerted on the particle.

3 Results and discussion

The numerical results for the electrokinetic migration of a

spherical particle within a spherical cavity caused by an
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imposed electric field along the line through the particle

and cavity centers can be obtained by using the boundary

collocation method described in the previous section. The

system of linear algebraic equations to be solved for the

constants S1m and S2m is constructed from Eqs. 8 and 9 or

10 and that for An, Bn, Cn, and Dn is composed of Eqs. 17–

20. The details of the collocation scheme used for this work

were given by Keh and Lee (2010), in which very good

accuracy and convergence behavior have been achieved.

The collocation solutions for the dimensionless elec-

trokinetic mobilities Mp and Mw of a spherical particle

inside a spherical cavity defined by Eq. 23 are presented in

Table 1 and Figs. 2 and 3 for various values of the particle-

to-cavity radius ratio a/b and normalized distance between

the particle and cavity centers d/(b - a). All of the

numerical results converge to at least the significant digits

as shown in the table. Both Mp and Mw are positive; thus,

the contribution to the particle velocity from the cavity-

induced electroosmotic flow is in the same/opposite

direction with respect to that from the electrophoretic

driving force if the zeta potential ratio fw=fp is positive/

negative. For given values of a/b and d/(b - a), the values

of Mp and Mw predicted from using the Neumann boundary

condition at the cavity wall in Eq. 6 are always greater than

their corresponding results obtained from using the Di-

richlet boundary condition in Eq. 5, since the local electric

field in the fluid between the particle surface and cavity

wall resulting from the Neumann condition is higher than

that from the Dirichlet condition [e.g., with a factor

(1 ? k3/2)/(1 - k3), where k = a/b, for the concentric

case d/(b - a) = 0].

For the particular case of a spherical particle positioned

at the center of a spherical cavity, the exact solution of the

normalized electrokinetic mobilities has been obtained as

(Keh and Hsieh 2007)

Mp ¼
2� 5k3 þ 3k5

2mð1� k5Þ
; ð24Þ

Mw ¼
6� 10k2 þ 3k3 � k5 þ 2k8

6mð1� k5Þ
; ð25Þ

where v = 1?k3/2 if the Dirichlet condition in Eq. 5 is

employed, whereas v = 1-k3 if the Neumann condition in

Eq. 6 is used. In the limit a/b = 0 (the cavity wall is at an

infinite distance from the particle), the conditions in Eqs. 5

and 6 become identical (with v = 1) and Eqs. 24 and 25

reduce to Mp = Mw = 1. Our collocation results of Mp and

Mw for the concentric case d/(b - a) = 0 shown in Figs. 2

and 3 are in excellent agreement with this analytical

solution.

The results in Table 1 and Fig. 2 illustrate that the

normalized electrophoretic mobility Mp of the charged

particle decreases monotonically with increases in the

particle-to-cavity radius ratio a/b and in the normalized

distance between the particle and cavity centers d/(b - a),

keeping the other parameter unchanged, and Mp equals

zero (for the Dirichlet condition at the cavity wall) or 1/2

(for the Neumann condition) in the touching limit of the

two surfaces at a/b = 1 or d/(b - a) = 1. Thus, the net

effect of the approach of the cavity wall to the particle,

dominated by the contribution from viscous retardation, is

to reduce the electrophoretic driving force. For a specified

value of a/b, the viscous interaction between the particle

and the cavity wall intensifies on the part of the particle

surface close to the cavity wall and weakens on that far

from the wall with an enhanced retardation in the net effect

as the value of d/(b - a) increases. This boundary effect on

the electrophoresis is significant. Evidently, Mp = 1 as

a/(b - d) = 0 (which also implies that a/b = 0 and the

wall is infinitely far from the particle).

Table 1 The normalized electrokinetic mobilities Mp and Mw of a

spherical particle within a spherical cavity for various values of

a/b and d/(b - a)

a/b Mp Mw

d/(b -

a) = 0.25

d/(b -

a) = 0.5

d/(b -

a) = 0.25

d/(b -

a) = 0.5

Using the Dirichlet condition in Eq. 5

0.1 0.99641 0.99338 0.93232 0.77857

0.2 0.97322 0.95711 0.89153 0.76199

0.3 0.91712 0.88169 0.81777 0.70579

0.4 0.82329 0.77037 0.71716 0.62049

0.5 0.69595 0.63396 0.59811 0.51724

0.6 0.54656 0.48651 0.46978 0.40595

0.7 0.39003 0.34141 0.34047 0.29430

0.8 0.24055 0.20870 0.21661 0.18761

0.9 0.10863 0.09419 0.10240 0.08901

0.95 0.05122 0.04454 0.04966 0.04326

0.975 0.02483 0.02163 0.02444 0.02132

0.99 0.00974 0.00850 0.00968 0.00845

Using the Neumann condition in Eq. 6

0.1 0.99819 0.99654 0.93413 0.78204

0.2 0.98678 0.97830 0.90475 0.78368

0.3 0.95999 0.94208 0.85778 0.76371

0.4 0.91633 0.89042 0.80082 0.73006

0.5 0.85788 0.82804 0.74023 0.68920

0.6 0.78894 0.75991 0.68084 0.64603

0.7 0.71459 0.69036 0.62588 0.60394

0.8 0.63948 0.62261 0.57713 0.56500

0.9 0.56718 0.55876 0.53523 0.53025

0.95 0.53285 0.52870 0.51681 0.51456

0.975 0.51623 0.51418 0.50821 0.50714

0.99 0.50644 0.50563 0.50324 0.50282
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The results in Table 1 and Fig. 3 indicate that the

dimensionless electrokinetic mobility Mw of the particle

also decreases monotonically with an increase in the nor-

malized center-to-center distance d/(b - a) and equals

zero (for the Dirichlet condition at the cavity wall) or 1/2

(for the Neumann condition) at d/(b - a) = 1 for any fixed

value of the particle-to-cavity radius ratio a/b. Thus, the net

effect of the approach of the cavity wall to the particle is

also to reduce the cavity-induced electroosmotic sweeping

force on the particle. On the other hand, Mw decreases

monotonically with an increase in a/b to zero or 1/2 at

a/b = 1 when the value of d/(b - a) is small, but first

increases with an increase in a/b from a/b = 0 and attains a

maximum before it starts decreasing to zero or 1/2 at

a/b = 1 when the value of d/(b - a) becomes rela-

tively large. Interestingly, Mw is not equal to unity as

a/(b - d) = 0 except for the concentric case d/(b - a) = 0.

Note that, for any given values of a/b and d/(b - a), Mp is

greater than Mw (in spite of their comparable magnitudes),

no matter whether Eq. 5 or 6 is used for the boundary

condition of the electric potential at the cavity wall.

The results for the electrokinetic migration velocity of a

charged spherical particle in a charged spherical cavity

normalized by its electrophoretic velocity in an unbounded

fluid, U/U0, versus the radius ratio a/b for various values of

the zeta potential ratio fw=fp and normalized center-to-

center distance d/(b - a) are presented in Fig. 4. For

constant values of a/b and d/(b - a), as expected, the value

of U/U0 increases monotonically with an increase in fw=fp.

When the value of fw=fp is positive, the presence of the

cavity can greatly enhance the electrophoretic migration of

the particle, and this great enhancement is attributed to the

electroosmotic flow recirculation arising from the interac-

tion between the applied electric field and the charged
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Fig. 2 Plots of the normalized electrophoretic mobility Mp of a

charged sphere in an uncharged spherical cavity for various values of

a/b and d/(b - a). The solid and dashed curves represent the cases

using the Dirichlet condition in Eq. 5 and Neumann condition in

Eq. 6, respectively, at the cavity wall
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Fig. 3 Plots of the normalized electrokinetic mobility Mw of an

uncharged sphere in a charged spherical cavity for various values of

a/b and d/(b - a). The solid and dashed curves represent the cases

using the Dirichlet condition in Eq. 5 and Neumann condition in

Eq. 6, respectively, at the cavity wall
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cavity wall. As long as the value of fw=fp is greater than

-1, the value of U/U0 is positive. When the value of fw=fp

is smaller than about -1, however, the value of U/U0 may

become negative, meaning that the velocity of the particle

reverses its direction due to the relatively strong effect of

the cavity-induced electroosmotic flow in the opposite

direction. For a specified value of fw=fp, the magnitude of

fw=fp in general decreases with an increase in a/b or

d/(b - a). Note that, although the normalized electroki-

netic mobilities Mp and Mw are both monotonic decreasing

functions of a/b for small values of d/(b - a), the magni-

tude of U/U0 calculated using Eq. 23 for fixed values of

d/(b - a) and fw=fp may increase with increasing a/b (at

small a/b) before going through a maximum under some

conditions. For given values of fw=fp, a/b, and d/(b - a),

the magnitude of U/U0 predicted from using the Neumann

condition at the cavity wall in general is greater than that

predicted from using the Dirichlet condition.

For the creeping motion of a spherical particle in a

spherical cavity along the line of their centers driven by a

gravitational field, the semi-analytical solution of the particle

mobility has been obtained by using the boundary colloca-

tion method (Keh and Lee 2010). A comparison of this

solution with the present result shows that the wall effect on

electrophoresis is weaker than that on sedimentation.

We note that the Dirichlet and Neumann boundary condi-

tions for the electric potential at the cavity wall given by

Eqs. 5 and 6, respectively, lead to somewhat different results

of the migration velocity of the confined particle. These

boundary conditions have also been widely used at the virtual

surface of a spherical cell in the unit cell model to obtain the

mean electrophoretic mobility of a suspension of identical

charged spheres [e.g., Zharkikh and Shilov (1982) and Oh-

shima (1997) used Dirichlet condition, whereas Levine and

Neale (1974) and Kozak and Davis (1989) used Neumann

condition]. It has been shown that the electrophoretic mobility

predicted from Eq. 5 rather than from Eq. 6 in the cell model

agrees well with that calculated from the statistical-mechanics

model for dilute suspensions of spherical particles (Keh and

Wei 2000). Our results also indicate that the tendency of the

dependence of the particle mobility on the parameters a/b and

d/(b - a) resulting from Eq. 5 is more reasonable than that

from Eq. 6, where the normalized mobility of the particle in

the touching limit vanishes for the former case and is finite

(=1/2) for the latter one. The boundary condition in Eq. 6 is

not as accurate as that in Eq. 5, probably due to the fact that the

angular component of the electric potential gradient at the

cavity wall is not specified in Eq. 6.

4 Conclusions

A semi-analytical investigation of the electrophoretic

motion of a charged spherical particle arbitrarily positioned

within a charged spherical cavity along the line of their

centers using a boundary collocation method is presented in

the limit of thin electric double layers. The Laplace and

Stokes equations are solved for the electric potential and

velocity fields, respectively, in the fluid phase, and

numerical results for the electrokinetic migration velocity

of the particle are obtained for various values of the relative

particle radius, distance between the particle and cavity

centers, and zeta potential of the cavity wall. For the par-

ticular case of a particle in a concentric cavity, these results

are in excellent agreement with the explicit formulas given

by Eqs. 24 and 25. The electroosmotic flow induced by the

interaction between the applied electric field and the thin

double layer adjoining the cavity wall can lead to a sig-

nificant enhancement/reduction in the electrophoretic

migration of the particle if the ratio of their zeta potentials is

positive/negative. When the particle is situated closer to the

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

-2

-1

a/b

U/U0

ζ
w
/ζ

p
=2

1

0

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

-2

-1

0

1

ζ
w
/ζ

p
=2

a/b

U/U0

(a)

(b)

Fig. 4 Plots of the normalized electrokinetic migration velocity U/U0

of a charged sphere in a charged spherical cavity versus the radius

ratio a/b with the zeta potential ratio fw=fp as a parameter: a using the

Dirichlet condition in Eq. 5; b using the Neumann condition in Eq. 6.

The solid and dashed curves denote the cases of d/(b - a) = 0 and d/

(b - a) = 0.5, respectively
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cavity wall or becomes larger, the wall effect of hydrody-

namic retardation increases and the electrophoresis of the

particle slows down. The boundary effects on the electro-

phoresis can be significant in appropriate situations.
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Appendix: definitions of some functions in Sect. 2

dð1Þm ðq; zÞ ¼ mrm�1
2

or2

or1

Pmðcos h2Þ

� rm
2

dPmðcos h2Þ
d cos h2

sin h2

oh2

or1

; ð26Þ

dð2Þm ðq; zÞ ¼ �ðmþ 1Þr�m�2
1

or1

or2

Pmðcos h1Þ

� r�m�1
1

dPmðcos h1Þ
d cos h1

sin h1

oh1

or2

; ð27Þ

dð3Þm ðr; hÞ ¼ �r�m�2 dPmðcos hÞ
d cos h

sin h; ð28Þ

dð4Þm ðq; zÞ ¼ r�1
1 mrm�1

2

or2

oh1

Pmðcos h2Þ
�

� rm
2

dPmðcos h2Þ
d cos h2

sin h2

oh2

oh1

�
;

ð29Þ

dð5Þm ðq; zÞ ¼ �r�1
2 ðmþ 1Þr�m�2

1

or1

oh2

Pmðcos h1Þ
�

þ r�m�1
1

dPmðcos h1Þ
d cos h1

sin h1

oh1

oh2

�
;

ð30Þ

dð6Þm ðr; hÞ ¼ �rm�1 dPmðcos hÞ
d cos h

sin h; ð31Þ

where

r1 ¼ ½q2 þ ðz� dÞ2�1=2; cos h1 ¼
z� d

r1

; sin h1 ¼
q
r1

;

ð32Þ

r2 ¼ ðq2 þ z2Þ1=2; cos h2 ¼
z

r2

; sin h2 ¼
q
r2

; ð33Þ

or2

or1

¼ r1 þ d cos h1

r2

;

oh2

or1

¼ r�2
2

or2

or1

ðr1 cos h1 þ dÞ � r2 cos h1

� �
csc h2;

ð34Þ

or1

or2

¼ r2 � d cos h2

r1

;

oh1

or2

¼ r�2
1

or1

or2

ðr2 cos h2 � dÞ � r1 cos h2

� �
csc h1;

ð35Þ

or2

oh1

¼ � r1d sin h1

r2

;

oh2

oh1

¼ r�2
2

or2

oh1

ðr1 cos h1 þ dÞ þ r1r2 sin h1

� �
csc h2:

ð36Þ

or1

oh2

¼ r2d sin h2

r1

;

oh1

oh2

¼ r�2
1

or1

oh2

ðr2 cos h2 � dÞ þ r1r2 sin h2

� �
csc h1:

ð37Þ
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